Μέρος 2
Μέρος 2
−−→ −→ −−→
M OM = OA+ AM
tuqaÐo shmeÐo tìte
−−→ −→
ìpou AM = tAB, t ∈ R
sq ma
−−→ −→ −→ −→
OM = OA + tAB ìpou tAB = t⃗u
−−→ −→
OM = OA + t⃗u
'Ara ⃗rM = ⃗rA + t⃗u DIANUSMATIKH EXISWSH
H eujeÐa dièrqetai apì to (xA , ψA , zA ) kai eÐnai parllhlh proc to ⃗u(α, β, γ).
PARADEIGMA Na brejeÐ h exÐswsh thc eujeÐac pou dièrqetai apì to A(1, 1, 1) kai eÐnai pa-
I PORISMATA
(ε1 ) (A, ⃗u)
(ε2 ) (B, w)
⃗
(ε1 ) x = ψ = z
x−1 ψ−2 z−3
(ε2 ) = =
1 3 3
Sqetik jèsh 2 eujei¸n:
• PARALLHLIA
}
(ε1 ) ∥ (1, 1, 1)
grammik anexrthta ⇒ (ε1 ) ∦ (ε2 )
(ε2 ) ∥ (1, 3, 4)
•
SHMEIO TOMHS 'Estw M ∈ (ε1 ) ∩ (ε2 )
t=x=ψ=z
Yqnw x−1 ψ−2 z−3
s= = =
1 3 4
ProkÔptei sÔsthma 5 exis¸sewn me 5 agn¸stouc.
}
x=t s= t−1
t−1 t−2 1
tìte
1
t−2
⇒ = ⇒ 3t − 3 = t − 2 ⇔ t =
ψ=t s= 3
1 3 2
1 1
gia t= prokÔptei s = −
2 2
z−3
s= ATOPO (z = t =
1
2
, s = − 12 ).
4
'Ara oi eujeÐec (ε1 ) kai (ε2 ) eÐnai ASUMBATES.
B' TROPOS: TUPOS pou dÐnei thn APOSTASH DUO EUJEIWN STO QWRO
I ASKHSH
{ 1
x+ψ+z =1
(Σ) Na deÐxete ìti (Σ) paristnei eujeÐa kai na brejeÐ h kanonik morf .
2x + 3ψ + 4z = 0
{ {
x + ψ = 1 − z (−2) −2x − 2ψ = −2 + 2z (+)
⇒ ⇒ −ψ = 2z + 2
2x + 3ψ = −4z 2x + 3ψ = −4z
41
ψ = −2(z + 1) , x = z + 3, z ∈ R
{
ψ = −2(z + 1)
'Ara z∈R
x=z+3
ψ =z+1 x−2 ψ z+1
−2 'Ara = =
x−2=z+1 1 −2 1
'Ara h (ε) dièrqetai apì to A(−2, 0, 1) kai eÐnai parllhlh sto ⃗u(1, −2, 1).
I ASKHSH 2
2x + 3 2ψ 4z − 1
= = Na tejeÐ se kanonik morf
5 1 8
x+ 3
2 ψ z− 1
4
5 = 1 =
2 2
2
'Ara dièrqetai apì to shmeÐo B( 32 , 0, − 14 ) kai eÐnai ∥ ⃗u( 25 , 12 , 2)
(ε) ⊥ (Π)
H (ε) eÐnai ∥ sth ⃗ℓ : (ε) ∥ ⃗ℓ.
dieÔjunsh
−−→
< OM , ⃗ℓ >= p paristnei epÐpedo sto q¸ro
I PARADEIGMA 1
ZhteÐtai to (epÐpedo) p pou dièrqetai apì to shmeÐo A(1, 1, 1) kai eÐnai kjeto sto dinusma
⃗ℓ(1, 1, 1).
Apì thn exÐswsh : 1·x+1·ψ+1·z+δ =0
42
BrÐskoume to δ : 1 · 1 + 1 · 1 + 1 · 1 + δ = 0 ⇒ δ = −3
Opìte EXISWSH EPIPEDOU: x + ψ + z = −3
I PARADEIGMA 2
paristnei epÐpedo p ⊥ ⃗ℓ(1, 2, 3)
kai anazhtoÔme to shmeÐo apì to opoÐo
sq ma A(xA , ψA , zA )
B(xB , ψB , zB ) A(xA , ψA , zA )⃗ℓ =?(⊥ (Π))
Γ(xΓ , ψΓ , zΓ )
BrÐskoume ⃗ℓ ⊥ (Π) : ⃗ℓ = (−→ ←−
AB) × (AΓ)
−−→
< ⃗ℓ, AM >= 0 ìpou M tuqaÐo shmeÐo tou epipèdou, M (x, ψ, z)
PARADEIGMA
−→
AB(−1, 1, 0)
A(1, 0, 0) −→
AΓ(−1, 0, 1)
B(0, 1, 0)
Γ(0, 0, 1) −→ −→
AB × AΓ = (1, 1, 1) ⋆ = ⃗ℓ
i j κ
⋆ prokÔptei apì thn orÐzousa anaptussìmenh wc proc thn 1 h
gramm −1 1 0
−1 0 1
−−→
< ⃗ℓ, AM >=< (1, 1, 1), (x−1, ψ−0, z−0) >= 0 ⇒ x + ψ + z = 1 EXISWSH EPIPEDOU
−−→
I EKFRAZOUME KALUTERA ton tÔpo < ⃗ℓ, AM >= 0
−→
AB = (xB − xA , ψB − ψA , zB − zA )
−→
AΓ = (xΓ − xA , ψΓ − ψA , zΓ − zA )
⃗ℓ = − → −→ ( )
AB × AΓ = Dψz , −Dxz , Dxψ
−−→
AM (x − xA , ψ − ψA , z − zA )
−−→
< ⃗ℓ, AM >= (x − xA )Dψz − (ψ − ψA )Dxz + (z − zA )Dxψ = 0
43
x − xA ψ − ψA z − zA
⃗ −−→
< ℓ, AM >= xB − xA ψB − ψA zB − zA = 0
xΓ − xA ψΓ − ψA zΓ − zA
EXISWSH EPIPEDOU sto QWRO
x ψ z 1
xA ψA zA 1
=0
xB ψB zB 1
xΓ ψΓ zΓ 1
}
αx + βψ + γz + δ = 0
(Π) : PARISTANEI EPIPEDO ⊥ ⃗ℓ
⃗ℓ = (α, β, γ) ̸= 0
GnwrÐzw èna shmeÐo tou epipèdou
(Π1 ) x + ψ + z = 1
sq ma
(Π2 ) 2x + 3ψ + z = 4
Dhlad zhteÐtai h exÐswsh thc eujeÐac (ε).
oc
1 TROPOS: GEWMETRIKOS
x − x0 ψ − ψ0 z − z0
H tom eÐnai eujeÐa thc morf c = = ìpou (κ, λ, κ) ∥ (ε) kai
κ λ µ
(x0 , ψ0 , z0 ) ∈ (ε).
'Estw
⃗ℓ1 ⊥ (Π1 )
⇒ (⃗ℓ1 × ⃗ℓ2 ) ∥ (Π1 ) ∩ (Π2 )
⃗ℓ2 ⊥ (Π2 ) | {z }
(κ, λ, µ)
}
⃗ℓ1 = (1, 1, 1)
⃗ℓ1 × ⃗ℓ2 = (−2, 1, 1) = (κ, λ, µ)
⃗ℓ2 = (2, 3, 1)
ψ0 = 0
x0 = 3
x0 + z0 = 1
z0 = −2
2x0 + z0 = 4
−1
gia x1 = 0 tìte (x1 , ψ1 , z1 ) = (0, 23 , −2
).
3
Tìte (κ, λ, µ) ∥ (x0 − x1 , ψ0 − ψ1 , z0 − z1 ) = (3, − 32 , − −3
2
) = − (−2, 1, 1)
2
3
(κ, λ, µ) ∥ − (−2, 1, 1)
2
45
I PARADEIGMA 2
Na brejeÐ h exÐswsh tou epipèdou pou dièrqetai apì to (1, 1, 1) kai eÐnai ⊥ sta (Π1 ), (Π2 )
{ }
x+ψ+z =1
(Π) :
2x + 3ψ + z = 4
AfoÔ (Π) ⊥ (Π1 ), (Π2 ) ⇒ (Π) ⊥ (ε) = (Π1 ) ∩ (Π2 ) ìpou (ε) ∥ (κ, λ, µ) ⇒ (Π) ⊥ (κ, λ, µ)
(Π) : κx + λψ + µz + ν = 0 kai epeid (1, 1, 1) ∈ (Π) prokÔptei ìti ν = κ + λ + µ
Opìte (Π) : κx + λψ + µz + (κ + λ + µ) = 0
I ASKHSH
Na brejeÐ mÐa eujeÐa tou (Π) ⊥ sthn (ε) kai na thn tèmnei. Pìsec tètoiec eujeÐec uprqoun
oc
1 TROPOS
x − x0 ψ − ψ0 z − z0
= = ìpou (x0 , ψ0 , z0 ) ∈ (ε), (κ, λ, µ) ∥ (ε)
κ λ µ
−→ −→
−−→′ −→ < AP , ⃗ℓ > ⃗ < AP , ⃗ℓ > ⃗
∥P P ∥ = ∥prob⃗ℓAP ∥ = ∥ ℓ∥ = ∥ ℓ∥
< ⃗ℓ, ⃗ℓ > ∥⃗ℓ∥2
−→
−→ ⃗ ∥⃗ℓ∥ | < AP , ⃗ℓ > |
= | < AP , ℓ > | =
∥⃗ℓ∥2 ∥⃗ℓ∥
Dhlad
−→
−−→′ | < AP , ⃗ℓ > |
∥P P ∥ = (2)
∥⃗ℓ∥
Ekfrzoume to A me paramètrouc. 'Estw A(x1 , ψ1 , z1 ) ∈ (Π).
A(x1 , ψ1 , z1 )
P (x0 , ψ0 , z0 ) Apì thn sqèsh (2) prokÔptei:
ℓ(α, β, γ)
αx0 + βψ0 + γ
sq ma d(P, (ε)) = √
α2 + β 2
A(x1 , ψ1 )
B(x2 , ψ2 ) E(ABΓ) =?
Γ(x3 , ψ3 )
1oc
TROPOS: EPIPEDO ⊂ R3
(x1 , ψ1 ) ≡ (x1 , ψ1 , 0)
1 −→ −→
(x2 , ψ2 ) ≡ (x2 , ψ2 , 0) opìte E(ABΓ) = ∥AB × AΓ∥
2
(x3 , ψ3 ) ≡ (x3 , ψ3 , 0)
oc
2 TROPOS:
{ −→
BΓ(x3 − x2 , ψ3 − ψ2 )
⃗u(−(ψ3 − ψ2 ), (x3 − x2 ))
sq ma
−→
⃗u ⊥ BΓ = èqoun eswterikì ginìmeno
mhdèn.
x − x3 ψ − ψ3
BrÐskoume thn (ε) = 0 ⇔ (ψ2 −ψ3 )x+(x2 −x3 )ψ−x3 (ψ2 −ψ3 )+ψ3 (x2 −x3 ) = 0
x2 − x3 ψ2 − ψ3
1
IsqÔei o tÔpoc: E(ABΓ) = ∥BASH∥ · ∥UYOS∥
2
−→
BASH= ∥BΓ∥
1 −→
E(ABΓ) = ∥BΓ∥∥d(A, BΓ)∥ =
2
((
1√ (((( 2 |(ψ2 − ψ3 )x1 − (x2 − x3 )ψ1 + ψ3 (x2 − x3 ) − x3 (ψ2 − ψ3 )|
((ψ
2(+
= (x −
( (
x( ) − ψ ) √ ((
2((( (((( 2
3 2 3 2
(x −( ((ψ
x()2(+ −ψ )
((((
3 2 3 2
x1 ψ1 1
1 x1 − x3 ψ1 − ψ3 1
= = x2 ψ2 1
2 x2 − x3 ψ2 − ψ3 2
x3 ψ3 1
48
x1 ψ1 1
1
'Ara E(ABΓ) = x2 ψ2 1
2
x3 ψ3 1
I PORISMA: TrÐa shmeÐa eÐnai SUGGRAMMIKA sto EPIPEDO
x1 ψ1 1
an kai mìno an x2 ψ2 1 = 0
x3 ψ3 1
−→ −→
Dhlad AB × AΓ = ⃗ 0
Sto epÐpedo dÐnetai mÐa eujeÐa (ε) h opoÐa qwrÐzei to epÐpedo se dÔo tm mata (hmiepÐpeda)
f (x, ψ) = αx + βψ + γ f : R2 → R
f (x, ψ) = 0 ⇔ A(x, ψ) ∈ (ε)
JewroÔme
EPIPEDO-SHMEIO-EUJEIA ston R3
koinì kjeto tm ma
DEDOMENA
−→ −→
−→ ∥AP ∥∥⃗u∥ sin θ ∥AP × ⃗u∥ ∥(⃗rP − ⃗rA ) × ⃗u∥
∥AP ∥ sin θ = = =
∥⃗u∥ ∥⃗u∥ ∥⃗u∥
x − x0 ψ − ψ0 z − z0
ExÐswsh eujeÐac ssto q¸ro: = =
κ λ µ
PROBLHMA:
Ta shmeÐa twn opoÐwn h apìstash apì to dojèn shmeÐo eÐnai gnwst kai stajer
A: gnwstì shmeÐo
M : tuqaÐo shmeÐo. Jèloume d(A, M ) = R (gnwstì
sq ma kai stajerì).
−−→
∥AM ∥ = R
∥⃗rM − ⃗rA ∥ = R DIANUSMATIKH EXISWSH
−→
Ta sust mata {O, x, ψ} kai {A, X, Ψ} diafèroun kat mÐa metafor wc proc to dinusma OA
touOxψ .
X = x − xA x = X + xA
Opìte
Ψ = ψ − ψA ψ = Ψ + ψA
Analutik exÐswsh kÔklou
se SUSTHMA ANAFORAS X 2 + Ψ2 = R 2
me ARQH to KENTRO tou KUKLOU
Perigraf tou kÔklou qrhsimopoi¸ntac mÐa parmetro p.q. kÔkloc wc troqi kinhtoÔ sto qrìno
x = x(t)
tìte M (x(t), ψ(t))
ψ = ψ(t)
x = R cos φ
ψ = R sin φ
sq ma sq ma
ìpou φ = ωt, ω h gwniak
suqnìthta.
X(t) = R cos ωt
Parmetroc eÐnai to t, gia ω = 1 eÐnai
Ψ(t) = R sin ωt
{ }
x = R cos t
perigrfei ta shmeÐa tou kÔklou me mÐa parmetro t. O kÔkloc sundèetai me
ψ = R sin t
mÐa periodikìthta.
• Uprqei mÐa diadikasÐa, h APALOIFH, pou apì tic parametrikèc exis¸seic odhgeÐ sthn analutik exÐswsh
cos t = Rx
X2 Ψ2
ψ
sin t = R + = 1 ⇔ X 2 + Ψ2 = R 2
R R
sin2 t + cos2 t = 1
I
SQETIKH JESH KUKLOU kai EUJEIAS sto EPIPEDO
∅
(C) ∩ (ε) 1 shmeÐo
2 shmeÐa
{
(C) : x2 + ψ 2 = R2
(ε) : αx + βψ + γ = 0, |α| + |β| ̸= 0
Apì th lÔsh tou sust matoc ja prokÔyoun ta “koin shmeÐa” (an uprqoun). Epeid |α|+|β| ̸= 0
tìte èna apì ta dÔo eÐnai mh mhdenikì. 'Estw ìti eÐnai to B tìte: ψ = κx + λ kai anagìmaste
sto sÔsthma
{ ψ 2 = κ2 x2 + 2κλx + λ2
x2 + ψ 2 = R2
⇒ x2 + ψ 2 = (1 + κ2 )x2 + (2κλ)x + λ2 = R2
ψ = κx + λ | {z }
tri¸numo
Epomènwc h lÔsh eÐnai h apìstash tou KENTROU tou KUKLOU apì thn EUJEIA.
sq ma
I EFAPTOMENH KUKLOU
Uprqei èna mìno koinì shmeÐo metaxÔ (C) kai (ε) dhlad d(0, (ε)) = R.
EÐnai ORIAKH JESH thc TEMNOUSAS.
exÐswsh pou ikanopoieÐtai an
sq ma xx0 + ψψ0 = R2
h (ε) efptetai ston (C).
53
MENWN)
I EXISWSH EFAPTOMENHS
(ε) ⇒ x⋆ x+ψ ⋆ ψ = R2
EXISWSH EFAPTOMENHS ston KUKLO pou dièrqetai apì to shmeÐo A(x⋆ , ψ ⋆ ) tou kÔklou
}
(C1 ) : x2 + ψ 2 = R12
(Σ)
(C2 ) : (x − α)2 + ψ 2 = R22
sq ma
α −→ DIAKENTROS
EpilÔoume to sÔsthma
−−→ −−→
gwnÐa (O1 A, O2 A) = φ
sq ma
−−→ −−→
< O1 A, O2 A >
cos φ = −−→ −−→
∥O1 A∥ ∥O2 A∥
ASKHSH: SUNJHKH ORJOGWNIOTHTAS 2 KUKLWN
−−→ −−→
R1 + R2 = δ 2 < O1 A, O2 A >= 0
I ASKHSH: Na brejeÐ o G. T. twn mèswn parllhlwn qord¸n.
SUSTHMA SUNTETAGMENWN pou tairizei sto prìblhma. H arq twn axìnwn O(0, 0)
eÐnai to kèntro tou kÔklou.
ProkÔptei ψM = OxM EUJEIA apì thn ARQH O(0, 0). 'Ara DIAMETROS.
I ASKHSH: JewroÔme qordèc Ðsou m kouc (stajeroÔ). ZhteÐtai o G.T. twn mèswn twn qor-
d¸n.
sq ma
I SFAIRA
R3
ZhteÐtai o G.T. twn shmeÐwn M:
Ks meio tou q¸rou d(K, M ) = R
R>0 SFAIRA
−−→
Sto sÔsthma {K, xψz} ∥OM ∥ = R
(x − x0 )2 + (ψ − ψ0 )2 + (z − z0 )2 = R2 KENTRO to (x0 , ψ0 , z0 )
>R @ koin shmeÐa
sq ma
d(K, (Π)) = R ∃ èna koinì shmeÐo
<R h tom eÐnai kÔkloc
Gia na deÐxoume ìti h TOMH eÐnai KUKLOS: Prèpei na brw to KENTRO kai thn AKTINA tou.
'Ara ta shmeÐa thc TOMHS apèqoun apì stajerì shmeÐo stajer apìstash. 'Ara h TOMH
eÐnai KUKLOS.
55
⃗r = ⃗r0 + t⃗u, t ∈ R
eujeÐa
x = x0 + tα
EISAGWGH ψ = ψ0 + tβ t∈R
x(t) = R cos φ
KÔkloc z = z0 + tγ
ψ(t) = R sin φ, φ ∈ R
• EpÐpedo
−−→
⃗r = ⃗r0 + AM
−−→
AM = t⃗u + sw ⃗ , grammikoÐ sunduasmoÐ
sq ma
⃗ t, s ∈ R
⃗u, w,
⃗ t, s ∈ R
⃗r = ⃗r0 + t⃗u + sw,
x − x0 ψ − ψ0 z − z0
α1 α2 α3 = 0 ⇔ αx + βψ + γz + δ = 0
β1 β2 β3
(α, β, γ) ∥ ⃗u × w
⃗
−−→ −−→
|OM ′ | = |ΓM | = r · sin θ
φ ∈ (0, 2π)
(φ, θ) −→ (r cos φ sin θ, r sin φ cos θ, r cos θ)
x, ψ, z
x2 + ψ 2 + z 2 = r2
φ = gewgrafikì pltoc φ ∈ (0, 2π)
θ = gewgrafikì m koc θ ∈ (0, π)
57
EIDIKES PERIPTWSEIS
• αx + γψ + z = 0
2 2
{
KUKLOS (exarttai apì touc suntelestèc)
}
α=γ=1=z
x2 + ψ 2 + 1 = 0 adÔnato giatÐ den uprqei kÔkloc fantastik c aktÐnac
mata.
I PROBLHMA: Sto epÐpedo dÐnetai mia eujeÐa (δ) kai èna shmeÐo (E). ZhteÐtai o G.T. twn
d(M, E)
shmeÐwn M tou epipèdou gia ta opÐa = stajerì > 0. SumbolÐzoume thn ekkentrìthta
d(M, δ)
me e.
ISTORIA tou PROBLHMATOS:
sq ma.
sq ma
Oi kampÔlec pou prokÔptoun apì thn
E −→ ESTIA
δ −→ dieujetoÔsa
sq ma
M : tuqaÐo shmeÐo
r = (M E): ESTIAKH APOSTASH
To E paÐzei to rìlo tou POLOU
EB =stajer apìstash= p
2 2
(M E) = r
(M Γ)2 = (EB − r cos θ)2
(M E)2
= e2
(M Γ)2
58
(M E)2
= e2 ⇒ r2 = e2 (p − r cos θ)2 (3)
(M Γ)2
EXISWSH tou G.T. me qr sh POLIKWN SUNTETAGMENWN
x = r cos θ
sq ma
ψ = r sin θ
x2 + ψ 2 = r2
ψ
arctan = θ
x
•1 h
PERIPTWSH: e=1
r
Prèpei p > r cos θ. Opìte apì thn (3) prokÔptei =1
p − r cos θ
•2 h
PERIPTWSH: e ̸= 1
r
Apì thn (3) prokÔptei = ±e ⇒ r = f (θ)
{ p − r cos θ
e>1 uprqoun shmeÐa kai dexi thc δ pou ikanopoioÔn th sunj kh
e = 1 −→ PARABOLH
e < 1 −→ ELLEIYH
e > 1 −→ UPERBOLH
r2 = e2 (p − r cos θ)2
x = r cos θ
ψ = r sin θ
(O, xψ)
r 2 = x2 + ψ 2
x2 + ψ 2 =
sq ma
{z θ}) ⇒
e2 (p2 − 2pr cos θ + r|2 cos2
x2
x2 + ψ 2 =
e2 p2 − 2pe2 r cos θ + e2 x2 ⇒
(1 − e2 )x2 + ψ 2 + 2pe2 x − e2 p2 = 0
(1 − e2 )x2 + ψ 2 + 2pe2 x − e2 p2 = 0
• gia e=1
ψ 2 = e2 p2 − 2e2 x ⇒ ψ 2 = p2 − 2px ⇔
p
ψ 2 = 2p( − x) (4)
2
59
Jètoume
} Y 2 = −2pX
X =x− p
(2)
2
⇒ sq ma
Y =ψ
PARABOLH sto SUSTHMA ↗
}
X ⋆ = −X
Sto SUSTHMA ⇒ Ψ⋆ = 2pX ⋆
Ψ⋆ = Ψ
• e1 ̸= 1
2pe2
(1 − e2 )[x2 + x] + ψ 2 = e2 p2 prospajoÔme na to knoume tèleio tetrgwno me katllhlec
1 − e2
pe2 p2 e2
prosjafairèseic (1 − e )(x + −
2 2
) + ψ =0
1 − e2 1 − e2
pe2
X = (x + )
Jètw 1 − e2 →
Ψ=ψ
e2 p2 e2 p2
(1 − e2 )X 2 + Y 2 = ⇒ diairoÔme me
1 − e2 1 − e2
X2 Y2
+ =1
e2 p2 e2 p2
1 − e2 1 − e2
DiakrÐnoume tic peript¸seic
Jètw (1 − e2 )α2 = β 2
β2
1 − e2 = 2 ìpou α > β P = d(E, δ)
α
60
β2 α2 − β 2
e2 = 1 − = = e2
α2 α2
I SQOLIA
− H exÐswsh pou prokÔptei eÐnai eidik morf deuterobjmiac exÐswshc dÔo metablht¸n
− H (E) faÐnetai na eÐnai genikìterh giatÐ me katllhlouc suntelestèc mporeÐ na ekfrsei eu-
− ProkÔptei to er¸thma ti paristnei h (E). Melèth gewmetrik kje antikeimènou pou prokÔ-
ptei!
61
x = (1 − λ)x1 + λx2
ψ = (1 − λ)ψ1 + λψ2 PARAMETRIKES EXISWSEIS
z = (1 − λ)z1 + λz2
x − x1 ψ − ψ1 z − z1
= = =λ
x2 − x1 ψ2 − ψ1 z2 − z1
DIEUJUNSH EUEJEIAS
7x + 2ψ − 3z = 21 (5)
x = 7λ + 1
ψ = 2λ + 1 Jètw sthn (5) x, ψ, z
z = −3λ + 1
I APOSTASH ASUMBATWN EUJEIWN
62
−→
AΓ = λ⃗u1
−→ −→
OΓ − OA = λ⃗u1
−→ −→
OΓ = OA + λ⃗u1
sq ma ···············
x1 = α1 + λu11
ψ1 = α2 + λu12
z1 = α3 + λu13
−−→ −−→
∆(x2 , ψ2 , z2 ) O∆ = OB + µ⃗u2
⃗u1 (u11 , u12 , u13 ) ···············
−→
OA(α1 , α2 , α3 ) x2 = β1 + µu21
−−→
OB(β1 , β2 , β3 ) ψ2 = β2 + µu22
⃗u2 (u21 , u22 , u23 ) z1 = β3 + µu23
x2 − x1 = β1 − α1 + µu21 − λu11
ψ2 − ψ1 = β2 − α2 + µu22 − λu12
z2 − z1 = β3 − α3 + µu23 − λu13
STROFH AXONWN
(OA1 ) = ρ, (OA2 ) = ρ
ρ cos φ2 = x2
EPIPEDO sq ma
ρ sin φ2 = ψ2
θ = φ2 − φ1 ⇒ φ2 = θ + φ1
( ) ( ) sin2 θ + cos2 θ = 1
x2 ( ) x1
= X cos2 θ − sin2 θ = cos 2θ
ψ2 ψ1
2 sin θ cos θ = sin 2θ
x2 = ρ cos(θ + φ1 ) (6)
ψ2 = ρ sin(θ + φ1 ) (7)
( )
cos θ − sin θ
X= ORJOGWNIOS METASQHMATISMOS
sin θ cos θ
QWROS
63
cos θ − sin θ 0
sq ma sin θ cos θ 0 Strof sto xψ EPIPEDO
0 0 1
1 0 0
0 strof sto ψz EPIPEDO
0
64
d(M, E)
{M | = e stajerì}
d(M, δ)
I PARABOLH ψ 2 = 2px
TRIAS)
sq ma
• ExÐswsh efaptomènhc
ψ − ψ0 = f ′ (x0 ) (x − x0 )
| {z }
klÐsh thc efaptomènhc
{ √
2px, ψ ≥ 0
ψ= √ (kai x ≥ 0)
− 2px, ψ < 0
√ 2p p p
Tìte gia f (x) =2px ⇒ f ′ (x) = √ =√ = , ψ ̸= 0
2 2px 2px ψ
√ p
OmoÐwc an f (x) = − 2px tìte f ′ (x) =
ψ
p
H klÐsh thc efaptomènhc sto (x0 , ψ0 ) eÐnai gia x0 ̸= 0
ψ0
′
gia x0 = 0 ⇒ o xonac ψψ eÐnai efaptomènh giatÐ eÐnai oriak jèsh tèmnousac
p
ψ − ψ0 = (x − x0 ), (x0 , ψ0 ) ∈ C
ψ
2oc
TROPOS: M (x0 , ψ0 ) { }
ìlec oi eujeÐec ektìc apì tic parllhlec ston xx′ (xonac summe-
ψ − ψ0 = λ(x − x0 )
trÐac). Ftiqnoume to sÔsthma kai apaitoÔme lÔsh.
ψ 2 = 2px
p
Prèpei ∆ = 0 opìte prokÔptei λ = .
ψ0
′
An M (0, 0) tìte efaptomènh: ψ ψ .
Katoptrik Idiìthta
− MÐa fwteÐnh aktÐna parllhlh me ton (kÔrio) xona anakl¸menh dièrqetai apì thn (kÔria)
estÐa.
− ANTISTROFA: mÐa fwtein phg topojethmènh sthn kÔria estÐa prokaleÐ fwtein dèsmh
parllhlwn ∥ x′ x aktÐnwn.
sq ma DIQOTOMOS
sq ma
< ⃗u, w
⃗> < w,
⃗ ⃗v >
=
∥⃗u∥ ∥w∥
⃗ ∥w∥
⃗ ∥⃗v ∥
sq ma
• Basik Idiìthta
p
H dieujetoÔsa ( x=− ) èqei thn ex c idiìthta:
2
EÐnai o G.T. twn shmeÐwn apì ta opoÐa gontai KAJETES EFAPTOMENES
x2 ψ2
ELLEIYH + = 1
α2 β2
d(M, E)
=e<1
d(M, δ)
sq ma
e2 p2 e2 p2
α2 = β 2
=
(1 − e2 )2 (1 − e2 )
α2 1
ParathroÔme ìti: = kai ìti α 2 − β 2 = α 2 e2 .
β 2 1 − e2
66
c2 = α 2 − β 2
c2
e2 =
α2
c = eα
α2 α
=
c e
x2 ψ 2
+ = 1 (C)
α2 β 2
• Uprqei kèntro summetrÐac O(0, 0) h arq twn axìnwn. An (x0 , ψ0 ) ∈ (C) ⇒ (−x0 , −ψ0 ) ∈
(C)
• Uprqoun dÔo xonec summetrÐac
EÐnai to KENTRO SUMMETRIAS
d(M, E)
=e<1
d(M, δ)
sq ma
d(M, E ′ )
=e
d(M, δ ′ )
• IsqÔei ìti d(M, E) + d(M, E ′ ) = STAJERO = 2α
d(M, E) = ed(M, δ)
d(M, E ′ ) = ed(M, δ ′ ) opìte
2α
d(M, E) + d(M, E ) = e[d(M, δ) + d(M, δ ′ )] =
′
′
e
'Ara d(M, E) + d(M, E ) = 2α
β 2 x2 + α2 ψ 2 = α2 β 2
dψ β2 x
2β 2 xdx + 2α2 ψdψ = 0 ⇔ =− 2 (klÐsh efaptomènhc sto shmeÐo M (x, ψ)
dx α ψ
sq ma nec.
TROPOS KATASKEUHS
efaptomènhc
67
parllhlec qordèc
sq ma
{ = λx + µ, λ =stajerì, µ ∈ R
ψ
β 2 x2 + α2 ψ 2 = α2 β 2
ψ = λx + µ
B' TROPOS
}
β 2 x21 + α2 ψ12 = α2 β 2
(−)
β 2 x22 + α2 ψ22 = α2 β 2
β 2 (x21 − x22 )α2 (ψ12 − ψ22 ) = 0 ⇔ diafor tetrag¸nwn
ψ1 + ψ2
ψ12 − ψ22 β2 ψ1 − ψ2 2 β2
= − ⇔ · = −
x21 − x22 α2 x1 − x2 x1 + x2 α2
2 }
| {z
ψM
xM
ψM β2
λ =− 2 EujeÐa pou pernei apì to kèntro.
xM α
EpÐpedo → GewmetrÐa Epipèdou ≡ Orjokanonik sust mata. Dhlad (E) anafèretai se èna
h
orjokanonikì sÔsthma {Oxψ}. Se mia allag sust matoc h (E) (E ′ ) ìpou (E ′ ) prèpei na
eÐnai Ðdiac morf c me thn (E).
{
Meletme to b'bjmio tm ma se sqèsh me th strof
( )
αx2 + γψ 2 = α cos2 θ + γ sin2 θ + 2β sin θ cos θ)(x′ )2 + α sin2 θ + γ cos2 θ − 2β sin θ cos θ)(ψ ′ )2
=[ (γ − α) sin 2θ + 2β cos 2θ ]
| {z }
An eÐnai Ðso me mhdèn tìte sto {O′ x′ ψ ′ } den uprqei x′ ψ ′
(α − γ) sin 2θ = 2β cos 2θ
α−γ cos 2θ
= = cot 2θ
2β sin 2θ
α−γ
An β ̸= 0 ∃θ : (cot 2θ = ) ¸ste sto sÔsthma {O′ x′ ψ ′ } na mhn uprqei o ìroc x′ ψ ′ .
2β
′
H (E) angetai sthn (E )
•1 h
PERIPTWSH α′ , γ ′ ̸= 0
•2 h
PERIPTWSH α′ γ ′ = 0.
Se kje mÐa apì tic parapnw peript¸seic qrhsimopoioÔme tic metaforèc.
′′ ′′ ′′ ′′ ′′
1. Tìte α (x )2 + (γ )(ψ )2 + z = 0 paristnei kwnik tom
kÔkloc
èlleiyh
uperbol
{
x=ψ
temnìmenec eujeÐec p.q. x2 − ψ 2 = 0 ⇔
x = −ψ
fantastikìc kÔkloc x2 + ψ 2 + 1 = 0
fantastik uperbol x2 − ψ 2 + 1 = 0.
2. α′ ̸= 0, γ ′ = 0
α′ (x′ )2 + 2δ ′ (x′ ) + 2ε′ ψ ′ + z ′ = 0 metafor
′′ ′′ ′′ ′′
α (x )2 + ε ψ = 0
parabol
EFARMOGH
{ ′′ ′′ ′′ ′′ √
x = x cos 3π − ψ sin 3π
x = (−x − ψ ) 2
⇒ ′′ √
4 4
′′ 3π ′′ 3π ′′
ψ = x sin 4 + ψ cos 4 ψ = (x + ψ ) 2
(x′ )2 − (ψ ′ )2
(E ′ ) : =1⇒ (x′ )2 − (ψ ′ )2 = 2
(E) ⇒ ′′ 2
2 ′′ 2
(E ′′ ) : − (x ) − (ψ ) = 1 ⇒ (x′′ )2 − (ψ ′′ )2 = 2
2
sq ma ISOSKELHS UPERBOLH
( )( ) ( )
α β x x
(x, ψ) +2 (δ, ε) + |{z}
z =0
β γ ψ | {z } ψ
| {z } | {z } B Γ
A X
A =SUMMETRIKOS= At
(E) → (E ⋆ ) → B⋆
⋆
Γ
PARADEIGMA
'Estw X = P X ⋆ tìte X t = X ⋆t P t = X ⋆t P −1
X t AX = (X ⋆ )t P −1 AP X ⋆ ⇒
−1
A→ P | {zAP}
A
ìmoioc me ton
'Emeinan analloÐwta:
3.
α β δ x
(E) : (x, ψ, 1) β γ ε ψ = 0
δ ε z z
| {z }
det(M )analloÐwto
j1 = α + γ
j2 = αγ − β 2
j3 = det(M )
pou mènoun analloÐwtec.
x2 + ψ 2 = 1 j1 = 2, j2 = 1, j3 = −1 < 0
x2 − ψ 2 = 1 j1 = 0, j2 = −1, j3 = 1 > 0
p.q. ψ 2 − 2x = 1 j1 = 1, j2 = 0, j3 = −1 < 0
x+ψ+1=0 j1 = 0, j2 = 0, j3 = 0
x2 + ψ 2 + 1 = 0 j1 = 2, j2 = 1, j3 = 1
SUMPERASMA
se eujeÐa!!
{
ELLEIYH (KUKLOS)
̸= 0 kèntro summetrÐac tìte
2. j2 UPERBOLH (pragmatik /fantastik )
{
= 0 den uprqei kèntro summetrÐac, uprqei xonac summetrÐac PARABOLH
{
<0 UPERBOLH
3. j2
>0 ELLEIYH
72
α−γ { }
cot 2θ = x = x′ cos θ − ψ ′ sin θ
2θ
gwnÐa strof c ψ = x′ sin θ + ψ ′ cos θ
Ti mènei ANALLOIWTO
{
2αx0 + βψ0 + δ = 0
(Σ) ⇒ (x0 , ψ0 ) KENTRO SUMMETRIAS
βx0 + 2γψ0 + ε = 0
EFARMOGES
I x2 − 4xψ + ψ 2 + 10x − 8ψ + 7 = 0
1 2 5
j1 = 2, j2 = −3, j3 = 2 1 −4 = −142
5 −4 7
̸ 0
j3 = kampÔlh
j2 < 0 UPERBOLH
x2 − Sx + P ìpou S = x1 + x2 , P = x1 x2
}
j1′ = α′ + γ ′ = 2
t2 − 2t − 3 = 0 opìte α′ , γ ′ = 3, −1
j2′ = α′ γ ′ = −3
j3 −142 142
j3′ = α′ γ ′ z ′ = −142 ⇒ z ′ = = ⇒ z′ =
j2 −3 3
73
h
1 perÐptwsh:
142
3x2 − 1ψ 2 + =0 (8)
3
h
2 perÐptwsh:
142
−x2 + 3ψ 2 + =0 (9)
3
3x2 ψ2
(8) ⇒ − 142 = 1
− 142
3
− 3
α−γ x2 ψ2
cot 2θ = , − (√ ) + (√ ) = 1
2β 142 2 142 2
3 3
π π
cot 2θ = 0 ⇒ 2θ = ⇒θ =
2 4
Allag suntetagmènwn
x′ − ψ ′
} x= √
x = cos π4 x′ − sin π4 ψ ′ 2
⇒
ψ = sin π4 x′ + cos π4 ψ ′ x′ + ψ ′
ψ= √
2
x′2 − 2x′ ψ ′ + ψ ′2
x2 =
2
x′2 − ψ ′2
xψ = −4 = −2x′2 + 2ψ ′2
2
x′2 + 2x′ ψ ′ + ψ ′2
ψ2 =
2
x2 + xψ + ψ 2 = x′2 + ψ ′2 − 2x′2 + 2ψ ′2 = −x′2 + 3ψ ′2
b'bjmio tm ma
10x′ − 10ψ ′
10x = √
2
′
− ′ 2x′ − 18ψ ′
b'bjmio tm ma 8x
√
8ψ + 10x + 8ψ + 7 = √ +7
8ψ =
2
2
7
′ ′2 ′2 2x′ − 18ψ ′
opìte (E ) : −x + 3ψ + √ +7=0⇒
2
2 18
−2x′2 + 6ψ ′2 + √ x′ − √ ψ ′ + 14 = 0
2 2
√ ′ 2 √ ′ √ √ 9 √ √ 9 9
(− 2x ) + 2( 2x ) − 1 + 1 + ( 2 3ψ ′ )2 − 2 √ ( 2 3ψ ′ ) + ( √ )2 − ( √ )2 + 14 = 0
3 3 3
√ ′ √ √ ′ 9 2 9 2
−( 2x − 1) + 1 + ( 2 3ψ − √ ) + 1??( √ ) = 0
2
3 3
−X 2 + Ψ2 + K = 0
x⋆
z }| {
√ √ 1
X = 2x′ − 1 = 2 (x′ − √ )
2
74
ψ⋆
z
}| √ {
√ ′ 9 √ 1 √ 3 2
Ψ = 6ψ − √ = 6(ψ ′ − √ = 6 (ψ ′ − )
3 6·3 2
81
−2x⋆ + 5ψ ⋆ + (15 − ) = 0
2 2
I 2x2 − xψ − 15ψ 2 + 5x − 3
j1 = α + γ = −13
α β 2 − 12 1 30
j2 = = 1 = −30 =
β γ − 2 −15 4 4
2 − 12 5
2
−15 0 1 −12 0 5 − 21 −15
j3 = − 12 −15 0 = 2 + +
0 −3 2 52 −3 2 52 0
5
2
0 −3
3 5 75 360 + 3 + 375
= 90 + + ( ) = ̸= 0
4 2 2 4
17
cot 2φ =
−1
epimeristik · · · · · · prokÔptei
j1 = 23
1 − 289
j2 = <0
4
j3 = 0
√ √ √
I x2 − 2 3xψ + 3ψ 2 − 4(1 + 2 3)x + 4(2 − 3)ψ + 20 = 0
j1 = 4 }
j2 = 0 → DEN UPARQEI KENTRO
PARABOLH
j3 = −32 → KAMPULH
Poia eÐnai h aploÔsterh morf
ψ 2 = 2px
x2 = 2pψ
ψ 2 = κx + λ ⇒ ψ 2 = κ(x + λκ ) = 2 κ2 (x⋆ ) = 2px⋆
γ ′ ψ ′2 − 2px′ = 0
0x′2 + 0x′ ψ ′ + γ ′ ψ ′2 − 2px′ + 0ψ ′ + 0 = 0
j1 = γ ′
j2 = 0
75
0 0 −p
j3 = 0 0 0 = −p2 γ ′ prèpei γ ′ = 4 kai p2 γ ′ = −32
−p 0 0
{
γ′ = 4 √
2 ′
⇒ p2 = 8 ⇒ p = ±2 2
p γ = −32
√
√ 2 ′
(i) perÐptwsh 4ψ ′2 − 2 · 2 2x′ = 0 ⇒ ψ ′2 = 2 x PARABOLH
2√
√ 2 ′
(ii) perÐptwsh 4ψ ′2 + 2 · 2 2x′ = 0 ⇒ ψ ′2 = −2 x PARABOLH
2
( )
x → −x′
katoptrismìc wc proc ψ
ψ→ψ
sq ma ( )
−1 0
PÐnakac katoptrismoÔ wc proc ψ
0 1
x2 + ψ 2 + 1 = 0
j1 = 2
x2 + ψ 2 = −1 ⇒ x2 + ψ 2 = i2 KÔkloc
1 0
j2 = =1 me kèntro (0, 0) kai aktÐna i
0 1
Fantastikìc kÔkloc: x + ψ − i = 0
2 2 2
0 0 0
j3 = 0 1 0 = 1
0 0 1
j1 · j3 > 0 fantastikìc kÔkloc èlleiyh