ﺃﻭﻟﻤﺒﻴﺎﺩ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ 2011
ﺍﻟﻔﺮﺽ ﺍﻷﻭﻝ
                                                             ﺍﻟﺠﻤﻌﺔ  26ﻧﻮﻧﺒﺮ 2010                                  ﺍﻟﺴﻨﺔ ﺍﻟﺪﺭﺍﺳﻴﺔ2011/2010 :
                                                              ﺣﻠﻮﻝ ﻣﻘﺘﺮﺣﺔ 
                                                       ﻣﻦ ﺍﻗﺘﺮﺍﺡ :ﺃﺫ ﺳﻤﻴﺮ ﻟﺨﺮﻳﺴﻲ
                                                                                                                                                ﺗﻤﺮﻳﻦ 1
                                                                                                                                                 ﻃﺮﻳﻘﺔ1
                                                                                                              1    a            b
                                                                                     2ﺣﻴﺚ a + b = a b  + 2  ³   ﻟﻨﺒﻴﻦ ﺃﻥ
                                                                                                   b +4 a +4 2
              1      1            1      1                                          2
                                             ﻧﻌﻠﻢ ﺃﻥ (a + b ) ³ 4 ab :ﻣﻨﻪ ab ³ 4ab :ﻣﻨﻪ ab ³ 4 :ﻣﻨﻪ:
                                                                2
             2
                 ³ 2      2ﻭ ﺃﻳﻀﺎ    ³ 2
            a + 4 a + ab        b + 4 b + ab
                                                                                                   a           b            a               b
                                                                                               2
                                                                                                       +   2
                                                                                                                    ³   2
                                                                                                                                    +   2
                                                                                                                                                    ﻣﻨﻪ:
                                                                               b + 4 a + 4 b + ab a + ab
                                              a        b     a 1         b 1        a     b     1   1    a 2 + b2
                                                  +        =   .       +  .    =        +    =    +   =
                                          b 2 + ab a 2 + ab b a + b a a + b b 2 a a 2 b b 2 a 2           a 2b 2
                                                                     2
                                                                                                                  ﻭ ﻟﺪﻳﻨﺎ:
                                                           =
                                                             (a + b ) - 2ab a 2 b 2 - 2ab
                                                                             =            = 1-
                                                                                                2
                                                                  a 2b 2         a 2b 2        ab
                                                                    a        b     1                     2 1
                                                                  2
                                                                         + 2     ab ³ 4 Þ 1 -ﻓﺈﻥ³ :         ﻭ ﺑﻤﺎ ﺃﻥ³ :
                                                                 b +4 a +4 2                            ab 2
                                                                                                                                                 ﻃﺮﻳﻘﺔ:2
                                                                                                                            a +b = ab           ﻧﻀﻊ= t :
                                                                                                                                                     ﺇﺫﻥ:
        a
             +
                     b
                           =
                                   a 3 + 4a + b 3 + 4b
                                                           =
                                                                                                                   (
                                                             ) (a + b )(a 2 + b 2 - ab) + 4(a + b ) = (a + b ) (a + b )2 - 3ab + 4(a + b)
ﺇ
    2
    b +4         2
                 a +4                                                   (                  )
                               a 2 b 2 + 4(a 2 + b 2 ) + 16 a 2 b 2 + 4 (a + b )2 - 2ab + 16                              2
                                                                                                       a 2 b 2 + 4(a + b ) - 8ab + 16
                                 t (t - 3t ) + 4t
                                      2                3
                                                   t - 3t + 4t2
                           =    2      2
                                                  = 2
                               t + 4t - 8t + 16 5t - 8t + 16
    "t ³ 4               ﺫﻥ ﻟﻠﺒﺮﻫﺎﻥ ﻋﻠﻰ ﺍﻟﻤﺘﻔﺎﻭﺗﺔ ﺍﻟﻤﻄﻠﻮﺑﺔ ﻳﺠﺐ ﺍﻟﺒﺮﻫﺎﻥ ﻋﻠﻰ ﺃﻥf (t ) = 2(t 3 - 3t 2 + 4t ) - (5t 2 - 8t + 16) ³ 0 :
                                     "t ³ 4ﻭ ﻫﺬﺍ ﻳﻨﻬﻲ ﺍﻟﺒﺮﻫﺎﻥ         ﻟﺪﻳﻨﺎf (t ) = 2t 3 - 11t 2 + 16t - 16 = (t - 4)(2t 2 - 3t + 4) ³ 0 :
                                                                                                                 2
                                                             )ﻷﻥ :ﻣﺤﺪﺩﺓ  2t - 3t + 4ﺳﺎﻟﺒﺔ ( )ﻗﻤﻨﺎ ﺑﺈﺟﺮﺍء ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺪﻳﺔ ﻟﻠﺘﻌﻤﻴﻞ(
                                                                    ﻳﻤﻜﻦ ﺃﻳﻀﺎ ﺩﺭﺍﺳﺔ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺴﺎﺑﻘﺔ ﻭ ﺍﻻﺳﺘﻨﺘﺎﺝ ﻣﻦ ﺧﻼﻝ ﺟﺪﻭﻝ ﺍﻟﺘﻐﻴﺮﺍﺕ
                                                           ﺭﻳﺎﺿﻴــــﺎﺕ ﺍﻟﻨﺠـــــــــــﺎﺡ
                                                           www.naja7math.com
                                                                       1/3
                                                                                                                               2 ﺗﻤﺮﻳﻦ
                                                               ìx + y + z + t = 4
                                                       (S ) : ïí 1 1 1 1                1 ﻟﺘﺤﻞ ﺍﻟﻨﻈﻤﺔ
                                                                  +
                                                               ïx y z t+   +   =  5 -
                                                               î                      x y zt
(S ) Þ x + y + z + t + 1 + 1 + 1 + 1 ³ 8 Þ 5 - 1 ³ 4 Þ x y z t ³ 1 : ﻣﻨﻪ٬ "x > 0 x + 1 ³ 2 :ﻧﻌﻠﻢ ﺃﻥ
                       x y z t                x y zt                                       x
                                                                                                                  : ﻭ ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ
   x + y + z + t ³ 2 xy + 2 z t ³ 2 2 xy 2 z t = 4                         x y zt Þ 4 ³ 4       x y zt       Þ x y zt £ 1
                                                                                                                 x y z t = 1 :ﺇﺫﻥ
                         ìx + y + z + t = 4
                                                1      1       1       1
                  (S )Þ ïí 1 1 1 1          Þ x+ -2+ y+ - 2+ z+ - 2+t + -2 = 0
                         ïx + y + z + t = 4     x      y       z       t
                         î                                                                                                        :ﻣﻨﻪ
                                      2             2                  2            2
                         æ    1ö æ       1ö æ        1 ö æ 1ö
                       Þ ç x - ÷ + çç y - ÷÷ + ç z - ÷ + ç t - ÷ = 0 Þ x = y = z = t = 1
                         è    xø è       yø è        zø è t ø
                                             S = {(1;1;1;1)} : ﺑﺎﻟﺘﺎﻟﻲ٬ﻋﻜﺴﻴﺎ ﻳﻤﻜﻦ ﺍﻟﺘﺤﻘﻖ ﺑﺴﻬﻮﻟﺔ ﻣﻦ ﺻﺤﺔ ﺍﻟﺤﻞ
                                                                                                                               3 ﺗﻤﺮﻳﻦ
                                                                                 "x Î IR     f ( x) = max (2 x y - f ( y))        ﻟﺪﻳﻨﺎ
                                                                                                      yÎIR
                                                                               "x Î IR "y Î IR f ( x) ³ 2 x y - f ( y) :ﺇﺫﻥ
                       (* )        "x Î IR     f ( x) ³ x   2
                                                                :ﻣﻨﻪ        "x Î IR f ( x) ³ 2 x 2 - f ( x) : ( ﻧﺠﺪx = y) ﻭ ﺑﺄﺧﺬ
            f ( x) - x 2 = 2 xx0 - f ( x0 ) - x 2 : ﻣﻨﻪf ( x) = 2 xx0 - f ( x0 ) : ﺣﻴﺚx0 Î IR  ﺇﺫﻥ ﻳﻮﺟﺪx Î IR ﻟﻴﻜﻦ
                                                                                         2
               f ( x) £ x 2    :ﻣﻨﻪ   f ( x) - x 2 £ 2 xx0 - x02 - x 2 = -( x - x0 ) : ﻣﻨﻪf ( x0 ) ³ x02 :ﻭ ﺣﺴﺐ ) * ( ﻓﺈﻥ
                                                                                                "x Î IR         f ( x) = x 2   :ﺑﺎﻟﺘﺎﻟﻲ
                                "x Î IR "y Î IR x 2 ³ 2 x y - y 2                            2
                                                                               : ﻟﺪﻳﻨﺎx a x ﻭﻋﻜﺴﻴﺎ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺪﺍﻟﺔ
                                                                     "x Î IR "y Î IR x 2 - 2 x y + y 2 ³ 0 :ﻷﻥ
                                                                            "x Î IR $y Î IR x2 = 2 x y + y 2 ﻭ
                                 D = 4 x 2 + 4 x 2 = 8 x 2 ³ 0 : ﻫﻲt Î IR t 2 + 2 xt - x 2 = 0 ﻷﻥ ﻣﺤﺪﺩﺓ ﺍﻟﺤﺪﻭﺩﻳﺔ
                              ." ﻫﻲ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻮﺣﻴﺪﺓ ﺍﻟﺘﻲ ﺗﺤﻘﻖ ﺍﻟﺸﺮﻁ ﺍﻟﻤﻄﻠﻮﺏx Î IR                 f ( x) = x 2   ﻭ ﻫﺬﺍ ﻳﻌﻨﻲ ﺃﻥ ﺍﻟﺪﺍﻟﺔ
                                             ﺭﻳﺎﺿﻴــــﺎﺕ ﺍﻟﻨﺠـــــــــــﺎﺡ
                                             www.naja7math.com
                                                                2/3
                                                                                        ﺗﻤﺮﻳﻦ 4
                                      ﻣﻊ   ﺑﻤﺎ ﺃﻥ  Lﻫﻲ ﻧﻘﻄﺔ ﺗﻘﺎﻃﻊ ﺍﻟﻤﻨﺼﻒ ﺍﻟﺪﺍﺧﻠﻲ ﻟﻠﺰﺍﻭﻳﺔ ] [BAˆ C
                                                                          BL AB
                                                                            =     ]  [BCﻓﺈﻥ:
    A                                                                     LC AC
                                                                             ﻣﻨﻪAC = 2 AB :
                                                      ﻟﻨﻌﺘﺒﺮ  Eﻣﻨﺘﺼﻒ ]  [ACﺇﺫﻥAE = AB :
                             K       ﺇﺫﻥ ﻧﺴﺘﻨﺘﺞ ﺑﺴﻬﻮﻟﺔ ﺃﻥ ﺍﻟﻤﺜﻠﺜﺎﻥ  AEDﻭ ) ABDﺿﻠﻊ ﻣﺸﺘﺮﻙ ﻭ
                E                               ﺿﻠﻌﺎﻥ ﻣﺘﻘﺎﻳﺴﺎﻥ ﻭﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺤﺼﻮﺭﺓ ﺑﻴﻨﻬﻤﺎ ﻣﺘﻘﺎﻳﺴﺎﻥ(
                                                                               ﻣﻨﻪBD = DE :
                    M                      DAﺯﺍﻭﻳﺘﺎﻥ ﻣﺤﻴﻄﻴﺘﺎﻥ ﻣﺘﻘﺎﻳﺴﺘﺎﻥ      ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ ˆ D
                                                                       BAﻭ ˆ C
                                                                ﺇﺫﻥ ﻓﻬﻤﺎ ﺗﺤﺼﺮﺍﻥ ﻗﻮﺳﻴﻦ ﻣﺘﻘﺎﻳﺴﻴﻦ
B       L                C                                               ﻣﻨﻪBD = DC :
                                                               ﻧﺴﺘﻨﺘﺞ ﺇﺫﻥ ﺃﻥDE = DC :
                                      ﺇﺫﻥ )  (DMﺍﺭﺗﻔﺎﻉ ﻓﻲ ﺍﻟﻤﺜﻠﺚ  DECﺍﻟﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻦ ﻓﻲ
                                                             Dﺇﺫﻥ ﻓﻬﻮ ﺃﻳﻀﺎ ﻣﺘﻮﺳﻂ ﻭ ﻭﺍﺳﻂ
            D
                                                                        EC AC
                                                                 = MC         =     ﻣﻨﻪ:
                                                                                 2      4
                                              AM 3                        3 AC
                                                =  AM = AC - MCﺑﺎﻟﺘﺎﻟﻲ= :      ﻣﻨﻪ:
                                              MC 4                          4
                        ﺭﻳﺎﺿﻴــــﺎﺕ ﺍﻟﻨﺠـــــــــــﺎﺡ
                        www.naja7math.com
                                    3/3