0% found this document useful (0 votes)
22 views37 pages

Μέρος 2

This document discusses geometry in R3 and provides definitions and examples related to lines and planes. It defines a line as passing through two points or one point and a direction vector. It also defines when two lines are parallel, perpendicular, or intersect. Examples are given of determining the parametric or canonical form of lines and finding the equation of a plane.

Uploaded by

pioannidis2005
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
22 views37 pages

Μέρος 2

This document discusses geometry in R3 and provides definitions and examples related to lines and planes. It defines a line as passing through two points or one point and a direction vector. It also defines when two lines are parallel, perpendicular, or intersect. Examples are given of determining the parametric or canonical form of lines and finding the equation of a plane.

Uploaded by

pioannidis2005
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 37

39

I GEWMETRIA ston R3 - PRWTOBAJMIA SUSTHMATA

I EUJEIES ston QWRO

Mia eujeÐa kajorÐzetai:

1. apì dÔo shmeÐa

2. apì 1 shmeÐo kai th dieÔjunsh

3. wc TOMH dÔo EPIPEDWN (sto q¸ro)

PERIPTWSEIS (1) kai (2)


Epilègoume mia ARQH O sto q¸ro kai

orÐzoume ORJOKANONIKO SUSTH-

sq ma MA {0, ⃗i, ⃗j, ⃗κ}


−→
A ≡ OA = ⃗rA diˆnusma jèshc
−→
OA(xA , ψA , zA )

−−→ −→ −−→
M OM = OA+ AM
tuqaÐo shmeÐo tìte
−−→ −→
ìpou AM = tAB, t ∈ R
sq ma
−−→ −→ −→ −→
OM = OA + tAB ìpou tAB = t⃗u
−−→ −→
OM = OA + t⃗u
'Ara ⃗rM = ⃗rA + t⃗u DIANUSMATIKH EXISWSH

⃗rM = ⃗rA + t⃗u, t ∈ R


−→
⃗u = AB = ⃗rB − ⃗rA = (xB − xA , ψB − ψA , zB − zA ) ≡ (α, β, γ)

(x, ψ, z) = (xA , ψA , zA ) + t(α, β, γ)




 x = xA + tα
(Σ) ψ = ψA + tβ PARAMETRIKES EXISWSEIS


z = zA + tγ
An upojèsoume ìti ta α, β, γ ̸= 0 lÔnoume wc proc t

x − xA ψ − ψA z − zA EXISWSH EUJEIAS sto QWRO


= =
α β γ (SUMMETRIKES EXISWSEIS)

H eujeÐa dièrqetai apì to (xA , ψA , zA ) kai eÐnai parˆllhlh proc to ⃗u(α, β, γ).
PARADEIGMA Na brejeÐ h exÐswsh thc eujeÐac pou dièrqetai apì to A(1, 1, 1) kai eÐnai pa-

rˆllhlh sto ⃗u(1, 1, 1).


x−1 ψ−1 z−1
= = ⇔ (x = ψ = z)
1 1 1
{
dièrqetai apì to B(0, 0, 0)
Paristˆnei eujeÐa sto q¸ro (ε)
∥ sto ⃗u(1, 1, 1)
40

I PORISMATA
(ε1 ) (A, ⃗u)
(ε2 ) (B, w)

• (ε1 ) ∥ (ε2 ) ⇔ ⃗u, w


⃗ SUGGRAMMIKA ⇔ ⃗u × w
⃗ = ⃗0

• (ε1 ) ⊥ (ε2 ) ⇔< ⃗u, w


⃗ >= 0

I ASKHSH: Na brejeÐ h sqetik jèsh twn eujei¸n

(ε1 ) x = ψ = z
x−1 ψ−2 z−3
(ε2 ) = =
1 3 3
Sqetik jèsh 2 eujei¸n:

parˆllhlec (ε1 ) ∥ (ε2 )


temnìmenec (ε1 ) ∩ (ε2 ) ̸= ∅
asÔmbatec

• PARALLHLIA
}
(ε1 ) ∥ (1, 1, 1)
grammikˆ anexˆrthta ⇒ (ε1 ) ∦ (ε2 )
(ε2 ) ∥ (1, 3, 4)

• 
SHMEIO TOMHS 'Estw M ∈ (ε1 ) ∩ (ε2 )
 t=x=ψ=z
Yˆqnw x−1 ψ−2 z−3
 s= = =
1 3 4
ProkÔptei sÔsthma 5 exis¸sewn me 5 agn¸stouc.

}
x=t s= t−1
t−1 t−2 1
tìte
1
t−2
⇒ = ⇒ 3t − 3 = t − 2 ⇔ t =
ψ=t s= 3
1 3 2
1 1
gia t= prokÔptei s = −
2 2
z−3
s= ATOPO (z = t =
1
2
, s = − 12 ).
4
'Ara oi eujeÐec (ε1 ) kai (ε2 ) eÐnai ASUMBATES.

B' TROPOS: TUPOS pou dÐnei thn APOSTASH DUO EUJEIWN STO QWRO

I ASKHSH
{ 1
x+ψ+z =1
(Σ) Na deÐxete ìti (Σ) paristˆnei eujeÐa kai na brejeÐ h kanonik morf .
2x + 3ψ + 4z = 0
{ {
x + ψ = 1 − z (−2) −2x − 2ψ = −2 + 2z (+)
⇒ ⇒ −ψ = 2z + 2
2x + 3ψ = −4z 2x + 3ψ = −4z
41

ψ = −2(z + 1) , x = z + 3, z ∈ R
{
ψ = −2(z + 1)
'Ara z∈R
x=z+3

 ψ =z+1 x−2 ψ z+1
−2 'Ara = =
 x−2=z+1 1 −2 1
'Ara h (ε) dièrqetai apì to A(−2, 0, 1) kai eÐnai parˆllhlh sto ⃗u(1, −2, 1).

I ASKHSH 2

2x + 3 2ψ 4z − 1
= = Na tejeÐ se kanonik morf
5 1 8
x+ 3
2 ψ z− 1
4
5 = 1 =
2 2
2
'Ara dièrqetai apì to shmeÐo B( 32 , 0, − 14 ) kai eÐnai ∥ ⃗u( 25 , 12 , 2)

I EPIPEDA sto QWRO

(ε) ⊥ (Π)
H (ε) eÐnai ∥ sth ⃗ℓ : (ε) ∥ ⃗ℓ.
dieÔjunsh

Opìte ⃗ℓ ⊥ (Π). JewroÔme A stajerì

sq ma shmeÐo tou epipèdou kai M tuqaÐo sh-

meÐo tou epipèdou.


−−→
AM ∈ sto epÐpedo (Π) kai isqÔei
−−→ ⃗
AM ⊥ ℓ
−−→
AM ⊥ ⃗ℓ

−−→ −−→ −→ −−→ −→


isqÔei < AM , ⃗ℓ >= 0 ⇔ < OM − OA, ⃗ℓ >= 0 < OM , ⃗ℓ >=< OA, ⃗ℓ >= p, ìpou M
tuqaÐo shmeÐo kai A gnwstì kai stajerì shmeÐo.

−−→
< OM , ⃗ℓ >= p paristˆnei epÐpedo sto q¸ro

ìpou ⃗ℓ(α, β, γ), −−→


OM (x, ψ, z), p = stajerˆ

< (x, ψ, z), (α, β, γ) >= p ⇔ αx + βψ + γz + δ = 0 (δ = −p)

EXISWSH EPIPEDOU αx + βψ + γz + δ = 0 me |α| + |β| + |γ| ̸= 0


Paristˆnei epÐpedo ⊥ sto ⃗ℓ(α, β, γ).

I PARADEIGMA 1
ZhteÐtai to (epÐpedo) p pou dièrqetai apì to shmeÐo A(1, 1, 1) kai eÐnai kˆjeto sto diˆnusma

⃗ℓ(1, 1, 1).
Apì thn exÐswsh : 1·x+1·ψ+1·z+δ =0
42

BrÐskoume to δ : 1 · 1 + 1 · 1 + 1 · 1 + δ = 0 ⇒ δ = −3
Opìte EXISWSH EPIPEDOU: x + ψ + z = −3

I PARADEIGMA 2
paristˆnei epÐpedo p ⊥ ⃗ℓ(1, 2, 3)
kai anazhtoÔme to shmeÐo apì to opoÐo

x + 2ψ + 3z + 4 = 0 dièrqetai dhl. (x, ψ, z) pou na


triˆda

ikanopoieÐ thn exÐswsh. Gia x = ψ = 0


4
prokÔptei z = −
3
−4
'Ara dièrqetai apì to A(0, 0, 3
).
sq ma

I EXISWSH EPIPEDOU POU ORIZOUN 3 MH SUGGRAMMIKA SHMEIA

Zhtˆme thn exÐswsh tou epipèdou pou orÐzoun ta


sq ma A(xA , ψA , zA ) 

B(xB , ψB , zB ) A(xA , ψA , zA )⃗ℓ =?(⊥ (Π))


Γ(xΓ , ψΓ , zΓ )
BrÐskoume ⃗ℓ ⊥ (Π) : ⃗ℓ = (−→ ←−
AB) × (AΓ)

−−→
< ⃗ℓ, AM >= 0 ìpou M tuqaÐo shmeÐo tou epipèdou, M (x, ψ, z)

PARADEIGMA
−→
AB(−1, 1, 0)
A(1, 0, 0) −→
AΓ(−1, 0, 1)
B(0, 1, 0)
Γ(0, 0, 1) −→ −→
AB × AΓ = (1, 1, 1) ⋆ = ⃗ℓ
i j κ
⋆ prokÔptei apì thn orÐzousa anaptussìmenh wc proc thn 1 h
gramm −1 1 0
−1 0 1
−−→
< ⃗ℓ, AM >=< (1, 1, 1), (x−1, ψ−0, z−0) >= 0 ⇒ x + ψ + z = 1 EXISWSH EPIPEDOU

−−→
I EKFRAZOUME KALUTERA ton tÔpo < ⃗ℓ, AM >= 0

−→
AB = (xB − xA , ψB − ψA , zB − zA )
−→
AΓ = (xΓ − xA , ψΓ − ψA , zΓ − zA )
⃗ℓ = − → −→ ( )
AB × AΓ = Dψz , −Dxz , Dxψ
−−→
AM (x − xA , ψ − ψA , z − zA )
−−→
< ⃗ℓ, AM >= (x − xA )Dψz − (ψ − ψA )Dxz + (z − zA )Dxψ = 0
43

x − xA ψ − ψA z − zA
⃗ −−→
< ℓ, AM >= xB − xA ψB − ψA zB − zA = 0
xΓ − xA ψΓ − ψA zΓ − zA
EXISWSH EPIPEDOU sto QWRO

x ψ z 1
xA ψA zA 1
=0
xB ψB zB 1
xΓ ψΓ zΓ 1

I SQETIKH JESH 2 EUJEIWN sto QWRO

(Π1 ) ←→ (A, ⃗ℓ1 )


(Π2 ) ←→ (B, ⃗ℓ2 )
• ⃗ℓ1 ∥ ⃗ℓ2 ⇒ (Π1 ) ∥ (Π2 ) PARALLHLA TAUTIZONTAI

• ⃗ℓ1 × ⃗ℓ2 ̸= 0 ⇒ (Π1 ) ∩ (Π2 ) ̸= 0 sq ma

(ε) = (Π1 ) ∩ (Π2 ) ∥ (⃗ℓ1 × ⃗ℓ2 )


−−→ }
(Π1 ) ←→< AM , ⃗ℓ1 >= 0
−−→ SUSTHMA POU KAJORIZEI ta shmeÐa tom c.
(Π2 ) ←→< BM , ⃗ℓ2 >= 0
44

I EPIPEDA sto QWRO

}
αx + βψ + γz + δ = 0
(Π) : PARISTANEI EPIPEDO ⊥ ⃗ℓ
⃗ℓ = (α, β, γ) ̸= 0


 GnwrÐzw èna shmeÐo tou epipèdou

“PROTUPO EPIPEDO” kai èna diˆnusma sto opoÐo to




epÐpedo eÐnai KAJETO

I PARADEIGMA 1: TOMH EPIPEDWN

Na brejeÐ h exÐswsh thc tom c twn epipèdwn

(Π1 ) x + ψ + z = 1
sq ma
(Π2 ) 2x + 3ψ + z = 4
Dhlad zhteÐtai h exÐswsh thc eujeÐac (ε).
oc
1 TROPOS: GEWMETRIKOS
x − x0 ψ − ψ0 z − z0
H tom eÐnai eujeÐa thc morf c = = ìpou (κ, λ, κ) ∥ (ε) kai
κ λ µ
(x0 , ψ0 , z0 ) ∈ (ε).

'Estw
⃗ℓ1 ⊥ (Π1 )
⇒ (⃗ℓ1 × ⃗ℓ2 ) ∥ (Π1 ) ∩ (Π2 )
⃗ℓ2 ⊥ (Π2 ) | {z }
(κ, λ, µ)
}
⃗ℓ1 = (1, 1, 1)
⃗ℓ1 × ⃗ℓ2 = (−2, 1, 1) = (κ, λ, µ)
⃗ℓ2 = (2, 3, 1)

BrÐskoume shmeÐo tom c thc (ε)

ψ0 = 0
x0 = 3
x0 + z0 = 1
z0 = −2
2x0 + z0 = 4

'Ara to shmeÐo (x0 , ψ0 , z0 ) eÐnai to (3, 0, −2). x−3 ψ z+2


= =
'Ara h eujeÐa (ε) eÐnai ((ε) = (Π1 ) ∩ (Π2 )): −2 1 1
oc
2 TROPOS

BrÐskoume 2 shmeÐa thc tom c, èstw ta (x0 , ψ0 , z0 ) = (3, 0, −2)

−1
gia x1 = 0 tìte (x1 , ψ1 , z1 ) = (0, 23 , −2
).

3
Tìte (κ, λ, µ) ∥ (x0 − x1 , ψ0 − ψ1 , z0 − z1 ) = (3, − 32 , − −3
2
) = − (−2, 1, 1)
2
3
(κ, λ, µ) ∥ − (−2, 1, 1)
2
45

I PARADEIGMA 2
Na brejeÐ h exÐswsh tou epipèdou pou dièrqetai apì to (1, 1, 1) kai eÐnai ⊥ sta (Π1 ), (Π2 )
{ }
x+ψ+z =1
(Π) :
2x + 3ψ + z = 4

AfoÔ (Π) ⊥ (Π1 ), (Π2 ) ⇒ (Π) ⊥ (ε) = (Π1 ) ∩ (Π2 ) ìpou (ε) ∥ (κ, λ, µ) ⇒ (Π) ⊥ (κ, λ, µ)
(Π) : κx + λψ + µz + ν = 0 kai epeid (1, 1, 1) ∈ (Π) prokÔptei ìti ν = κ + λ + µ
Opìte (Π) : κx + λψ + µz + (κ + λ + µ) = 0

I ASKHSH

x−1 ψ−2 z−3


DÐnetai to epÐpedo (Π): 2x + 3ψ + z = 4 kai h eujeÐa (ε): = =
1 2 3

Na brejeÐ mÐa eujeÐa tou (Π) ⊥ sthn (ε) kai na thn tèmnei. Pìsec tètoiec eujeÐec upˆrqoun

oc
1 TROPOS

x − x0 ψ − ψ0 z − z0
= = ìpou (x0 , ψ0 , z0 ) ∈ (ε), (κ, λ, µ) ∥ (ε)
κ λ µ

(x0 , ψ0 , z0 ) = (Π) ∩ (ε). Jètoume touc Ðsouc lìgouc t


x−1 ψ−2 z−3
t= = =
1 2 3
sq ma x=t+1   7
ψ = 2t + 2 2(t + 1) + 3(2t + 2) + 3t + 3 = 4 ⇒ · · ·t = −

 11
z = 3t + 3

x0 = 1 − 117 4
= 11 

7 8 4 8 12
'Ara ψ0 = 2(− 11 ) + 2 = 11 (x0 , ψ0 , z0 ) = ( , , ).
7 12

 11 11 11
z0 = 3(− 11 ) + 3 = 11
Oi eujeÐec pou eÐnai kˆjetec sthn (ε) kai dièrqontai apì to A. BrÐskontai se èna epÐpedo (Π1 ).

To (Π1 ) eÐnai ⊥ sthn (ε) (ìpou (ε) ∥ ⃗ℓ1 = (1, 2, 3)). H zhtoÔmenh eujeÐa (ε ) eÐnai h tom twn
(Π) kai (Π1 ). (ε′ ) = (Π) ∩ (Π1 ). 'Omwc (Π) ⊥ ⃗ℓ2 = (2, 3, 1). 'Ara (ε′ ) ∥ (⃗ℓ1 × ⃗ℓ2 ) = (κ, λ, mu).
'Ara (κ, λ, µ) = (⃗ ℓ1 × ⃗ℓ2 ìpou ⃗ℓ1 = (2, 3, 1) ⊥ (Π), ⃗ℓ2 = (1, 2, 3) ∥ (ε).

I APOSTASH SHMEIOU apo EPIPEDO

PROBLHMA DÐnetai epÐpedo (Π): αx + βψ + γz + δ = 0 kai èna shmeÐo P (x0 , ψ0 , z0 ) ektìc

epipèdou. ZhteÐtai h apìstash tou P apì to (Π) dhl. d(P, (Π))


46

APOSTASH: upˆrqei eujeÐa (ε)


pou dièrqetai apì to (P )
sq ma kai eÐnai kˆjeth sto (Π)
to opoÐo tèmnei sto shmeÐo P ′.
P ′ =probol tou P sto (Π).

'Estw A tuqaÐo shmeÐo tou (Π).


A ∈ (Π)
(P P ′ ) ⊥ (Π)
(P P ′ ) ∥ ⃗ℓ(α, β, γ) giatÐ ⃗ℓ ⊥ (Π).

Sto ORJOGWNIO TRIGWNO AP P

−→ −→
−−→′ −→ < AP , ⃗ℓ > ⃗ < AP , ⃗ℓ > ⃗
∥P P ∥ = ∥prob⃗ℓAP ∥ = ∥ ℓ∥ = ∥ ℓ∥
< ⃗ℓ, ⃗ℓ > ∥⃗ℓ∥2
−→
−→ ⃗ ∥⃗ℓ∥ | < AP , ⃗ℓ > |
= | < AP , ℓ > | =
∥⃗ℓ∥2 ∥⃗ℓ∥
Dhlad
−→
−−→′ | < AP , ⃗ℓ > |
∥P P ∥ = (2)
∥⃗ℓ∥
Ekfrˆzoume to A me paramètrouc. 'Estw A(x1 , ψ1 , z1 ) ∈ (Π).


 A(x1 , ψ1 , z1 )
P (x0 , ψ0 , z0 ) Apì thn sqèsh (2) prokÔptei:


ℓ(α, β, γ)

−−→ < (x0 − x1 , ψ0 − ψ1 , z0 − z1 ), (α, β, γ) >


∥P P ′ ∥ = √
α2 + β 2 + γ 2
∈(Π) ˆra −δ
isoÔtai me
z }| {
αx0 + βψ0 + γz0 − (αx1 + βψ1 + γz1 )
=| √ |
α2 + β 2 + γ 2
−−→ |αx0 + βψ0 + γz0 + δ|
∥P P ′ ∥ = √
α2 + β 2 + γ 2

APOSTASH SHMEIOU apo EPIPEDO


47

EFARMOGES sto QWRO R2

I APOSTASH SHMEIOU apo EUJEIA ston R2

EujeÐa ston R2 (αx + βψ + γ = 0, |α| + |β| ̸= 0) (ε) ⊥ ⃗u ìpou ⃗u(α, β)

αx0 + βψ0 + γ
sq ma d(P, (ε)) = √
α2 + β 2

I PORISMA: EMBADON TRIGWNOU sto R2

A(x1 , ψ1 )
B(x2 , ψ2 ) E(ABΓ) =?
Γ(x3 , ψ3 )
1oc
TROPOS: EPIPEDO ⊂ R3

(x1 , ψ1 ) ≡ (x1 , ψ1 , 0) 
 1 −→ −→
(x2 , ψ2 ) ≡ (x2 , ψ2 , 0) opìte E(ABΓ) = ∥AB × AΓ∥

 2
(x3 , ψ3 ) ≡ (x3 , ψ3 , 0)
oc
2 TROPOS:

{ −→
BΓ(x3 − x2 , ψ3 − ψ2 )
⃗u(−(ψ3 − ψ2 ), (x3 − x2 ))
sq ma
−→
⃗u ⊥ BΓ = èqoun eswterikì ginìmeno

mhdèn.

x − x3 ψ − ψ3
BrÐskoume thn (ε) = 0 ⇔ (ψ2 −ψ3 )x+(x2 −x3 )ψ−x3 (ψ2 −ψ3 )+ψ3 (x2 −x3 ) = 0
x2 − x3 ψ2 − ψ3
1
IsqÔei o tÔpoc: E(ABΓ) = ∥BASH∥ · ∥UYOS∥
2
−→
BASH= ∥BΓ∥

BASH= ∥d(A, BΓ)∥

1 −→
E(ABΓ) = ∥BΓ∥∥d(A, BΓ)∥ =
2
((
1√ (((( 2 |(ψ2 − ψ3 )x1 − (x2 − x3 )ψ1 + ψ3 (x2 − x3 ) − x3 (ψ2 − ψ3 )|
((ψ
2(+
= (x −
( (
x( ) − ψ ) √ ((
2((( (((( 2
3 2 3 2
(x −( ((ψ
x()2(+ −ψ )
((((
3 2 3 2

x1 ψ1 1
1 x1 − x3 ψ1 − ψ3 1
= = x2 ψ2 1
2 x2 − x3 ψ2 − ψ3 2
x3 ψ3 1
48

x1 ψ1 1
1
'Ara E(ABΓ) = x2 ψ2 1
2
x3 ψ3 1
I PORISMA: TrÐa shmeÐa eÐnai SUGGRAMMIKA sto EPIPEDO

x1 ψ1 1
an kai mìno an x2 ψ2 1 = 0
x3 ψ3 1
−→ −→
Dhlad AB × AΓ = ⃗ 0
Sto epÐpedo dÐnetai mÐa eujeÐa (ε) h opoÐa qwrÐzei to epÐpedo se dÔo tm mata (hmiepÐpeda)

⃗u0 ⊥ (Π) ∩ (ε)


sq ma
−⃗u0 ⊥ (Π) ∩ (ε)

f (x, ψ) = αx + βψ + γ f : R2 → R
f (x, ψ) = 0 ⇔ A(x, ψ) ∈ (ε)
JewroÔme

H1 = {(x, ψ)|f (x, ψ) > 0}


H2 = {(x, ψ)|f (x, ψ) > 0}
49

EPIPEDO-SHMEIO-EUJEIA ston R3

I APOSTASH DUO ASUMBATWN EUJEIWN

d((ε1 ), (ε2 )) =m koc koinoÔ kˆjetou tm matoc

sq ma 'Eqoume apodeÐxei ìti upˆrqei to

koinì kˆjeto tm ma

DEDOMENA

(ε1 ) : ⃗r1 = ⃗rA1 + t⃗u1 sq ma

(ε2 ) : ⃗r2 = ⃗rA2 + t⃗u2


−−−−→ (ε1 ) ∥ ⃗u1
(M1 M2 ) ⊥ (ε1 ), (ε2 ) ìmwc
(ε2 ) ∥ ⃗u2
−−−−→
'Ara (M1 M2 ) ∥ (⃗u1 × ⃗u2 )
−−−→
−−−→ < A1 A2 , ⃗u1 × ⃗u2 >
d(M1 , M2 ) = ∥prob⃗u1 ×⃗u2 A1 A2 ∥ = ⃗u1 × ⃗u2
< ⃗u1 × ⃗u2 , ⃗u1 × ⃗u2 >
−−−→ −−−→
| < A1 A2 , ⃗u1 × ⃗u2 > |  
 | < A1 A2 , ⃗u1 × ⃗u2 > |
= ∥⃗u
 1× ⃗u2 ∥ =
∥⃗u1 × ⃗u2 ∥2 ∥⃗u1 × ⃗u2 ∥
−−−→
ìpou A1 A2 = ⃗r2 − ⃗r1 = ⃗rA2 − ⃗rA1

I APOSTASH SHMEIOU apo EUJEIA sto QWRO

(i) PRAKTIKH ANTIMETWPISH


DÐnontai ta A kai (ε).

Fèrw apì to A èna epÐpedo


sq ma
kˆjeto sthn (ε)

Opìte orÐzetai to shmeÐo A′ .




−→ ′
Zhtˆme to d(AA ) = ∥AA ∥

(ii) B' TROPOS

'Estw P tuqaÐo shmeÐo thc (ε)


sq ma
′ −→
tìte ∥P A ∥ = ∥probAA′ AP ∥ =
−→ −→
∥AP ∥ cos φ = ∥AP ∥ sin θ
H eujeÐa (ε) ∥ ⃗u tìte:

−→ −→
−→ ∥AP ∥∥⃗u∥ sin θ ∥AP × ⃗u∥ ∥(⃗rP − ⃗rA ) × ⃗u∥
∥AP ∥ sin θ = = =
∥⃗u∥ ∥⃗u∥ ∥⃗u∥

−−→ ∥(⃗rP − ⃗rA ) × ⃗u∥


'Ara ∥P A ′ =
∥⃗u∥
50

GEWMETRIA se R2 , R3 − DEUTEROBAJMIA SUSTHMATA

x − x0 ψ − ψ0 z − z0
ExÐswsh eujeÐac ssto q¸ro: = =
κ λ µ

EÐnai SUSTHMA PRWTOBAJMIWN POLUWNUMIKWN EXISWSEWN

ExÐswsh epipèdou sto q¸ro Ax + Bψ + Γz + ∆ = 0

PRWTOBAJMIA POLUWNUMIKH EXISWSH (me treic metablhtèc)

EUEJEIA kai EPIPEDO: GRAMMIKA ANTIKEIMENA

I KUKLOS STO EPIPEDO

PROBLHMA:

Ta shmeÐa twn opoÐwn h apìstash apì to dojèn shmeÐo eÐnai gnwst kai stajer

A: gnwstì shmeÐo
M : tuqaÐo shmeÐo. Jèloume d(A, M ) = R (gnwstì
sq ma kai stajerì).
−−→
∥AM ∥ = R
∥⃗rM − ⃗rA ∥ = R DIANUSMATIKH EXISWSH

Epilègw ORJOKANONIKO SUSTHMA SUNTETAGMENWN

{Oxψz} ⃗rA (xA , ψA , zA ), ⃗rM (x, ψ, z)


∥⃗rM − ⃗rA ∥ = R2
(x − xA )2 + (ψ − ψA )2 + (z − zA )2 = R2 SFAIRA

Sto epÐpedo z=0 {Oxψ} tìte (x − xA )2 + (ψ − ψA )2 = R2 KUKLOS

I Gia SUSTHMA me arq to A:


{A, ψ, z} (xA , ψA , zA ) → (0, 0, 0) tìte
x2 + ψ 2 + z 2 = R2 SFAIRA
ou
poluwnumik 2 BAJMOU sto q¸ro (3 metablht¸n)

I MELETH tou KUKLOU sto EPIPEDO


• DIANUSMATIKH EXISWSH: ∥⃗rA − ⃗rM ∥ = R ìpou A kèntro tou kÔklou kai M shmeÐo tou

kÔklou < ⃗rA −⃗rM , ⃗rA −⃗rM >= R2


• ANALUTIKH EXISWSH
(x − xA )2 + (ψ − ψA )2 = R2 −−→ −−→ −→
sq ma OM = AM + OA
2 2 2
X +Ψ =R
51

−→
Ta sust mata {O, x, ψ} kai {A, X, Ψ} diafèroun katˆ mÐa metaforˆ wc proc to diˆnusma OA
touOxψ .
X = x − xA x = X + xA
Opìte
Ψ = ψ − ψA ψ = Ψ + ψA
Analutik exÐswsh kÔklou

se SUSTHMA ANAFORAS X 2 + Ψ2 = R 2
me ARQH to KENTRO tou KUKLOU

• PARAMETRIKES EXISWSEIS tou KUKLOU

Perigraf tou kÔklou qrhsimopoi¸ntac mÐa parˆmetro p.q. kÔkloc wc troqiˆ kinhtoÔ sto qrìno

x = x(t)
tìte M (x(t), ψ(t))
ψ = ψ(t)
x = R cos φ
ψ = R sin φ
sq ma sq ma
ìpou φ = ωt, ω h gwniak

suqnìthta.

X(t) = R cos ωt
Parˆmetroc eÐnai to t, gia ω = 1 eÐnai
Ψ(t) = R sin ωt
{ }
x = R cos t
perigrˆfei ta shmeÐa tou kÔklou me mÐa parˆmetro t. O kÔkloc sundèetai me
ψ = R sin t
mÐa periodikìthta.

• Upˆrqei mÐa diadikasÐa, h APALOIFH, pou apì tic parametrikèc exis¸seic odhgeÐ sthn analutik exÐswsh

(mÐa sqèsh qwrÐc thn parˆmetro)


cos t = Rx 
 X2 Ψ2
ψ
sin t = R + = 1 ⇔ X 2 + Ψ2 = R 2

 R R
sin2 t + cos2 t = 1

I 
SQETIKH JESH KUKLOU kai EUJEIAS sto EPIPEDO


 ∅
(C) ∩ (ε) 1 shmeÐo


2 shmeÐa
{
(C) : x2 + ψ 2 = R2
(ε) : αx + βψ + γ = 0, |α| + |β| ̸= 0
Apì th lÔsh tou sust matoc ja prokÔyoun ta “koinˆ shmeÐa” (an upˆrqoun). Epeid |α|+|β| ̸= 0
tìte èna apì ta dÔo eÐnai mh mhdenikì. 'Estw ìti eÐnai to B tìte: ψ = κx + λ kai anagìmaste

sto sÔsthma

{ ψ 2 = κ2 x2 + 2κλx + λ2
x2 + ψ 2 = R2
⇒ x2 + ψ 2 = (1 + κ2 )x2 + (2κλ)x + λ2 = R2
ψ = κx + λ | {z }
tri¸numo

• An ∆=0 tìte upˆrqei mÐa lÔsh: ENA KOINO SHMEIO


52

∆ = 4κλ2 − 4(1 + κ2 )(λ2 − R2 ) = 0



|λ| λ2
d(O(0, 0), ψ = κx + λ) = R ⇔ √ =R⇔ = R2
1 + κ2 1 + κ2
d(0, (ε)) = R : APOSTASH KENTROU tou KUKLOU apo thn EUJEIA Ðsh me AKTINA.

Epomènwc h lÔsh eÐnai h apìstash tou KENTROU tou KUKLOU apì thn EUJEIA.

sq ma

• An ∆>0 tìte 2 koinˆ shmeÐa

• An ∆<0 tìte kanèna koinì shmeÐo

I EFAPTOMENH KUKLOU

Upˆrqei èna mìno koinì shmeÐo metaxÔ (C) kai (ε) dhlad d(0, (ε)) = R.
EÐnai ORIAKH JESH thc TEMNOUSAS.
exÐswsh pou ikanopoieÐtai an
sq ma xx0 + ψψ0 = R2
h (ε) efˆptetai ston (C).
53

exÐswsh kÔklou sto epÐpedo (KEN-


2 2 2
x +ψ =R TRO kÔklou h ARQH SUNTETAG-

MENWN)

(x − x0 )2 + (ψ − ψ0 )2 = R2 (KENTRO to shmeÐo (x0 , ψ0 ))

EFAPTOMENH KUKLOU: eujeÐa →akrib¸c èna koinì shmeÐo me ton kÔklo

I EXISWSH EFAPTOMENHS

H aktÐna pou antistoiqeÐ sto (x⋆ , ψ ⋆ )


prèpei na eÐnai kˆjeth sth zhtoÔmenh eujeÐa
sq ma
aktÐna →diˆnusma
⃗ℓ = (x⋆ , ψ ⋆ ) ⊥ (ε)

−−→ −→ −−→ −−→ ⃗ −−→


OM = OA + AM AM ⊥ ℓ dhlad < AM , ⃗ℓ >= 0 (⋆)
−−→
AM (x − x⋆ , ψ − ψ ⋆ )
⃗ℓ(x⋆ , ψ ⋆ )
(⋆) ⇒< (x − x⋆ , ψ − ψ ⋆ ), (x⋆ , ψ ⋆ ) >= 0 ⇔

x⋆ (x−x⋆ )+ψ ⋆ (ψ −ψ ⋆ ) = 0 ⇒ x⋆ x+ψ ⋆ ψ = (x⋆ )2 +(ψ ⋆ )2 = R2 (shmeÐo tou kÔklou isoÔtai me R2 )

(ε) ⇒ x⋆ x+ψ ⋆ ψ = R2

EXISWSH EFAPTOMENHS ston KUKLO pou dièrqetai apì to shmeÐo A(x⋆ , ψ ⋆ ) tou kÔklou

I SQETIKH JESH DUO KUKLWN

}
(C1 ) : x2 + ψ 2 = R12
(Σ)
(C2 ) : (x − α)2 + ψ 2 = R22
sq ma

α −→ DIAKENTROS

EpilÔoume to sÔsthma

I GWNIA DUO KUKLWN −→ gwnÐa efaptomènwn sto shmeÐo tom c

−−→ −−→
gwnÐa (O1 A, O2 A) = φ
sq ma
−−→ −−→
< O1 A, O2 A >
cos φ = −−→ −−→
∥O1 A∥ ∥O2 A∥
ASKHSH: SUNJHKH ORJOGWNIOTHTAS 2 KUKLWN

−−→ −−→
R1 + R2 = δ 2 < O1 A, O2 A >= 0
I ASKHSH: Na brejeÐ o G. T. twn mèswn parˆllhlwn qord¸n.

sq ma } oikìgeneia parˆllhlwn qord¸n


54

G.T.: DIAMETROS KAJETH sthn OIKOGENEIA PARALLHLWN QORDWN

SUSTHMA SUNTETAGMENWN pou tairiˆzei sto prìblhma. H arq twn axìnwn O(0, 0)
eÐnai to kèntro tou kÔklou.

Opìte exÐswsh kÔklou: (C) : x2 + ψ 2 = R2

Oikogèneia parˆllhlwn qord¸n (ε)⋆ αx + βψ + µ = 0, µ ∈ R, |α| + |β| ̸= 0


⋆ eujeÐec kèjetec sto diˆnusma (α, β) (ˆra metaxÔ touc parˆllhlec)
ψ = λx + µ⋆ , λ = stajerì, µ⋆ ∈ R (kai kˆjetec ston xx′ )
{
x2 + ψ 2 = R2 M1 (x1 , ψ1 ) x1 + x2 ψ1 + ψ2

⇒ ⇒ M = mèson(M1 , M2 ) M ( , )
ψ = λx + µ M2 (x2 , ψ2 ) 2 2

GEWMETRIKOS TOPOS tou M M (xM , ψM ) ψM = f (xM ) qwrÐc µ⋆


ìpou

ProkÔptei ψM = OxM EUJEIA apì thn ARQH O(0, 0). 'Ara DIAMETROS.

I ASKHSH: JewroÔme qordèc Ðsou m kouc (stajeroÔ). ZhteÐtai o G.T. twn mèswn twn qor-

d¸n.

sq ma

I SFAIRA

R3 
 ZhteÐtai o G.T. twn shmeÐwn M:
Ks meio tou q¸rou d(K, M ) = R


R>0 SFAIRA
−−→
Sto sÔsthma {K, xψz} ∥OM ∥ = R

x2 + ψ 2 + z 2 = R 2 EXISWSH SFAIRAS me KENTRO thn ARQH TWN AXONWN.

(x − x0 )2 + (ψ − ψ0 )2 + (z − z0 )2 = R2 KENTRO to (x0 , ψ0 , z0 )


 >R @ koinˆ shmeÐa
sq ma
d(K, (Π)) = R ∃ èna koinì shmeÐo


<R h tom eÐnai kÔkloc

Gia na deÐxoume ìti h TOMH eÐnai KUKLOS: Prèpei na brw to KENTRO kai thn AKTINA tou.

FèrwKK ′ kˆjeth sto epÐpedo kai


sq ma èstw M shmeÐo thc tom c. Sto

orjog¸nio KK M
}
KK ′ = d < R
⇒ (K ′ M )2 = R2 − d2 > 0
KM = R

'Ara ta shmeÐa thc TOMHS apèqoun apì stajerì shmeÐo stajer apìstash. 'Ara h TOMH

eÐnai KUKLOS.
55

I EXISWSH EFAPTOMENOU EPIPEDOU

(S) x2 + ψ 2 + z 2 = R2 ZhteÐtai to (Π) pou efˆptetai

(x0 , ψ0 , z0 ) sthn S sto shmeÐo A.


−→ −−→
< OA, AM >= 0 ∀M shmeÐo tou zhtoÔmenou (Π)
x0 x + ψ0 ψ + z0 z = R2
⃗ℓ(x0 , ψ0 , z0 ) ⊥ (Π)

I PARAMETRIKH PERIGRAFH EPIPEDOU k' SFAIRAS


 ⃗r = ⃗r0 + t⃗u, t ∈ R  


eujeÐa
 
  x = x0 + tα 
EISAGWGH ψ = ψ0 + tβ t∈R

 x(t) = R cos φ 
 


 KÔkloc z = z0 + tγ
ψ(t) = R sin φ, φ ∈ R
• EpÐpedo

−−→
⃗r = ⃗r0 + AM
−−→
AM = t⃗u + sw ⃗ , grammikoÐ sunduasmoÐ
sq ma
⃗ t, s ∈ R
⃗u, w,
⃗ t, s ∈ R
⃗r = ⃗r0 + t⃗u + sw,

(x, ψ, z) = (x0 , ψ0 , z0 ) + t(α1 , α2 , α3 ) + s(β1 , β2 , β3 )




 (x − x0 ) − α1 t − sβ1 = 0
(ψ − ψ0 ) − α2 t − sβ2 = 0 Apaloif twn t, s.


(z − z0 ) − α3 t − sβ3 = 0

x − x0 ψ − ψ0 z − z0
α1 α2 α3 = 0 ⇔ αx + βψ + γz + δ = 0
β1 β2 β3

(α, β, γ) ∥ ⃗u × w

POLIKES SUNTETAGMENES sto QWRO

SFAIRIKES SUNTETAGMENES sto QWRO {⃗i, ⃗j, ⃗κ}


−−→
|OM | = ⃗r
−→ −−→
|OΓ| = |OM | | cos θ| = r| cos θ|
sq ma
−→ }
OΓ = (r · cos θ)⃗κ
−→ z = r · cos θ θ ∈ (0, π) (− π2 , π2 )
OΓ = z
56

−−→ −−→
|OM ′ | = |ΓM | = r · sin θ

sq ma x = (OM ′ )· = r · cos φ sin θ


φ = (OM ′ ) · sin φ = r sin φ sin θ

φ ∈ (0, 2π)
(φ, θ) −→ (r cos φ sin θ, r sin φ cos θ, r cos θ)
x, ψ, z
x2 + ψ 2 + z 2 = r2
φ = gewgrafikì plˆtoc φ ∈ (0, 2π)
θ = gewgrafikì m koc θ ∈ (0, π)
57

I H DEUTEROBAJMIA EXISWSH sto EPIPEDO


E : αx2 + βxψ + γψ 2 + δx + εψ + z = 0
{O, xψ} : EPIPEDO,
{(x, ψ)|(E)} = C : zeÔgh pou ikanopoÐoun thn (E) kai C : KAMPULH EPIPEDOU

EIDIKES PERIPTWSEIS

• δx + εψ + z = 0. An |δ| + |ε| ̸= 0 tìte paristˆnei eujeÐa. An δ =ε=0 kai z ̸= 0 tìte h

exÐswsh den paristˆnei kˆti. Tèloc an δ=ε=z=0 paristˆnei ìlo to epÐpedo.

• αx + γψ + z = 0
2 2

{
KUKLOS (exartˆtai apì touc suntelestèc)
}
α=γ=1=z
x2 + ψ 2 + 1 = 0 adÔnato giatÐ den upˆrqei kÔkloc fantastik c aktÐnac

I MELETH thc (E)


Mèsw thc melèthc eidik¸n deuterobˆjmiwn kampul¸n pou prokÔptoun apì gewmetrikˆ probl -

mata.

I PROBLHMA: Sto epÐpedo dÐnetai mia eujeÐa (δ) kai èna shmeÐo (E). ZhteÐtai o G.T. twn
d(M, E)
shmeÐwn M tou epipèdou gia ta opÐa = stajerì > 0. SumbolÐzoume thn ekkentrìthta
d(M, δ)
me e.
ISTORIA tou PROBLHMATOS:

sundèetai me tomèc epipèdou kai k¸nou.

sq ma.
sq ma
Oi kampÔlec pou prokÔptoun apì thn

tom tou epipèdou kai k¸nou eÐnai o G.T.

tou probl matoc.

I MELETH tou PROBLHMATOS


(i) Epilog katˆllhlou sust matoc suntetagmènwn.
(ii) “Metagraf ” tou probl matoc sto epilegmèno sÔsthma.
(dedomèna (δ) eujeÐa, E shmeÐo).

Fèrw apì to E thn KAJETH sto (δ).

E −→ ESTIA
δ −→ dieujetoÔsa
sq ma
M : tuqaÐo shmeÐo
r = (M E): ESTIAKH APOSTASH
To E paÐzei to rìlo tou POLOU

EB =stajer apìstash= p
2 2
(M E) = r
(M Γ)2 = (EB − r cos θ)2
(M E)2
= e2
(M Γ)2
58

(M E)2
= e2 ⇒ r2 = e2 (p − r cos θ)2 (3)
(M Γ)2
EXISWSH tou G.T. me qr sh POLIKWN SUNTETAGMENWN

ˆrq mètrhshc twn gwni¸n, O:


pìloc

x = r cos θ
sq ma
ψ = r sin θ
x2 + ψ 2 = r2
ψ
arctan = θ
x
•1 h
PERIPTWSH: e=1
r
Prèpei p > r cos θ. Opìte apì thn (3) prokÔptei =1
p − r cos θ
•2 h
PERIPTWSH: e ̸= 1
r
Apì thn (3) prokÔptei = ±e ⇒ r = f (θ)
{ p − r cos θ
e>1 upˆrqoun shmeÐa kai dexiˆ thc δ pou ikanopoioÔn th sunj kh

e<1 ìla ta shmeÐa pou ikanopoioÔn th sunj kh eÐnai aristerˆ thc δ


sq ma (gia ε>1 shmeÐo dexiˆ thc δ)

Parabˆlloume to e me th monˆda kai prokÔptei

e = 1 −→ PARABOLH
e < 1 −→ ELLEIYH
e > 1 −→ UPERBOLH

r2 = e2 (p − r cos θ)2
x = r cos θ
ψ = r sin θ
(O, xψ)
r 2 = x2 + ψ 2
x2 + ψ 2 =
sq ma
{z θ}) ⇒
e2 (p2 − 2pr cos θ + r|2 cos2

x2
x2 + ψ 2 =
e2 p2 − 2pe2 r cos θ + e2 x2 ⇒

(1 − e2 )x2 + ψ 2 + 2pe2 x − e2 p2 = 0

(1 − e2 )x2 + ψ 2 + 2pe2 x − e2 p2 = 0
• gia e=1
ψ 2 = e2 p2 − 2e2 x ⇒ ψ 2 = p2 − 2px ⇔
p
ψ 2 = 2p( − x) (4)
2
59

Jètoume

} Y 2 = −2pX
X =x− p
(2)
2
⇒ sq ma
Y =ψ
PARABOLH sto SUSTHMA ↗
}
X ⋆ = −X
Sto SUSTHMA ⇒ Ψ⋆ = 2pX ⋆
Ψ⋆ = Ψ

• e1 ̸= 1
2pe2
(1 − e2 )[x2 + x] + ψ 2 = e2 p2 prospajoÔme na to kˆnoume tèleio tetrˆgwno me katˆllhlec
1 − e2
pe2 p2 e2
prosjafairèseic (1 − e )(x + −
2 2
) + ψ =0
1 − e2 1 − e2
pe2
X = (x + )
Jètw 1 − e2 →
Ψ=ψ
e2 p2 e2 p2
(1 − e2 )X 2 + Y 2 = ⇒ diairoÔme me
1 − e2 1 − e2
X2 Y2
+ =1
e2 p2 e2 p2
1 − e2 1 − e2
DiakrÐnoume tic peript¸seic

(i) 1 − e2 > 0 ⇔ e < 1.


2 e2 p2 2 e2 p2
Jètoume α = , β =
(1 − e2 )2 1 − e2
X2 Y2
+ = 1
α2 β2

(ii) 1 − e2 < 0 ⇔ e > 1


e2 p2 e2 p2
Jètoume α =
2
, β 2
= −
(1 − e2 )2 1 − e2
X2 Y2
− 2 = 1
α2 β

TELIKH APANTHSH: to prìblhma tou G.T. se katˆllhlo sÔsthma suntetagmènwn eÐnai


2
ψ = 2px (e = 1) PARABOLH
2 2
x ψ
2
+ 2 = 1 (e < 1) ELLEIYH
α β
x2 ψ2
− = 1 (e > 1) UPERBOLH
α2 β 2
Gia thn EKKENTROTHTA

Jètw (1 − e2 )α2 = β 2
β2
1 − e2 = 2 ìpou α > β P = d(E, δ)
α
60

β2 α2 − β 2
e2 = 1 − = = e2
α2 α2

I SQOLIA

− H exÐswsh pou prokÔptei eÐnai eidik morf deuterobˆjmiac exÐswshc dÔo metablht¸n

αx2 + 2βxψ + γψ 2 + δx + εψ + z = 0. (E)

− H (E) faÐnetai na eÐnai genikìterh giatÐ me katˆllhlouc suntelestèc mporeÐ na ekfrˆsei eu-

jeÐec kai kÔklouc

− ProkÔptei to er¸thma ti paristˆnei h (E). Melèth gewmetrik kˆje antikeimènou pou prokÔ-

ptei!
61

EPIPEDO sto QWRO

Me apaloif paramètrwn thc Ax + Bψ + Γz + ∆ = 0


f (x, ψ, z) = 0
z = f (x, ψ) EPIFANEIA
 sthn èkfrash Mouge
x = f1 (u, w) 

ψ = f2 (u, w) Gauss


z = f3 (u, w)
EUJEIA sto QWRO
−→ −→
Ax = λAB
−−→ −→ −−→ −→
OX − OA = λ(OB − OA ⇒
−−→ −→ −−→
sq ma
OX = (1 − λ)OA + λOB
DIANUSMATIKH EXISWSH

 EUJEIAS sto QWRO

x = (1 − λ)x1 + λx2 

ψ = (1 − λ)ψ1 + λψ2 PARAMETRIKES EXISWSEIS


z = (1 − λ)z1 + λz2

x − x1 ψ − ψ1 z − z1
= = =λ
x2 − x1 ψ2 − ψ1 z2 − z1
DIEUJUNSH EUEJEIAS

−→ ⃗u · ⃗i = cos α (α : gwnÐa pou sqhmatÐzei to⃗ume tonOx)


AB
⃗u = −−→ ⃗u · ⃗j = cos β (β : gwnÐa pou sqhmatÐzei to⃗ume tonOx)
|AB| ⃗u · ⃗κ = cos γ (γ : gwnÐa pou sqhmatÐzei to⃗ume tonOx)
ASKHSH EpÐpedo pou pernˆei apì to shmeÐo A(4, −2, 1) kai ⊥ sthn eujeÐa ⃗u(7, 2, −3).

(x − x1 )α1 + (ψ − ψ1 )α2 + (z − z1 )α3 = 0


7(x − 4) + z(ψ + 2) − 3(z − 1) = 0
7x − 28 + 2ψ + 4 − 3z + 3 = 0 sq ma

7x + 2ψ − 3z = 21 (5)

EUEJEIA tou ⃗u pou dièrqetai apì to (1, 1, 1) kai èqei dieÔjunsh ⃗u

x−1 ψ−1 z−1


= = =λ
7 2 −3
SHMEIO TOMHS EUJEIAS kai EPIPEDOU


x = 7λ + 1 

ψ = 2λ + 1 Jètw sthn (5) x, ψ, z


z = −3λ + 1
I APOSTASH ASUMBATWN EUJEIWN
62

−→
AΓ = λ⃗u1
−→ −→
OΓ − OA = λ⃗u1
−→ −→
OΓ = OA + λ⃗u1
sq ma ···············
x1 = α1 + λu11
ψ1 = α2 + λu12
z1 = α3 + λu13

−−→ −−→
∆(x2 , ψ2 , z2 ) O∆ = OB + µ⃗u2
⃗u1 (u11 , u12 , u13 ) ···············
−→
OA(α1 , α2 , α3 ) x2 = β1 + µu21
−−→
OB(β1 , β2 , β3 ) ψ2 = β2 + µu22
⃗u2 (u21 , u22 , u23 ) z1 = β3 + µu23

x2 − x1 = β1 − α1 + µu21 − λu11
ψ2 − ψ1 = β2 − α2 + µu22 − λu12
z2 − z1 = β3 − α3 + µu23 − λu13

(x2 − x1 )u11 + (ψ2 − ψ1 )u12 + (z2 − z1 )u13 = 0


(x2 − x1 )u21 + (ψ2 − ψ1 )u22 + (z2 − z1 )u23 = 0

STROFH AXONWN
(OA1 ) = ρ, (OA2 ) = ρ
ρ cos φ2 = x2
EPIPEDO sq ma
ρ sin φ2 = ψ2
θ = φ2 − φ1 ⇒ φ2 = θ + φ1
( ) ( ) sin2 θ + cos2 θ = 1
x2 ( ) x1
= X cos2 θ − sin2 θ = cos 2θ
ψ2 ψ1
2 sin θ cos θ = sin 2θ

x2 = ρ cos(θ + φ1 ) (6)

ψ2 = ρ sin(θ + φ1 ) (7)

(6)⇒ x2 = ρ cos θ cos φ1 − ρ sin θ sin φ1 = x1 cos θ − ψ1 sin θ


(7)⇒ ψ2 = ρ sin θ cos φ1 − ρ sin θ cos φ1 = x1 cos θ + ψ1 sin θ

( )
cos θ − sin θ
X= ORJOGWNIOS METASQHMATISMOS
sin θ cos θ

QWROS
63

 
cos θ − sin θ 0
 
sq ma  sin θ cos θ 0 Strof sto xψ EPIPEDO

0 0 1
 
1 0 0
 
0  strof sto ψz EPIPEDO

0
64

GEWMETRIKH MELETH KWNIKWN TOMWN

I ENIAIOS TROPOS ORISMOU

d(M, E)
{M | = e stajerì}
d(M, δ)

Katal xame stic peript¸seic

sq ma ψ 2 = 2px se katˆllhlo sÔsthma suntetagmènwn


x2 ψ 2
+ =1
α2 β 2
x2 ψ2
− =1
α2 β 2

I PARABOLH ψ 2 = 2px

• Upˆrqei ˆxonac summetrÐac, o xx′


(x0 , ψ0 ) ∈ C ⇒ (x0 , −ψ0 ) ∈ C
(DEN EQEI KENTRO SUMME-

TRIAS)

sq ma
• ExÐswsh efaptomènhc

Oriak jèsh thc tèmnousac

(èna koinì shmeÐo, MH PARALLHLH

me ton ˆxona summetrÐac)


dψ p
ψ 2 = 2px ⇒ 2ψdψ = 2pdx ⇒ =
dx ψ
• ExÐswsh Efaptomènhc thc Parabol c

ψ = f (x), 'Estw M (x0 , ψ0 ) tìte:

ψ − ψ0 = f ′ (x0 ) (x − x0 )
| {z }
klÐsh thc efaptomènhc

{ √
2px, ψ ≥ 0
ψ= √ (kai x ≥ 0)
− 2px, ψ < 0
√ 2p p p
Tìte gia f (x) =2px ⇒ f ′ (x) = √ =√ = , ψ ̸= 0
2 2px 2px ψ
√ p
OmoÐwc an f (x) = − 2px tìte f ′ (x) =
ψ
p
H klÐsh thc efaptomènhc sto (x0 , ψ0 ) eÐnai gia x0 ̸= 0
ψ0

gia x0 = 0 ⇒ o ˆxonac ψψ eÐnai efaptomènh giatÐ eÐnai oriak jèsh tèmnousac

p
ψ − ψ0 = (x − x0 ), (x0 , ψ0 ) ∈ C
ψ

ψψ0 − ψ02 = px − px0 ⇒ ψψ0 = px + 2px0 − px0 ⇒ ψψ0 = p(x+x0 ) x0 ̸= 0


65

EXISWSH EFAPTOMENHS thc PARABOLHS ψ 2 = 2px

2oc
TROPOS: M (x0 , ψ0 ) { }
ìlec oi eujeÐec ektìc apì tic parˆllhlec ston xx′ (ˆxonac summe-

ψ − ψ0 = λ(x − x0 )
trÐac). Ftiˆqnoume to sÔsthma kai apaitoÔme lÔsh.
ψ 2 = 2px
p
Prèpei ∆ = 0 opìte prokÔptei λ = .
ψ0

An M (0, 0) tìte efaptomènh: ψ ψ .

• Basik Idiìthta thc Parabol c

Katoptrik Idiìthta

− MÐa fwteÐnh aktÐna parˆllhlh me ton (kÔrio) ˆxona anakl¸menh dièrqetai apì thn (kÔria)

estÐa.

− ANTISTROFA: mÐa fwtein phg topojethmènh sthn kÔria estÐa prokaleÐ fwtein dèsmh

parˆllhlwn ∥ x′ x aktÐnwn.

Prèpei na deÐxoume ìti eÐnai

sq ma DIQOTOMOS

sq ma

Dhlad prèpei na deÐxoume ìti:

< ⃗u, w
⃗> < w,
⃗ ⃗v >
=
∥⃗u∥ ∥w∥
⃗ ∥w∥
⃗ ∥⃗v ∥

'Ara prèpei na broÔme poia dianÔsmata emplèkontai

sq ma

• Basik Idiìthta

p
H dieujetoÔsa ( x=− ) èqei thn ex c idiìthta:
2
EÐnai o G.T. twn shmeÐwn apì ta opoÐa ˆgontai KAJETES EFAPTOMENES

x2 ψ2
ELLEIYH + = 1
α2 β2

H exÐswsh isqÔei se katˆllhlo sÔsthma

d(M, E)
=e<1
d(M, δ)
sq ma
e2 p2 e2 p2
α2 = β 2
=
(1 − e2 )2 (1 − e2 )
α2 1
ParathroÔme ìti: = kai ìti α 2 − β 2 = α 2 e2 .
β 2 1 − e2
66

Eisˆgoume nèa metablht :

c2 = α 2 − β 2
c2
e2 =
α2
c = eα
α2 α
=
c e
x2 ψ 2
+ = 1 (C)
α2 β 2

• Upˆrqei kèntro summetrÐac O(0, 0) h arq twn axìnwn. An (x0 , ψ0 ) ∈ (C) ⇒ (−x0 , −ψ0 ) ∈
(C)
• Upˆrqoun dÔo ˆxonec summetrÐac
EÐnai to KENTRO SUMMETRIAS

d(M, E)
=e<1
d(M, δ)
sq ma
d(M, E ′ )
=e
d(M, δ ′ )
• IsqÔei ìti d(M, E) + d(M, E ′ ) = STAJERO = 2α

d(M, E) = ed(M, δ)
d(M, E ′ ) = ed(M, δ ′ ) opìte

d(M, E) + d(M, E ) = e[d(M, δ) + d(M, δ ′ )] =


e
'Ara d(M, E) + d(M, E ) = 2α

• Efaptomènh thc èlleiyhc

β 2 x2 + α2 ψ 2 = α2 β 2
dψ β2 x
2β 2 xdx + 2α2 ψdψ = 0 ⇔ =− 2 (klÐsh efaptomènhc sto shmeÐo M (x, ψ)
dx α ψ

x=α x = −α efaptomènec gia ψ=0

• Katoptrik Idiìthta 'Elleiyhc

h efaptomènh diqotomeÐ thn gwnÐa

pou sqhmatÐzoun oi estiakèc aktÐ-

sq ma nec.

TROPOS KATASKEUHS

efaptomènhc
67

• IDIOTHTA: Ta mèsa twn parˆllhlwn qord¸n

parˆllhlec qordèc

sq ma
{ = λx + µ, λ =stajerì, µ ∈ R
ψ
β 2 x2 + α2 ψ 2 = α2 β 2
ψ = λx + µ

Apì to sÔsthma prokÔptoun dÔo shmeÐa (x1 , ψ1 ), (x2 , ψ2 ).


x1 + x2 ψ1 + ψ2
xM = , ψM = ψM = f (xM )
2 2

B' TROPOS

}
β 2 x21 + α2 ψ12 = α2 β 2
(−)
β 2 x22 + α2 ψ22 = α2 β 2
β 2 (x21 − x22 )α2 (ψ12 − ψ22 ) = 0 ⇔ diaforˆ tetrag¸nwn

ψ1 + ψ2
ψ12 − ψ22 β2 ψ1 − ψ2 2 β2
= − ⇔ · = −
x21 − x22 α2 x1 − x2 x1 + x2 α2
2 }
| {z
ψM
xM
ψM β2
λ =− 2 EujeÐa pou pernˆei apì to kèntro.
xM α

(Gia thn parabol prokÔptei eujeÐa parˆllhlh me ton ˆxona summetrÐac).


68

I MELETH thc B' BAJMIAS EXISWSHS sto EPIPEDO

(E) : αx2 + 2βxψ + γψ 2 + 2δx + 2εψ + z = 0

− GEWMETRIKO ANTIKEIMENO (eÐnai h (E) GEWMETRIKO ANTIKEIMENO?)

EpÐpedo → GewmetrÐa Epipèdou ≡ Orjokanonikˆ sust mata. Dhlad (E) anafèretai se èna
h

orjokanonikì sÔsthma {Oxψ}. Se mia allag sust matoc h (E) (E ′ ) ìpou (E ′ ) prèpei na
eÐnai Ðdiac morf c me thn (E).

− SUMPERIFORA thc (E) stic ALLAGES SUSTHMATWN


− UPARQEI SUSTHMA pou APLOPOIEI thn (E) ?

ALLAGH SUNTETAGMENWN sta ORJOKANONIKA SUSTHMATA

x = cos θx′ − sin θψ ′ + x0


ψ = sin θx′ + cos θψ ′ + ψ0
} }
cos θx′ − sin θψ ′ x0
ìpou strof kai metaforˆ.
sin θx′ + cos θψ ′ ψ0

αx2 + 2βxψ + γψ 2 (b'bˆjmio tm ma thc (E))

2δx + 2εψ + z (a'bˆjmio tm ma thc (E))


H metaforˆ ephreˆzei to a'bˆjmio tm ma thc (E)
}
x = x′ + x0
den allˆzei to b'bˆjmio αx2 + 2βxψ + γψ 2
ψ = ψ ′ + ψ0

{
Meletˆme to b'bˆjmio tm ma se sqèsh me th strof

x = cos θx′ − sin θψ ′


ψ = sin θx′ + cos θψ ′

Upˆrqei gwnÐa θ ¸ste sto {O′ x′ ψ ′ } na mhn parousiˆzetai o ìroc x′ ψ ′ .

x2 = cos2 θ(x′ )2 + sin2 θ(ψ ′ )2 − 2 sin θ cos θ(x′ ψ ′ )

x2 = sin2 θ(x′ )2 + cos2 θ(ψ ′ )2 + 2 sin θ cos θ(x′ ψ ′ )


xψ = sin θ cos θ(x′ )2 − sin θ cos θ(ψ ′ )2 + (cos2 θ − sin2 θ)x′ ψ
Tìte

( )
αx2 + γψ 2 = α cos2 θ + γ sin2 θ + 2β sin θ cos θ)(x′ )2 + α sin2 θ + γ cos2 θ − 2β sin θ cos θ)(ψ ′ )2

[−α 2| sin{z θ cos θ} +2β(cos2 θ − sin2 θ)]x′ ψ ′


θ cos θ} +γ 2| sin{z
sin 2θ cos 2θ

= [−α sin 2θ + γ sin 2θ + 2β cos 2θ]x′ ψ ′


69

=[ (γ − α) sin 2θ + 2β cos 2θ ]
| {z }
An eÐnai Ðso me mhdèn tìte sto {O′ x′ ψ ′ } den upˆrqei x′ ψ ′

(α − γ) sin 2θ = 2β cos 2θ
α−γ cos 2θ
= = cot 2θ
2β sin 2θ
α−γ
An β ̸= 0 ∃θ : (cot 2θ = ) ¸ste sto sÔsthma {O′ x′ ψ ′ } na mhn upˆrqei o ìroc x′ ψ ′ .


H (E) anˆgetai sthn (E )

(E ′ ) : α′ (x′ )2 + (γ ′ )(ψ ′ )2 + 2δ ′ (x′ ) + 2ε′ (ψ ′ ) + z ′ = 0

•1 h
PERIPTWSH α′ , γ ′ ̸= 0
•2 h
PERIPTWSH α′ γ ′ = 0.
Se kˆje mÐa apì tic parapˆnw peript¸seic qrhsimopoioÔme tic metaforèc.

′′ ′′ ′′ ′′ ′′
1. Tìte α (x )2 + (γ )(ψ )2 + z = 0 paristˆnei kwnik tom

kÔkloc

èlleiyh

uperbol
{
x=ψ
temnìmenec eujeÐec p.q. x2 − ψ 2 = 0 ⇔
x = −ψ
fantastikìc kÔkloc x2 + ψ 2 + 1 = 0
fantastik uperbol x2 − ψ 2 + 1 = 0.

2. α′ ̸= 0, γ ′ = 0
α′ (x′ )2 + 2δ ′ (x′ ) + 2ε′ ψ ′ + z ′ = 0 metaforˆ
′′ ′′ ′′ ′′
α (x )2 + ε ψ = 0
parabol

An cot 2θ = κ cos θ, sin θ?


2 tan θ 1
tan 2θ = 2
2
, 1 + tan θ = ⇒ sin2 θ
1 + tan θ cos2 θ

EFARMOGH

(E) : αx2 + 2βxψ + γψ 2 + 2δx + 2εψ + z = 0



xψ = 1 
 { {


xψ − 1 = 0 α−γ π π
cot 2θ = = 0 ⇒ 2θ = 2
⇒θ= 4
α=γ=δ=ε=0 
 1 3π 3π

 2 4
2β = 1
{ √
x = x′ cos π4 − ψ ′ sin π4 x = (x′ − ψ ′ ) 22
Opìte ⇒ √
ψ = x′ sin π4 + ψ ′ cos π4 ψ = (x′ + ψ ′ ) 22
70

{ ′′ ′′ ′′ ′′ √
x = x cos 3π − ψ sin 3π
x = (−x − ψ ) 2
⇒ ′′ √
4 4
′′ 3π ′′ 3π ′′
ψ = x sin 4 + ψ cos 4 ψ = (x + ψ ) 2

 (x′ )2 − (ψ ′ )2
 (E ′ ) : =1⇒ (x′ )2 − (ψ ′ )2 = 2
(E) ⇒ ′′ 2
2 ′′ 2
 (E ′′ ) : − (x ) − (ψ ) = 1 ⇒ (x′′ )2 − (ψ ′′ )2 = 2

2

sq ma ISOSKELHS UPERBOLH

I GRAMMIKH MELETH thc (E) - ANALLOIWTES

(E) : αx2 + 2βxψ + γψ 2 + 2δx + 2εψ + z = 0

I ANAGWGH se GINOMENO PINAKWN

( )( ) ( )
α β x x
(x, ψ) +2 (δ, ε) + |{z}
z =0
β γ ψ | {z } ψ
| {z } | {z } B Γ
A X

opìte X t AX + 2BX + Γ = 0 ìpou X t AX : b'bˆjmio kai 2BX prwtobˆjmio.

A =SUMMETRIKOS= At

I ALLAGH SUSTHMATOS SUNTETAGMENWN


{ }
PPt = I
X ↔ X⋆ X = P X ⋆ + X0
ìpou
det P > 0


 A

(E) → (E ⋆ ) → B⋆

 ⋆
Γ
PARADEIGMA

'Estw X = P X ⋆ tìte X t = X ⋆t P t = X ⋆t P −1
X t AX = (X ⋆ )t P −1 AP X ⋆ ⇒
−1
A→ P | {zAP}
A
ìmoioc me ton

'Emeinan analloÐwta:

1. H MORFH thc EXISWSHS

2. det(A) = det(A⋆ ) dhlad det(A) = αγ − β 2 = det(P −1 AP )


tr(A) = tr(P −1 AP ) =
{α+γ
αγ − β 2
analloÐwta thc (E):
α+γ
71

3.    
α β δ x
   
(E) : (x, ψ, 1) β γ ε ψ  = 0
δ ε z z
| {z }
det(M )analloÐwto

TRIA ANALLOIWTA thc E

I Prìtash Stic diˆforec allagèc suntetagmènwn upˆrqoun treÐc posìthtec

j1 = α + γ
j2 = αγ − β 2
j3 = det(M )
pou mènoun analloÐwtec.

Anˆloga me ta prìshma twn j 1 , j2 , j3 kajorÐzetai to eÐdoc thc kampÔlhc.

x2 + ψ 2 = 1 j1 = 2, j2 = 1, j3 = −1 < 0
x2 − ψ 2 = 1 j1 = 0, j2 = −1, j3 = 1 > 0
p.q. ψ 2 − 2x = 1 j1 = 1, j2 = 0, j3 = −1 < 0
x+ψ+1=0 j1 = 0, j2 = 0, j3 = 0
x2 + ψ 2 + 1 = 0 j1 = 2, j2 = 1, j3 = 1
SUMPERASMA

1. 'Otan j3 = 0 den upˆrqei B'BAJMIA KAMPULH (pragmatik fantastik ) ekfulismìc

se eujeÐa!!
 {

 ELLEIYH (KUKLOS)
 ̸= 0 kèntro summetrÐac tìte
2. j2 UPERBOLH (pragmatik /fantastik )
{


 = 0 den upˆrqei kèntro summetrÐac, upˆrqei ˆxonac summetrÐac PARABOLH

{
<0 UPERBOLH
3. j2
>0 ELLEIYH
72

I Melèth thc b'bˆjmiac exÐswshc sto epÐpedo

(E) : αx2 + 2βxψ + γψ 2 + 2δx + 2εψ + z = 0




 ELLEIYH (pragmatik /fantastik )

 UPERBOLH (pragmatik /fantastik )
(E)

 PARABOLH


TEMNOMENES EUJEIES

I Se katˆllhlo sÔsthma suntetagmènwn {O′ x′ ψ ′ } (E) → (E ⋆ )


{Oxψ} → {O′ x′ ψ ′ } sundèontai mèsw strof¸n kai metafor¸n.
Me th STROFH exafanÐzetai o ìroc xψ .

Me th METAFORA rujmÐzontai oi prwtobˆjmioi ìroi.

α−γ { }
cot 2θ = x = x′ cos θ − ψ ′ sin θ

gwnÐa strof c ψ = x′ sin θ + ψ ′ cos θ

Ti mènei ANALLOIWTO

Br kame treÐc posìthtec j1 j2 j3

An j2 ̸= 0 upˆrqei KENTRO SUMMETRIAS

EURESH KENTROU SUMMETRIAS

{
2αx0 + βψ0 + δ = 0
(Σ) ⇒ (x0 , ψ0 ) KENTRO SUMMETRIAS
βx0 + 2γψ0 + ε = 0

EFARMOGES

I x2 − 4xψ + ψ 2 + 10x − 8ψ + 7 = 0

Ti paristˆnei kai se poio sÔsthma paÐrnei aploÔsterh dunat morf

1 2 5
j1 = 2, j2 = −3, j3 = 2 1 −4 = −142
5 −4 7
̸ 0
j3 = kampÔlh

j2 ≠ 0 upˆrqei kèntro summetrÐac

j2 < 0 UPERBOLH

upˆrqei sÔsthma ìpou h (E) èqei morf α ′ X 2 + γ ′ Ψ2 + J ′ = 0

x2 − Sx + P ìpou S = x1 + x2 , P = x1 x2
}
j1′ = α′ + γ ′ = 2
t2 − 2t − 3 = 0 opìte α′ , γ ′ = 3, −1
j2′ = α′ γ ′ = −3
j3 −142 142
j3′ = α′ γ ′ z ′ = −142 ⇒ z ′ = = ⇒ z′ =
j2 −3 3
73

h
1 perÐptwsh:

142
3x2 − 1ψ 2 + =0 (8)
3
h
2 perÐptwsh:

142
−x2 + 3ψ 2 + =0 (9)
3
3x2 ψ2
(8) ⇒ − 142 = 1
− 142
3
− 3

EURESH tou SUSTHMATOS SUNTETAGMENWN

α−γ x2 ψ2
cot 2θ = , − (√ ) + (√ ) = 1
2β 142 2 142 2
3 3

π π
cot 2θ = 0 ⇒ 2θ = ⇒θ =
2 4

Allag suntetagmènwn

x′ − ψ ′
} x= √
x = cos π4 x′ − sin π4 ψ ′ 2

ψ = sin π4 x′ + cos π4 ψ ′ x′ + ψ ′
ψ= √
2
x′2 − 2x′ ψ ′ + ψ ′2
x2 =
2
x′2 − ψ ′2
xψ = −4 = −2x′2 + 2ψ ′2
2
x′2 + 2x′ ψ ′ + ψ ′2
ψ2 =
2
x2 + xψ + ψ 2 = x′2 + ψ ′2 − 2x′2 + 2ψ ′2 = −x′2 + 3ψ ′2
b'bˆjmio tm ma
 
 10x′ − 10ψ ′ 

 10x = √ 


 2 


− ′ 2x′ − 18ψ ′
b'bˆjmio tm ma 8x

8ψ + 10x + 8ψ + 7 = √ +7


8ψ = 
 2

 2 

 
7
′ ′2 ′2 2x′ − 18ψ ′
opìte (E ) : −x + 3ψ + √ +7=0⇒
2
2 18
−2x′2 + 6ψ ′2 + √ x′ − √ ψ ′ + 14 = 0
2 2
√ ′ 2 √ ′ √ √ 9 √ √ 9 9
(− 2x ) + 2( 2x ) − 1 + 1 + ( 2 3ψ ′ )2 − 2 √ ( 2 3ψ ′ ) + ( √ )2 − ( √ )2 + 14 = 0
3 3 3
√ ′ √ √ ′ 9 2 9 2
−( 2x − 1) + 1 + ( 2 3ψ − √ ) + 1??( √ ) = 0
2
3 3
−X 2 + Ψ2 + K = 0
x⋆
z }| {
√ √ 1
X = 2x′ − 1 = 2 (x′ − √ )
2
74

ψ⋆
z
}| √ {
√ ′ 9 √ 1 √ 3 2
Ψ = 6ψ − √ = 6(ψ ′ − √ = 6 (ψ ′ − )
3 6·3 2
81
−2x⋆ + 5ψ ⋆ + (15 − ) = 0
2 2

I 2x2 − xψ − 15ψ 2 + 5x − 3

j1 = α + γ = −13

α β 2 − 12 1 30
j2 = = 1 = −30 =
β γ − 2 −15 4 4
2 − 12 5
2
−15 0 1 −12 0 5 − 21 −15
j3 = − 12 −15 0 = 2 + +
0 −3 2 52 −3 2 52 0
5
2
0 −3
3 5 75 360 + 3 + 375
= 90 + + ( ) = ̸= 0
4 2 2 4

j3 ̸= 0, j2 < 0 ˆra UPEERBOLH

17
cot 2φ =
−1

I (2x + 3ψ − 1)(x + 7ψ + 4) = 0 ⇒ TEMNOMENES EUJEIES

epimeristik · · · · · · prokÔptei

2x2 + 17xψ + 21ψ 2 + 7x + 5ψ − 4 = 0

j1 = 23
1 − 289
j2 = <0
4
j3 = 0

√ √ √
I x2 − 2 3xψ + 3ψ 2 − 4(1 + 2 3)x + 4(2 − 3)ψ + 20 = 0

j1 = 4 }
j2 = 0 → DEN UPARQEI KENTRO
PARABOLH
j3 = −32 → KAMPULH
Poia eÐnai h aploÔsterh morf

ψ 2 = 2px
x2 = 2pψ
ψ 2 = κx + λ ⇒ ψ 2 = κ(x + λκ ) = 2 κ2 (x⋆ ) = 2px⋆
γ ′ ψ ′2 − 2px′ = 0
0x′2 + 0x′ ψ ′ + γ ′ ψ ′2 − 2px′ + 0ψ ′ + 0 = 0
j1 = γ ′
j2 = 0
75

0 0 −p
j3 = 0 0 0 = −p2 γ ′ prèpei γ ′ = 4 kai p2 γ ′ = −32
−p 0 0
{
γ′ = 4 √
2 ′
⇒ p2 = 8 ⇒ p = ±2 2
p γ = −32

√ 2 ′
(i) perÐptwsh 4ψ ′2 − 2 · 2 2x′ = 0 ⇒ ψ ′2 = 2 x PARABOLH
2√
√ 2 ′
(ii) perÐptwsh 4ψ ′2 + 2 · 2 2x′ = 0 ⇒ ψ ′2 = −2 x PARABOLH
2

Pwc sundèontai oi duo parabolèc

( )
x → −x′
katoptrismìc wc proc ψ
ψ→ψ
sq ma ( )
−1 0
PÐnakac katoptrismoÔ wc proc ψ
0 1

x2 + ψ 2 + 1 = 0

j1 = 2

x2 + ψ 2 = −1 ⇒ x2 + ψ 2 = i2 KÔkloc
1 0
j2 = =1 me kèntro (0, 0) kai aktÐna i
0 1
Fantastikìc kÔkloc: x + ψ − i = 0
2 2 2

0 0 0
j3 = 0 1 0 = 1
0 0 1
j1 · j3 > 0 fantastikìc kÔkloc èlleiyh

j1 · j3 < 0 pragmatik èlleiyh.

You might also like