0% found this document useful (0 votes)
40 views3 pages

2011

The document provides solutions to mathematical olympiad problems from 2011. It includes two solution methods for problem 1 showing that an expression is greater than or equal to 1-ab/4. For problem 2, it finds the unique solution (1,1,1,1) to a system of equations. For problem 3, it shows that the maximum value of a function f(x) is x^2.

Uploaded by

KABA MOHAMED
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views3 pages

2011

The document provides solutions to mathematical olympiad problems from 2011. It includes two solution methods for problem 1 showing that an expression is greater than or equal to 1-ab/4. For problem 2, it finds the unique solution (1,1,1,1) to a system of equations. For problem 3, it shows that the maximum value of a function f(x) is x^2.

Uploaded by

KABA MOHAMED
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

‫ﺃﻭﻟﻤﺒﻴﺎﺩ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ‪2011‬‬

‫ﺍﻟﻔﺮﺽ ﺍﻷﻭﻝ‬
‫ﺍﻟﺠﻤﻌﺔ ‪ 26‬ﻧﻮﻧﺒﺮ ‪2010‬‬ ‫ﺍﻟﺴﻨﺔ ﺍﻟﺪﺭﺍﺳﻴﺔ‪2011/2010 :‬‬
‫­ ﺣﻠﻮﻝ ﻣﻘﺘﺮﺣﺔ ­‬
‫ﻣﻦ ﺍﻗﺘﺮﺍﺡ‪ :‬ﺃﺫ ﺳﻤﻴﺮ ﻟﺨﺮﻳﺴﻲ‬

‫ﺗﻤﺮﻳﻦ ‪1‬‬
‫ﻃﺮﻳﻘﺔ‪1‬‬
‫‪1‬‬ ‫‪a‬‬ ‫‪b‬‬
‫‪ 2‬ﺣﻴﺚ ‪a + b = a b‬‬ ‫‪+ 2‬‬ ‫‪³‬‬ ‫ﻟﻨﺒﻴﻦ ﺃﻥ‬
‫‪b +4 a +4 2‬‬
‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪2‬‬
‫ﻧﻌﻠﻢ ﺃﻥ‪ (a + b ) ³ 4 ab :‬ﻣﻨﻪ‪ ab ³ 4ab :‬ﻣﻨﻪ‪ ab ³ 4 :‬ﻣﻨﻪ‪:‬‬
‫‪2‬‬
‫‪2‬‬
‫‪³ 2‬‬ ‫‪ 2‬ﻭ ﺃﻳﻀﺎ‬ ‫‪³ 2‬‬
‫‪a + 4 a + ab‬‬ ‫‪b + 4 b + ab‬‬
‫‪a‬‬ ‫‪b‬‬ ‫‪a‬‬ ‫‪b‬‬
‫‪2‬‬
‫‪+‬‬ ‫‪2‬‬
‫‪³‬‬ ‫‪2‬‬
‫‪+‬‬ ‫‪2‬‬
‫ﻣﻨﻪ‪:‬‬
‫‪b + 4 a + 4 b + ab a + ab‬‬
‫‪a‬‬ ‫‪b‬‬ ‫‪a 1‬‬ ‫‪b 1‬‬ ‫‪a‬‬ ‫‪b‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪a 2 + b2‬‬
‫‪+‬‬ ‫=‬ ‫‪.‬‬ ‫‪+‬‬ ‫‪.‬‬ ‫=‬ ‫‪+‬‬ ‫=‬ ‫‪+‬‬ ‫=‬
‫‪b 2 + ab a 2 + ab b a + b a a + b b 2 a a 2 b b 2 a 2‬‬ ‫‪a 2b 2‬‬
‫‪2‬‬
‫ﻭ ﻟﺪﻳﻨﺎ‪:‬‬
‫=‬
‫(‬‫‪a + b ) - 2ab a 2 b 2 - 2ab‬‬
‫=‬ ‫‪= 1-‬‬
‫‪2‬‬
‫‪a 2b 2‬‬ ‫‪a 2b 2‬‬ ‫‪ab‬‬
‫‪a‬‬ ‫‪b‬‬ ‫‪1‬‬ ‫‪2 1‬‬
‫‪2‬‬
‫‪+ 2‬‬ ‫‪ ab ³ 4 Þ 1 -‬ﻓﺈﻥ‪³ :‬‬ ‫ﻭ ﺑﻤﺎ ﺃﻥ‪³ :‬‬
‫‪b +4 a +4 2‬‬ ‫‪ab 2‬‬
‫ﻃﺮﻳﻘﺔ‪:2‬‬
‫‪a +b = ab‬‬ ‫ﻧﻀﻊ‪= t :‬‬
‫ﺇﺫﻥ‪:‬‬
‫‪a‬‬
‫‪+‬‬
‫‪b‬‬
‫=‬
‫‪a 3 + 4a + b 3 + 4b‬‬
‫=‬
‫(‬
‫) ‪(a + b )(a 2 + b 2 - ab) + 4(a + b ) = (a + b ) (a + b )2 - 3ab + 4(a + b‬‬‫)‬
‫ﺇ‬
‫‪2‬‬
‫‪b +4‬‬ ‫‪2‬‬
‫‪a +4‬‬ ‫(‬ ‫)‬
‫‪a 2 b 2 + 4(a 2 + b 2 ) + 16 a 2 b 2 + 4 (a + b )2 - 2ab + 16‬‬ ‫‪2‬‬
‫‪a 2 b 2 + 4(a + b ) - 8ab + 16‬‬
‫‪t (t - 3t ) + 4t‬‬
‫‪2‬‬ ‫‪3‬‬
‫‪t - 3t + 4t‬‬‫‪2‬‬
‫=‬ ‫‪2‬‬ ‫‪2‬‬
‫‪= 2‬‬
‫‪t + 4t - 8t + 16 5t - 8t + 16‬‬
‫‪"t ³ 4‬‬ ‫ﺫﻥ ﻟﻠﺒﺮﻫﺎﻥ ﻋﻠﻰ ﺍﻟﻤﺘﻔﺎﻭﺗﺔ ﺍﻟﻤﻄﻠﻮﺑﺔ ﻳﺠﺐ ﺍﻟﺒﺮﻫﺎﻥ ﻋﻠﻰ ﺃﻥ‪f (t ) = 2(t 3 - 3t 2 + 4t ) - (5t 2 - 8t + 16) ³ 0 :‬‬
‫‪ "t ³ 4‬ﻭ ﻫﺬﺍ ﻳﻨﻬﻲ ﺍﻟﺒﺮﻫﺎﻥ‬ ‫ﻟﺪﻳﻨﺎ‪f (t ) = 2t 3 - 11t 2 + 16t - 16 = (t - 4)(2t 2 - 3t + 4) ³ 0 :‬‬
‫‪2‬‬
‫)ﻷﻥ‪ :‬ﻣﺤﺪﺩﺓ ‪ 2t - 3t + 4‬ﺳﺎﻟﺒﺔ ( )ﻗﻤﻨﺎ ﺑﺈﺟﺮﺍء ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺪﻳﺔ ﻟﻠﺘﻌﻤﻴﻞ(‬
‫ﻳﻤﻜﻦ ﺃﻳﻀﺎ ﺩﺭﺍﺳﺔ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻭ ﺍﻻﺳﺘﻨﺘﺎﺝ ﻣﻦ ﺧﻼﻝ ﺟﺪﻭﻝ ﺍﻟﺘﻐﻴﺮﺍﺕ‬

‫ﺭﻳﺎﺿﻴــــﺎﺕ ﺍﻟﻨﺠـــــــــــﺎﺡ‬
‫‪www.naja7math.com‬‬

‫‪1/3‬‬
2 ‫ﺗﻤﺮﻳﻦ‬
ìx + y + z + t = 4
(S ) : ïí 1 1 1 1 1 ‫ﻟﺘﺤﻞ ﺍﻟﻨﻈﻤﺔ‬
+
ïx y z t+ + = 5 -
î x y zt
(S ) Þ x + y + z + t + 1 + 1 + 1 + 1 ³ 8 Þ 5 - 1 ³ 4 Þ x y z t ³ 1 :‫ ﻣﻨﻪ‬٬ "x > 0 x + 1 ³ 2 :‫ﻧﻌﻠﻢ ﺃﻥ‬
x y z t x y zt x
: ‫ﻭ ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ‬
x + y + z + t ³ 2 xy + 2 z t ³ 2 2 xy 2 z t = 4 x y zt Þ 4 ³ 4 x y zt Þ x y zt £ 1
x y z t = 1 :‫ﺇﺫﻥ‬
ìx + y + z + t = 4
1 1 1 1
(S )Þ ïí 1 1 1 1 Þ x+ -2+ y+ - 2+ z+ - 2+t + -2 = 0
ïx + y + z + t = 4 x y z t
î :‫ﻣﻨﻪ‬
2 2 2 2
æ 1ö æ 1ö æ 1 ö æ 1ö
Þ ç x - ÷ + çç y - ÷÷ + ç z - ÷ + ç t - ÷ = 0 Þ x = y = z = t = 1
è xø è yø è zø è t ø
S = {(1;1;1;1)} :‫ ﺑﺎﻟﺘﺎﻟﻲ‬٬‫ﻋﻜﺴﻴﺎ ﻳﻤﻜﻦ ﺍﻟﺘﺤﻘﻖ ﺑﺴﻬﻮﻟﺔ ﻣﻦ ﺻﺤﺔ ﺍﻟﺤﻞ‬

3 ‫ﺗﻤﺮﻳﻦ‬
"x Î IR f ( x) = max (2 x y - f ( y)) ‫ﻟﺪﻳﻨﺎ‬
yÎIR

"x Î IR "y Î IR f ( x) ³ 2 x y - f ( y) :‫ﺇﺫﻥ‬


(* ) "x Î IR f ( x) ³ x 2
:‫ﻣﻨﻪ‬ "x Î IR f ( x) ³ 2 x 2 - f ( x) :‫ ( ﻧﺠﺪ‬x = y) ‫ﻭ ﺑﺄﺧﺬ‬

f ( x) - x 2 = 2 xx0 - f ( x0 ) - x 2 :‫ ﻣﻨﻪ‬f ( x) = 2 xx0 - f ( x0 ) :‫ ﺣﻴﺚ‬x0 Î IR ‫ ﺇﺫﻥ ﻳﻮﺟﺪ‬x Î IR ‫ﻟﻴﻜﻦ‬


2
f ( x) £ x 2 :‫ﻣﻨﻪ‬ f ( x) - x 2 £ 2 xx0 - x02 - x 2 = -( x - x0 ) :‫ ﻣﻨﻪ‬f ( x0 ) ³ x02 :‫ﻭ ﺣﺴﺐ ) * ( ﻓﺈﻥ‬

"x Î IR f ( x) = x 2 :‫ﺑﺎﻟﺘﺎﻟﻲ‬

"x Î IR "y Î IR x 2 ³ 2 x y - y 2 2
:‫ ﻟﺪﻳﻨﺎ‬x a x ‫ﻭﻋﻜﺴﻴﺎ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ‬
"x Î IR "y Î IR x 2 - 2 x y + y 2 ³ 0 :‫ﻷﻥ‬
"x Î IR $y Î IR x2 = 2 x y + y 2 ‫ﻭ‬
D = 4 x 2 + 4 x 2 = 8 x 2 ³ 0 :‫ ﻫﻲ‬t Î IR t 2 + 2 xt - x 2 = 0 ‫ﻷﻥ ﻣﺤﺪﺩﺓ ﺍﻟﺤﺪﻭﺩﻳﺔ‬

.‫" ﻫﻲ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻮﺣﻴﺪﺓ ﺍﻟﺘﻲ ﺗﺤﻘﻖ ﺍﻟﺸﺮﻁ ﺍﻟﻤﻄﻠﻮﺏ‬x Î IR f ( x) = x 2 ‫ﻭ ﻫﺬﺍ ﻳﻌﻨﻲ ﺃﻥ ﺍﻟﺪﺍﻟﺔ‬

‫ﺭﻳﺎﺿﻴــــﺎﺕ ﺍﻟﻨﺠـــــــــــﺎﺡ‬
www.naja7math.com

2/3
‫ﺗﻤﺮﻳﻦ ‪4‬‬
‫ﻣﻊ‬ ‫ﺑﻤﺎ ﺃﻥ ‪ L‬ﻫﻲ ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﺍﻟﻤﻨﺼﻒ ﺍﻟﺪﺍﺧﻠﻲ ﻟﻠﺰﺍﻭﻳﺔ ] ‪[BAˆ C‬‬
‫‪BL AB‬‬
‫=‬ ‫] ‪ [BC‬ﻓﺈﻥ‪:‬‬
‫‪A‬‬ ‫‪LC AC‬‬
‫ﻣﻨﻪ‪AC = 2 AB :‬‬
‫ﻟﻨﻌﺘﺒﺮ ‪ E‬ﻣﻨﺘﺼﻒ ] ‪ [AC‬ﺇﺫﻥ‪AE = AB :‬‬
‫‪K‬‬ ‫ﺇﺫﻥ ﻧﺴﺘﻨﺘﺞ ﺑﺴﻬﻮﻟﺔ ﺃﻥ ﺍﻟﻤﺜﻠﺜﺎﻥ ‪ AED‬ﻭ ‪) ABD‬ﺿﻠﻊ ﻣﺸﺘﺮﻙ ﻭ‬
‫‪E‬‬ ‫ﺿﻠﻌﺎﻥ ﻣﺘﻘﺎﻳﺴﺎﻥ ﻭﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺤﺼﻮﺭﺓ ﺑﻴﻨﻬﻤﺎ ﻣﺘﻘﺎﻳﺴﺎﻥ(‬
‫ﻣﻨﻪ‪BD = DE :‬‬
‫‪M‬‬ ‫‪ DA‬ﺯﺍﻭﻳﺘﺎﻥ ﻣﺤﻴﻄﻴﺘﺎﻥ ﻣﺘﻘﺎﻳﺴﺘﺎﻥ‬ ‫ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ ‪ˆ D‬‬
‫‪ BA‬ﻭ ‪ˆ C‬‬
‫ﺇﺫﻥ ﻓﻬﻤﺎ ﺗﺤﺼﺮﺍﻥ ﻗﻮﺳﻴﻦ ﻣﺘﻘﺎﻳﺴﻴﻦ‬
‫‪B‬‬ ‫‪L‬‬ ‫‪C‬‬ ‫ﻣﻨﻪ‪BD = DC :‬‬
‫ﻧﺴﺘﻨﺘﺞ ﺇﺫﻥ ﺃﻥ‪DE = DC :‬‬
‫ﺇﺫﻥ ) ‪ (DM‬ﺍﺭﺗﻔﺎﻉ ﻓﻲ ﺍﻟﻤﺜﻠﺚ ‪ DEC‬ﺍﻟﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻦ ﻓﻲ‬
‫‪ D‬ﺇﺫﻥ ﻓﻬﻮ ﺃﻳﻀﺎ ﻣﺘﻮﺳﻂ ﻭ ﻭﺍﺳﻂ‬
‫‪D‬‬
‫‪EC AC‬‬
‫= ‪MC‬‬ ‫=‬ ‫ﻣﻨﻪ‪:‬‬
‫‪2‬‬ ‫‪4‬‬
‫‪AM 3‬‬ ‫‪3 AC‬‬
‫= ‪ AM = AC - MC‬ﺑﺎﻟﺘﺎﻟﻲ‪= :‬‬ ‫ﻣﻨﻪ‪:‬‬
‫‪MC 4‬‬ ‫‪4‬‬

‫ﺭﻳﺎﺿﻴــــﺎﺕ ﺍﻟﻨﺠـــــــــــﺎﺡ‬
‫‪www.naja7math.com‬‬

‫‪3/3‬‬

You might also like