0 ratings 0% found this document useful (0 votes) 381 views 36 pages Akash
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
NEW TOPIC ADDED FROM ACADEMIC SESSION [2022-23]
THIRD SEMESTER [B.TECH]
COMPUTATIONAL METHODS [ES-201]
UNIT -1
Q.1 Give geometrical interpretation of Newton Raphson Method. (2015)
‘Ans. Let x, be a point near the root « of equation fix) = 0, then tangent at
Alx,, flx,)) is
y
ALK fo)
y-fix,) = 20x) (x — x9)
1%)
Tecutsxcaxisate = x5 = fs ») which is I approximation to root u. If, corresponds
Xo)
to x. on the curve, then tangent at A, will cut x-axis at x,, nearer to a and is therefore
1 approximate to root «. Repeating this process, we approach the root a quite rapidly.
Honee the method consists in replacing the part of the curve between A and x-axis by
the means of the tangent to the curve at A,
Q.2 Using Bisection method find the value of negative root of the equation
x!-x +11 = 0 upto 2 decimal places. (2015)
Ans. = xi-x+11=0
f(-2) = -8+24+11=5
-274+3411=-13
fi-3)
Root lies between — 2 and ~ 3.
x, =
fix,) = — 15.625 + 2.5 + 11 = ~ 2.125 (-ve)
Root lies between — 2 and ~ 2.5
x = T2te25) - 9.95
- 2
fix,) = 1.85 (+ve)
Root lies between ~ 2.25 and - 2.5
x = 2225+2-5) -_o 975
fix,) = — 0.02 (-ve)2-2021
root lies between ~ 2.25
root lies between ~ 2. 12a
%
fix) =
%
fix) =
fix) =
‘Third Semester, ComP
and - 2.375
wutational Methods
2,95 + 2.375)
72.25 2ST
2
2.312
fix,) = 0.953 (+ve)
nd - 2.375
2.343
9.912 + (2.375)
=2.312+ (2.575)
2
0.4807 (+ve)
root lies between ~ 2.343 and - 2.375
343+ (-2.375)
ae
2
0.2314 (+ve)
359
_ root lies between ~ 2.359 and ~ 2.375
-2.350+ 288) arse
0.1054 (+¥e)
* root lies between ~ 2.367 and -2.375
Required root is - 2.37.
Ans. fix) =
fix) =
£10) =
root lies between 0 and 1
Again £(0.5) =
£07) =
Let x, =
By Newton's formula
2.367 + (-2.375)
2
-2371
Q3 Use Newton Rephson method to solve the equation 3x-cos x1 = 0
correct to four decimal places.
2015)
3x — cos x -1
3+ sin x
= 2 (-ve), f (1) = 1.4897 (+ve)
0.977 (-ve)
0.33 515 (+ve)
thus root lies between 0.6 and 0.7
06
a
Let first approximation be x, = 0.6
x,sinx, +cosx, +1
= “fink te0sx, +1
S+sinx,
LP. University-[B.Tech|-Akash Books 2021-3
= 0.6s8in0.6+ 0080.6+1 _ 9 gar
37 5in0.6 a
xysinx + 608%, +1
‘B+sinx,
= x, = 0.6071
root is 0.6071.
Qu Evaluate /j2 to three places of decimals by Newton Raphson method.
2017)
Ans. Letx = Vi2 >x*-12=0
fix) = x1-12=0 “a
13) = -3,f14)
‘Thus root lies between 3 and 4
Let x, =3.5
Iterative formula
= < Ai)
Putting x,
‘Thus root is 3.4641
Q.5 Using Newton Raphson method, find a root of the equation xin x + cos
x= 0 which is near x = x correct to 3 decimal places. (2018)
‘Ans. Let f(x) = x sin x + cos x
Let 4( ) = Reve
f(a) = -LGve)
root lies between = and x
Let xen
By iterative formula x,,. = ¥,‘Third Semester, Computational Methods
= Hpe0SKy Eq SiN Ey OE
nk , CO8%,
ee (2.8238) cos(2.8233) - 2.8233sin(2.8233) cos(2.8233)
2,8293c0s(2.8233)
x, = 2.7986
55 .7986)° cos(2.7986) - 2.7986sin(2.7986) — cos 2.7986
2.7986 cos(2.7986)
= 27983
Required root is 2.798.
Q.6. Use Bisection method to find a root of the equation x* - 3x ~ 5 = 0.
(2017)
Ans. fix) = x-3x-5
f(2) = 8-6-5=-3(-ve)
f(3) = 27-9-5=
Root lies between 2 and 3
Let ees
y=
5F-3x25-5
3.125 (+ve)
fix)
Root lies between 2 and 2.5
2425
=a!
A 25
2.253% 25-5
= 0.359 (-ve)
Root lies between 2.25 and 2.5
R=
fay
= 225+
a 2 25 2375
fix) = (2.9753 x 2375-5
= 12715 (sve)
Root lies between 2.25 and 2.375
= 225423
x +2575 «9.3125
2
= 0.0692 (-ve)
35 and 2.2815
2.2785 + 2.2813 _ 5 0974
Root lies be
fix,) = 2.27749-3 x 22774-5
= 0.0203 (ve)
Root lies between 2.2774 and 2
2.2774 +2.2813 _ 9 794
2
2794? 3 x 2.2794 —5
fix,)
= 0.0048 (+ve)
Root lies between 2.2774 and 2.2794
2.2774 + 2.2794 _» ong4
2
= 2.9784? -3 x 2.2784-5
= -0,0078 (ve)
Root lies between 2.2784 and 2.2794
2.2784 2 2794 9 o7a9
) = 2.2789? -3 x 22789-5 =—ve
fix,
Root lies between 2.2784 and 2.2789| Methods
62021 ‘Third Semester, Computational
x, = 22184+22789 _ 9 9787
3 =
fix,) = -ve
Root lies between 2.784 and 2.2787
2.2784 + 2.2787 _ 9 o786
2
fix,) = -ve
Root is 2.278.
Q7. Find the Newton Raphson iterative method to find the pth root of a
positive number N and hence find the cube root of 17. (2017)
Ans. Let x= NM
= x-N=0
ed fix) = *-N=0
=. 1) = gx
Iterative formula
Four N=17,q
2)
12)
(3) = 3-17 (+ve)
Let x, = 2.5 by (2), we get
22.59 +17
oxo
= 2.5733
2x (2.5733)* +17
3 x(2.5733) Med
2x(2.5713)' +17
3*(25713"
= 2.57128
3x(2.57128) mare
Root is 2.5712,
LP. University-1B-Tech]-Akash Books 2021-7
Q8. Define absolute, relative and percentage errors.
‘Ans. Absolute Error: If is the true value of a quantity and X’ is its approximate
value, then | X—X'| is called the absolute error F,,
Relative Error: The relative error is defined by
Percentage Error: The percentage error is
x-x'|
mal
Q.9. Find the absolute error and relative error in /6 + /7 + 1B correct to4
significant digits. ao)
Ans. Let
Let
= 0.000668
| X-X’ |_ 0.000668
|x |" 792366
Q10, Explain Newton-Raphson method with convergence. Find the
positive root of x‘ - x = 10 correct to three decimal places. Using Newton-
Raphson method. 20)
‘Ans. Newton Raphson method: Let x, be an approximate root of the equation fix)
= 0. Ifx, =x, + h be the exact root, then flx,) = 0.
Expanding fix, + h) by Taylor's series
fix) + bfx)
Pris
ate °
Since h is small, neglecting h? and higher powers of, we get
fix,) +f") = 0
£(x9)
F(x)
A closer approximation to the root is given by
> h
x, £9)
a; ig ae
milarly starting with x,,a still better approximation x, is given by
«, £00)
1 ta)
~ £45), 9 =0,1,2,3,..
In general, age
ee 7 fs f'x,)hods
Sie ‘Third Gomester, Computational Met
Which in known as Nowton-Raphson formula see
Convergence of Newton-ftuphson Method peas
tity on no that =e
Suppose x, diffors from the root a by w small quan
ae ond x
eo Oy
0.0668)
O68) 1.8665
‘Then the general equation becomes
fi
f
law £00) = 0}
are already present in the statement of
‘nt errors. ‘These errors occur either due
ins of calculators, mathematical
e from the process of rounding off the
ding errors, Also called as procedual
by changing the calculation
1 each step and rounding off
renee
4
» X (say) is truncated to
=-10
X’ (say) then truncation error = X ~X’.
ference between the true values of @
X is the true value of a quantity and X’ is its
's called the absolute error, denoted by ¢,
root is nearer to 2
XX! | 251
= wee
Q19. Use golden section search to find the value of x that minimizes fix) =
x! fx" + 60x"— 70x in the range {0, 2]. Locate this
oro.
Ans. After N stage the range (0, 21s
Choose N so that
ta la, bJ = 10, 1.236]
1s
oe
. 1-25 e
=—*——__ >. **,
a
* % sb by =
——————————
RaaeT
Iteration 2: We choose b, to coincide with a, and f need only be evaluated at one
ae nn
LP. University 1B Techi-Alcenh Bockes mon-a6
a, = a+ pb,-0) = 04721
fia) = 212
fb) = fa) =-2636
fia,), 50 uncertainity level is reduced to la, b,) = 10.4721, 1.236)
i i=.
t 2 3-235,
Now, fib.) <
Iteration 3: We set 2, = a, and campate b,
b, = a,+(-p)(b,-2) = 09443
=-2436y Semon ‘Third Semester, Computational Methots
UNIT - 5 -
2B Compute tog, 224.5 trom the table be Papers gs
x: 19 7S me 8H be | ;
jog: 2G tO 251% «245119
Ans. x fix) Alix) ofl)
4 ole
© Stempoon's one third rete gwen thet ¢ = 272,
AS and compare it with the actus vaben. ons
7 OA
4245 ~ #21) 7 00012 :
Q21 Using simpson's one third rule evaluate xdx Upto 4 deci
place in 10 intervals, i ina
oy,
a om ay
ah 0B ae, a
Tf20 07910 =y;
*
%,
h
gi%ot Yio) Ms 45+ 96+ 9, +95)
= lee 24 y@)
2
. +20, 49,4949) (i) Wo (f(x)Pes
strand Sesestr, Computational Methods
Q.24 Pind the number of men getting wages betwee
the following data
Ans Table is rearranged as
Difference table is
LP. University-(B.Tech|-Akash Books 2021-19
wages (x) No.ofmen ay aly YY
tess than ”
terpolating polynomial for (0, 2), (1, $) 2, 12) and (5, 147)
polation formula. (2015)
verge EOE DE=2 347
6-06-62
1862 aye By» GaP he B
6 60shird Semester, Computational Methods
; ;
3
2 4.172=10)+ 2 (x9 722
a fix) = tats 4115-10 +4 (29-72? +105)
2 Bava,
3 _ gx? +5x)+ (0? -3x7 +
= x3 -6x" +52)+ 55 2x)
fi) = A(x? - 82" + 17-10) + 15x" -727 + 19)
~20(x3 — 6x? + 5x) + 49(x° -3x7 + 22)
alessio es et 2)
20
40x5-100x* +80x~40
A ee
c 20
fla) = Qe 5x2 dx +2
a ASL
Q.26 Evaluate (he by using simpson’s > rule taking 4 = 1 a
4
3 , 1 aii
y Usit fe h = 1 where h is interval of di ‘
by using Simpson's = rule taking h = = al of differencing,
2015)
= 1a-05)+4(18+0.64)+2.
= 0.785392
1
fo) = 1, -16
ext
x 0 6 36 46 56 1
fx) 1 3687 910 4% 913 3661 12
Yo y % y
By Simpson's Sule
[faite = iy,
T B+ 96) 80 +¥2 +94 +95)+2y5]
2021-21
a factorial notation hence show that
Q.27 Express y = 2x°- 3x" + 3x-10
(2016)
ey = 12,
Ans. y = 2x! — 3x7 + 3x— 10
y= Ox(x~ 1) (x-2) + Axx- 1) +Bx+C
2x! = 3x? + Bx — 10 = Axx — 1) (X= 2) + Axx 1) + Ba + C
Forx=0 = -10=C
Forx=1 => B+C=-8
= B=2
Forx=2 = 2A+2B+C=0
= A=3
y= 2ixl? + Six}? + 2ix] - 10
Now, Ay = Glx}! + Glx) +2
aty = 12Ix] +6
sty = 12.
Q.28 From the following table, estimate the number of students who
ybtained marks between 40 and 45. (2016)
Marks 30-40 | 40-50 | _50- 60-70 |_70-80
No.of Students [31 42 En 35, EN
Ans. Tal earranged as
‘Marks obtained No. of students (C.F.)
less than 40 a1
less than 50 73
less than 60 125
than 70 159
less than 80 190
= ame
mar] [oy] oy ey
o
aT
ica]Computational Methods
22-2021 ‘Third Semester,
{We calculate f140) and f'45)
(40) = 31
uD 42
as) = yt40) + nayt4o) + SE a’y(4o)
= u(u-1)(u~2)(u-3)
MU DIN= 2) A5y(40) + : ayaa
3! 4! 4
a=40,h=10
= 45240 205
a 5(0.5 - 1) (0. 2)
5-1) 0. -1)(0.5-2)
qs) =31+05x42+ 5 05-D.9+ a af
i oe x37+..
= 52 - 1.125 - 1.5625 - 14453125
= 47.867 = 48
Number of students between 40 and 45
= 48-31=17
29 Using Lagrange’s formula, find the form of the function f(x) gi
‘ io ) giver
that. ou
x o 2 3 6
fx) 659 705 729 304
Ans. fx) = F=DADE=B, gpg , E=-E-ME-8), 705
(0-2)(0-3)(0-6)
4&0) (x 2)(x-6)
-0)8-2)3-6)
(2-0)(2=3) 2-6)
(x= 0)(x-2)(x-3)
(6-0(6-2)6-3) “4
x 729+
2
fix) = P=5Kx+6)(x-6), gag, x-6)
oe , x05
OZ HB -6) gy , (x? 2K)(x-3) gy
=I 6
= xx*-11x? +36x-36) (x° -9x? +18x)
a6 659 + —— 5 «105
~ (09 ~8x? + 124)81 4 OO = 5x" + = 6x) . 67
~1318x 2
ee }14498x? —47448x +7448 + 6345x?
= ~S7105x* +114210x - 5832x° + 46656x?
789984x + 804x" - 4020? + 4824
2
LP. University-[B.Tech|-Akash Books 2021-23
mx? + 1602x + 47448
72
fix
Q30 Use Lagrange’s interpolation formula, express the function
3x‘+x+1___ asa sum of partial fractions. (2017)
&_D&-2E-3)
Ans. Let ee =
(x1) 2Xx-3)
Consider a(x) = Bx exe
es for x= 1,2,
Its ta
ate v
axt+x+ 1
Using lagrange
ax-) &=2)
Q31 Using simpson’s one third rule, evaluate [. ¢< Yenee find value
value of log, 2. oe (2017)
‘Ans. We divide interval in 8 equal parts
1
Here = ——=fx)
e y= py oh
x 0 eee 3 0 4 8) sa
8 8 8 8 8 8 8
yo1 8 8) 8 aoe
9 5 L 3 19-7 ee
y ye ee oe
By Simpson's rd rule
A
h
= Blo +ya) dn +9 t¥e ty) * Mat Y 0)
jigs
= H{(-4) (: 8 5)so(4+2-4)] = 0.699154
24 2, 13° 16, 5 3 7,
7
jes ite i
Since {-% = flog,(+0]} = log, 2
ines Wir flog. +x], = log.
log, 2 = 0.693154.e
24-2021
‘Third Semester. Computational Methods
.es of x and y-
ving table gives the valu
$32 The follo}
| w2 [24 L_28 [ean | ae ee
; 2 oe [| _ os [ 134 [15.5 ais.
z ding to y= 12, using Lagrange’s interpolation
Find the value of x correspon y atin
formula.
‘Ans. According to formula
12-62)
x=2. 008 -28K5-4
tx 2 2.808
£0) = G9-912-2812-4
(x= LN 2.81x— 4.1 4.9)(x-6.2)6.8
B1=1.212.1-2.8N21-4.12.1-4.92.1-6.2)
(x= 1.2) - 2.4.4.9) = 6,
+8 -1.2N2.8-2.1128-4.112.8-
(x=1.2hx - 21x 2.8Kx-4.9)
2021-25
mula find the value of y when x =
(2018)
+ gre 1.2K4. 2.04.1 - 2.84.1 -
a
(x-1.2)x-2.D(x-2.8)x-4.1 “os
9-1.2149-2.04.9-2 :
£12) =
(12=1,212-2.812—4.1)12~ 4.9\12-6.2)x6.8
<3 14.4648 7
2.124.112 - 4.912 -6.2)*9.8
_(02-1.2)02-2.102-2.
12.6672
(-(02-1.212-2,102-2.8)12-4.
22.6262
302-1.2(02-2,1)2-2.8)02~4
628.1856
£12) = ~1610.84 + 15195.727 + 597.482
+ 42850.637 ~ 30876.064 + 1721.473
7878.4
Q.33. Find the value of ft (€0s x~x) dx ia
fp (ex PY Using trapezoidal rule with
number of steps equal to 6,
ee 2 on
‘Ans. Dividing the interval (0,1) nto 6 equal stops
Here a5
asuh =
= 100+50u = 218
= u = 236
By Newton's forward formula
fla + uh) =y, + nay, +
u(u-Wu=2) 43
ae
A2y +
Yin = 10.68 + 2.96 x.24 + 2981236-0,
2!
+, (2:36)2.36- 112.362)
a (0.15)Third Semester, Computational Methods
26-2021
(2.36y2.36- 112.96 -242.86-9)_-,07)
e a
(2,362.36 1X2.96— 202
8
Be 2 oc. + 0.0280 + 0.0000 + 0.9001
= 15.698
(2018)
‘Ans. Lagrange’s interpolation formula is
(x= x Mx 2 —NE= 20) F¢5,)
Teg HX — Ea Mo ~ X50 ~%a)
fix)=
(x= px — Xx HH x,)
eas — NH =x
ray Me= Hye N=)
Ge Yo = 5), 209 -*
lr) ea eXe ae ete 3y)
reese Ngee ma) | Hata hT — 1X84 2K
ay)
(= Thx =11Yx-13 =
fa) = 5 7x5- 1115 -19%
BWR =1KR=ID, 509)
(8X7 -11K7- 137-17)
452
pL BWR=Thx-1WE= 1D 9966 +
(@3-5)a3-7)43-1)03-17)
(x= x= 11hx- 13-17) _(x-5Xx-1x-
fix) = xe bia
0.1302
0.6167
(¢ EL D= Tx =1IV 1) _ (5 5Xx-T(K= 1-17)
5.0417
6.1615,
(_ X= 5M Dix 112-13)
1.8063
Atx=9
fig) = (9-79 -1149-1349-17) _(9-5\9-11X9- 139-17)
0.1302 0.8167
¢ (9=5X9-7H9-18'9-17) _ (9-59-79 - 1119-17),
5.0417 ae
1»
1.2063
= 963.1029 + 913 4066 + 50.7765 + 20.7142 + 36-4315
119) = 562.66.
Q.36. Evaluate (* 25
+e
with its actual value. ow)
interv to 6 parts each of width h = 1
Actual value
Q87. Evaluate the integral [) "5 dx by using
2. Simpson's + rule
1. Trapezoidal =
3 3
3. Simpson 3 rule 4. Weddle rule
and compare the results with its actual value.
x
+x
Ans, Let
yx) = :
and Te fyde
into five subinterval by taking h = 0.2
» [ s Jos xQ.40. Bvaluat
the interval [0, p] in
‘Ans. We have fix) = x sin
‘third Semester,
(-0.4X-0.4+1)(_9,0005) +
Com}
putational Methods
Costoae)
2
= 1.18132
tetheintegral [x sinxdx
sin subintervals.
using Simpson’
(0.4\-0.4
yefx) | 0
Here y, = 0, ¥, =
1
Using Simpson's > ru
[[xsinxdx =
ras
+ 20.9073 +1
= 3.1454
QAI. Find the data:
f= 5 7 |
[te [150 _[_ 392 5202
Evaluate f(9) by using Newton's
Ans. The dividend tabl
(2019)
[ Lt afi) sf | afte | styoo
1 392 m
1
n 1452 32 0
1
13 2366 0
Ww 5202
LP. University-1B.Tech|-Akash Books 2021-31
Using Newton's divided difference formula
A(x) = flx,) + (x — 4) fl) + (x — Xe) (= x,) fl.)
+ (=x) =x) (X= x) B’flX,) +
1x) = 160 + (9.5)(121) + (9.5) (9 ~ 724) + (9 - 5X9 — 7)(9 — 112)
= 810
Q.42. A second degree polynomial passes through the points (1, -1), (2,-1),
(3, ) und (4, 5). Find the polynomial. (2019)
Ans. The difference table is
x yet | ay | 4 ay]
r a
o
2 Bi 2
2 °
3 1 2
4
4 5
fe take x, = 1
s0 Pp aera er
h 1
Using Newton's forward interpolation formula we get
P(P-1(P-2)
fx) = Yq + PAY + ae
= -1+(x-1(0)+ 9 pe )
a
= -1+0+(x-1)(x-2)+0
= t-ox+1
Q.43. Find the value of [*e* dx using Simpson's 1/3 and 3/8 rule by
{ing the interval 0, 0.6] is suitable number of subintervals. (2019)
[exo 0.3 o4 05 0.6
y=ftx) | 1.0000 [1.10517 [ 1.22140 | 1.34986 | 1.49182 | 1.64872 | 1.82212
, = 1.0000, y, = 1.10517, y, = 1.22140, y, = 1.94986, y, = 1.49182, y,= 1.64872,
Using Simpson's one third ruleauird Semester, Computational Methods
ya +¥e)
foxa- yyy sye)e do t¥9t 9" 987% ,
3
— 1.64872) + 2(1.22140
gpg) + 1.10517 + 124968 - 1.64 + 148169,
= 92.0000 + 2
= 0.82212
By Simpeon’s three eight rule
fierax = Bivorv0)+9% +9at74* 70)" 209
1.39517 + 122140)+(149182+ 164872)+ 201 34955
= 40.0) (1.0000 + 1.82212) + 30
3
2082211
Qu4. (a) Compute [sin xdx significant to five digits by Romi
method.
‘Ans. Take h= =,%, successively and compute integral using Trapezoidal rule
4816
h
= Buy, +yo)+ 2vi!
give ¥2)* 2
= 2[1+2x0.7071)=0.94805
z
) When h = values of y = sin x
x | 0 we | x4 | 308 | 2
y_ [0 ossz7| 07071 [ 05239} 1
Boia sa2%s joey
Mh) = By, +y,)+ 27, +¥2 +90)
gio +¥4)+ My + ¥2* Ys)
= 211+ 20.8827 + 0.7071 + 0.9239)]
= 0.98712
Gi) When h = 2
6
h
cat) = Pity, +9, + 29,4324 Yat Yet Vet Met Id
a) = Bling + 991+ 20,4944 Hat Yet Vee Tet H
7 {1+ 2(0.1951 + 0.3827 + 0.5556 + 0.7071 + 0.8315 + 0.9239 + 0.9608]
32
= 0.99680
First order extrapolated values are
on Way
4-1
= 4£0.9871- 0.9480 _ 4 99915
4-1
Have, wa) = *1ca/4)= 1th 2)
4-1
_ 4%0.9968 - 0.98712 _ 1 999934
4-1
Its, w2, bia) = #1042, /4)~ 1 ih)
4-1
4x 1.000034 - 1.000152
4-1
= 0.99995
Value of integral = 1
Q45. Evaluate [} (x? +2x) dx by Gauss Quadrature formula.
‘Ans. Here a= 2,b=4
fix) = x8+2x
, A) to [- 1, 1] by putting
Let us transform the interval
x= fla+b)+ (beady)
x= He+d+4-aylComputational Methods
‘Third Semester,
xa 8ty
dx = dy
T= fifeodx
6(y) = 113 + yy
= fw
By taking n = 2 in Guass formula
b-ag
2 Rely)
I 5 =
T = IRoy,) + Ro
where R, = 1, R= 1
y, = 0.57735, ,=-Ys
40) = 13+y)
= (Gry? +(8+y).2=y'+ By +15
4y,) = yt + By, + 15
Now
= $1y,) = (0.57735)? + 8(-0.57735) + 15
= 0.399933 — 4.6186024 + 15 = 10.7145
Hy) = (y+ Bley) + 15 = y,?- By, +
By (a)
= 1% 10.714531 + 1 x 19.
= 30.6666
LP. University-1B Tech}-Akash Books 2021-35
UNIT - 101
QA6. Solve the following equations by Gauss Jordan method. (2017)
Ox+y-4e = 1
6x + 9y-34 = 17
x-2y+2 = 9
‘Ans. In matrix form, we have
E ‘ ET. |
Consider
A
2
R, > R,-5R,,R, > R, +8R,
fi 1/2 -2)/ 1/2]
o 2 -15|| 5
2
1 1/2 -2][1/2)
-[e 9 al
at
R,boehpeany
13
fints2. 29) tat
~ JO 13/2 13 || 29/2
0 0 ~19)/103/13.
2
RoR Em
1 0 -3]f 6/13
- [0 13/2 13 |} 29/2
0 0 -19]/103/13,
3 13
R, > R- Tg RRR + 9%
[ 0 08 ae
0 13/2 0 || 29/2
0 0 -19]| 757/3810 Ol -195 / 247
pcets |e
0 0 12 757 1722.
oy-195/247
~ lo 1 of 29/38
0 0 1)[-757/722.
Ersoy o29e-_ -187
= X87) 18" 782
thod.
Q.47. Explain matrix inversion me!
Let B be another matrix of the same org
‘Ans. Let A be e non-singular matrix.
such that
AB = BA=I
Where I being 2 unit matrix of the same order.
‘There are two methodsL
1. Gauss elimination method: The
order as the given matrix A and write it as Al
‘Now making simultaneous row operations on AL, we try to convert A into an upp:
triangular matrix and then to a unit matrix, Ultimately when Ais transformed into unit
matrix the adjacent matrix gives the inverse of A.
2. Gauss Jordan method: This is similar to the Gauss elimination method except
that instead of frst converting A into upper triangular form, itis directly converted inta
the unit matrix.
Q.48. Explain UV factorization method and hence apply factorization
method to solve the equations.
x+y +2=9,x+2y+32=6,3x+y+2z=8.
‘Ans. UV Factorization method: This method is based on the fact that every
square matrix. A can be expressed as the product of « lower triangular matrix and a8
upper triangular matrix, provided all the principal minors of matrix A are non-singular
IFA= la, then
method involves a-unit matrix of the same
Jan a2 2
zag | +0 and soon.
Sn Ss Mas
Also such a factorization if it exists, is unique.
Now consider the equations
ah tah tum = by
uh t+ 8o%+ 05x, = by
LP. University-[B.Tech|-Akash Books
yh + 8k + Oe = bs
Which ean be written as AX = B.
fe a2 Mis
Where, A= sarag
Lan as2 89
Let A=LU
fa 0 0} if
WhereL= |i) 1 o|and U=
Lar 42 Od po
‘Then (1) becomes
LUX = B
Let (Xe
‘Then (3) becomes
LY =B
Which is equivalent to
n= %
Ins +9_ = Be
=,
Solving thes then we get Y.
4) becor
uy, + U2 +
UX, + Unt 's
Um = Js
From which x,, x, and x, can be found by back substitution.
Now, we solve
ox+3y+2 = 9
x+2y+32 = 6
Sx+y+2 = 8
It can be written in matrix form as
AX = B
f2 3 1] fx] 9]
wie as tae -|y,3-|8
laziest ls
Let A=LU
f1 0 0] a) eo
vee 1 ca
in fn 1)
ye 83]
0 ug Us
0 tp ts
0 0 uss,
2021-37
(2)
(8)
fa)
-D
42)98-2021
By equation 2)
32
0 Ojfun we os Faave
Be? oe al ls 1 2
ird Semester, Computational Methods
Thi "
we get
d bath
2,
u
1
‘Thus, L = | 3
3
2
2
°
°
‘Then equation
(2)--n(8)-00
+hylg = 1
D bys + lant Yn = 2
see
895 _,-3+35
og 8 3548495
ua alk 2
uw, = 18
0] [2 3 1]
ofanau-|o 2 5
23
Bere loro 1s
Ae Y, 1)
1} 3
lt vy
al?| - x
1 |L?. ya}
(2) becomes
LUX = B
Ly =B
corresponding eigen vector of the matrix [
cig
LP. University 1B Tech/-Akash Books
1ijg0 Oh ae
A 1] fo
Ya
Te 5.
2
= y=9
a ii 9.3
pith = 6 = y,26-2-8
—"-Tyatys = 8
a7 2
= aT =e eno
geeraaa 4
9
Xana
2
From (2), we get
23
eee
6 a
ot Seema
1 | 2
oo ull] [5
= 2x+3y+2 = 9
35
= ee
18
= 1
2) oaemen
= ee
18
182 = 5
5 eee
18
aD. 30 a6
1s" 18"" "18
Q.49. Explain power method. Determine the largest Eigen value and the
5 4
Jes:
Ans. Power method: If X,, X,
values i, Ayy soy then an arbitrary column vector ean be written as
X = KX, +KX+.. + KX,
AX = K,AX, + KAX,+... + KAN,
‘Then,
] using power method.
2021-39
, X, be the eigen vectors corresponding to the‘and the contribution of the
therefore every time w,
ves with rand < e
ae to the eigen vector X, ‘Then we make
becomes nearer Or nity to avoid the factor K,,
gest root
lution to possible
8 gives the firrt
evaluate
the solt
which is a8 near tl
mae after normalisation.
as 1% aie eigen vector. Similarly
We repeat this process ti
and apremgtege valor and X, the corresponding
becomes neg!
ae {for finding the dominant eigen valve of a matrix is known as power
‘This process fo
‘method. Es
Now, we determine the largest eigen vector ofl) 5
34
= he
1
Let the initial eigen vector be |
_ fs 4]1)_[5]-5) 2
mS of pl (tc
0, the frst approximation tothe eigen value is 6 and the corresponding vector
| (3
ox [f Sfoal-te)-*4oa
= st[, 4]
[oad -[i3]-#24]
b= sseae,=[, 34]
B
0.248
5 15.99)
(i ale Bele 1°20 Ba
B
a, = 5.99andx,=| 1
0.248
LP. University-{B Tech}-Akash Books Beaty
mo [T SJosu-[its)-*%f 02
Hence the largest eigenvalue is 5.99 and the corresponding eigen vector is [ a
ne
jus linear
ber of
‘Ans. Guasé
algebraic equation. This method produce the exact solution after a finite num!
steps
In this method, the unknowns are
to an upper triangular system for which the unknowns are found by bac
vely and the system is reduced
i« substitution.
For this method, produces is
1. Write down the equation in matrix form AX = B.
2, Write argument matrix
3. Convert the matrix A into an upper triangular form by using only row operations.
Find unknowns by back substitution.
mination, any one of the pivot elements ay, 8 --» My, vanishes
or become very small compared to other elements in that row, then we interchange the
{ row (called the pivot now) with any other row below it, preferably with the row having
greatest element in the #® column.
is performed in (n ~ 1) steps in case of n unknowns. It is possible to
count the total number of addition, subtraction, multiplications and divisions called
‘as operation count of the method. For Guass elimination method operation count for n
system is n(n? + 3n ~ 1/3).
r large n it is approx. n°/3,
Q.51. Find the natural cubic spline to fit the data.
=| me [ase ed
yi | 10m mame [Sons ia)
‘Ans. Since the points are equispaced with h = 1 and n = 3 we obtain.
Sept
Mi. 4 4M, 4M) = 2.1 2y 49)
12
M,,#4M, +My = 69,.~29,+ Iq Jet = 12
M,+4M, +M, = 6(y,~2y, + 2y,) = 6-2) =—12
and M,+4M,+M, = 6%,-2y, +9) =6
Since M, = 0 and M, =0
= 4M, +M, = -1andM, + 4M,=6
On solving, we get
2 6
M, = Bou, -3:
soon ‘Third Semester,
vw
M, = 300-5" 24
ie,
‘Thus the cubic splines T°
6 gbyax?-2x), «1x52
fix) = | x2-78x7+192-3, 26x53
4 cg? +12x 472460), 35x54
10
Q.52. Solve the system
oxedyez= 3
Bx+2y-22 = -2
x-y+n= 6
by using Gauss Elimination method.
Ans. mivigs2 = 8
Bx+2y-22 = -2
x-yte= 6
In Matrix Form:
-
t
sow F
g2
‘ BTech)-Akash Books 20ni-43
artes x= 2y=-1en8
Q.53. Find the largest eigen value of the matrix, using P: ‘thod.
‘ower me
[5 044-20 ser, Computational Methods
: versity-B.T
5 0 yh 5.95 1 oe :
Bees 0 Fl tal lee sy climinate 2m 9) and (10) pera 23
0 os os =
are . = snhy ates I~ 550 nd [10)+ 2.02]
5 oD 1 5.95, a a ae
e 1 sls le 2x, lowing set of equations using Crout’s method
a " :
saan e 21 Mt TX + 2x, + x, Bx, ox, + Ox,
: = .
ro negligible. sna 2 ilxele eile
ia aes eae
ce between 5.95 and 6.96 a!
Since the differen
FHanen the lrgos eigen value of muisix A 5.96
84, Solve the equation using Gav Bee agthod x39 +5515 = G at
gy +z = 20, S-¥ + 82 = 10.
‘Ans. Given equations are ae
ox -2y +52 = 13 ve aaete
ax+Sy+4z = 20 pees
gx-y+8z = 10 : aa
Dividing (1) by 2, we get voles
fe oes awa
iy “ eee
: e fan ta
mo eliminate x rom (2) and (8) operate [(2)~ 214) and (8) ~ 341 12 ilies lee fav
> wee 13 11 2 ree ne fattis * laatay
Bava) 9: ©) ef : Latha + bya lay tys + battgy +h,
by-2=7 eaaeen teen :
4 us due 4
oD 2 2
by = Paty Uy =e
n= a
es ly = Anky Uy = 1-1xd—a3
272
) = 218)] eee
3
ines -
ete 7 = seteus
ere 7 ae
Soar ao) agit Uae
os 2 22°33
na aa) 20no)
Dividing (1) by eee
” 70 So
e oo
a2) i
eae
é 22
Talontes
3
oo1
aE EGE oe erga er emaSemester Computational Methods
‘hird
4-202 £
ax=B,LU x=B,UX=
w=-B
20 Oly) [7
sy 12 of] * [8
5 jee
aa
eae 3
ees
yet 28 2 eS
ae 2 Seno
vysguerg’ mosey 8
35
Ss vel3
5
ux=V
orl
2 2h.) [35
= 01 2fx} =| 8
fo o 1% *
eee
eS nttucjm = 95
1
ntim = 3
= 4-3
From eqn. (2) and (3), wehave x=2 = x,=1
x=1%22,%,=3
Q.56. Solve 6x + I5y + 552 = 76, 15x + 55y + 2252 = 295, 55x + 225y + 9792 =
1259 using Cholesky’s decomposition method.
‘Ans. We have
6x + loy + 652 = 76
Lox + 55y +2252 = 295
55x + 225y +9792 = 1259
Let AX =B
[6 16 65) fs
eee os) 241°],
[55 225 979) [2]
]
[76]
B =| 295 |
[1259
(
(3)
ye Jay, = V6 = 2.4495
Now,
LP. University-[B.Tech|-Akash Books
2021-47
225 - (24.4537 x6.1237) _ 99 9165
4.1833
bay = aga - Bi Ue
Now, bing
fn 0
1 be bs
24495 0 0
6.1237 4.18330
22.4537 20.9165 6.1101
(2.4495 0 oO
LxL" = | 61237 4.1833 (0
22.4537 20.9165 6.1101,
2.4495 6.1237 22.4637
x| 0 4.1833 20.9165
° o 6.1101
55 225 979.
6 15 55
= [15 55 225
Now, AX = B and A= LL"
Lux = BLP. University-[B.Tech|-Akash Books 2021-49
rind she cubic splines and evaluate (1.5) and y(Q).
1n=3
“
= A
yasty, + 41888%: = 25
een a
asa, 0sTsss, EHO = PE
By back substitution
Frm)
2)=18
Eq (6) gives
6.1237(91.0268) + 4.18835, = 295
| = yy = 250988
Eq. @ gives
22.459731.0260) + 209165125 0998) + 6.1101y, = 125°
= yy = 6101
Now, LX=Y
‘ 2.4495 6.1237
4.1583
| 0
= 24495x + 61 4 ease
a.rssay +
7 @
enor = 61101 4
Again by back substitution Eq (7) gives g Pye
Ba oat For =3in(,4I
saves
ae fix) = Zieae? + 24x? - 76x +80)
= ye
By (7, we have onde
2-4496x + 61297 + 22.4597
T+ 22.4597 = 31.0269
Also, y(@) = 44 trom both the splines of interval 2, 3 and [3, 41.
xed
‘Thus, x= 1,y=1,2=1
Q.57. The
following values of x and y areLP. University-(B
ee eee 2021-51
s 03
= 14S [1+(0.3+1.4036)) = 1.4055
that y(0) =
ay - 0giver 1
(0.2)
ee (2014) = + [feo yan
1 9)+ fa
ye ete” 2 Yo) im 9i°)]
3 2 Oe? “ae
y = 47% a4y=4 2 1.4056)] = 1.4058
eae + (‘) = h
series . HP = yor Zlflears0) + fe
or’
a a som) ype a
ys) = yor (2-%0)*" 26 = 1-23f1+003+1.4058)
z a
yor = 19844 as
ye) = eee At x, = 0.3,y, = 1.4058
é a @.60 Use Runge-Kutta method 4th dy
2 144x0242x 002? of 4th order to solve $2 = 1+ 9%, (0) =01
ee : nd ¥(0.6) in 3 StePS as ys vl
= 188 4
i & = = 19
«q.50 Apply modified Ealers method to Sad (0.3) give that ee mxeny Ans. Z y
i)
% = 0,y,=0,h= 02
‘Ans. Let se =i0.3,519=03
for x, = 03 PEN fica
Pee hy = hy Gy ¥_)=0.2%1= 02
1
Now Jothe flay ¥,)= 1408 = 18 me afeardined)
03418216
fd : A 0+0.2
YW,” = yotslfao¥0)*. (x, OP (0 : )
ary xo Yo) * f " :
= 0.2£(0.1,0.1)
= 0.2 (1 + 0.1%) = 0.202
4 +t)
a, = Mtaehoo¥
02 5, 0.202
oar (or50% 2 )
= 0.2f10.1, 0.101)
= 0.2(1 + 0.10%) = 0.202LP. University-(B Tech|-Akash B
= 0.2% 11785 = 0.2357
hy = riser fane ks)
2021-53
ozs (oa 92 04nan 92851)
= 0.21(0.5, 0.54045)
= 0.2584
h
basic i{n+hone4)
= 0.2105, 05516)
= 0.2608
b= pete, 9) 2 0.2% 208
hy) hy = fl, +h, y+)
h
he? nflnry 3)
= 0.2 §10.6, 0.6834) = 0.2904
02 » 9026+ 1
y +—— 0.2026 ig eee .
« o2(00% a
x, = 06
AL
= 0A226 + 0.26125
= 06836
d Kuler’s method, find y(0.2) and y(0-A) corres 2
for x,
y', = yet he Gy =1 4012,
At
= 0+ Us 30)* £3
14 921+ .2-0.2)) 1-216
2
= 1 Gn 0S i”
* 02 11TH = 0.2367LP. University-(p, ‘Tech|~Akash Books
2021-65
Me™ Yet
Yet MGry,)= 1+ 0,00), } 108
y (0.02) = 1.02 Sg,
Y= ¥thlay)
= 1.02+0.021
%tD
0.27)
= 22 +c.2176-0 » = gape
2 - 104 = 1.0392
= 42177
y (0.04) = 1.00 392
emer h To ‘again Vy = ¥,thfayy,)
Algood . 1oso2-0,02{ L0882=004)
gp the 1.0392+0.04)
4
= 1.4524 = 3 0.9992
402 (1.217- 0.2") = 145 1.0392+0,02| ————
aa | leah
2 = 9 +Riflan 0 fGe” | = 10577
= 177+ (1.4624-0.4)) | y (0.06) = 1.0577
03 Apply the fourth order ILK method to solve Y teysyOul
= | rs yO
“ )+ flay PI) qeking h = 0.1 and determine approximation to y(0.1) and y(0.2) correct to 4
z ‘ decimal places. ay
= 77+ (1.4634-0.4)] ‘Ans. Here fixy) = x+y',x,=0,y)=1,h=001
F 4 Now h, = hf yy.) =0.1(0' + 14) =0.1
pe It glflars0)+ Fa % ) . :
3 he {z.+hy,r8t)=03 (0.05,1.05)
= ars 2a 177+ (1.46509-0.4)| greg yon
= 1.4652 = 0.11(0.05)? +(1.05)?] = 0.1105
‘Thus at es fe
a x, = 049, a is w(erhoes
Q.62 Solve the differential equation ee by Euler’s method with the
imitial . = a 7] = 0.1116
condition y(o) = 1 for x = 0.06 taking interval of differencing h = 0.02 0.1(0.05)* + (1.0553) 1 1116
(2018) hy = hf la, + hy y+)
Su ® - puz,y) 2% = 0.1£(0.1, 1.1116) = 0-1 (0.12 + (1.1116)
es ae }
= 0.1246
*, = Oy,=Lh=0.02LP.
University{B ‘Tech}-Akash Books
i wai-37
s
Methods Y = %+ Ife, ide
© 1s fix-tdewt. 2,
1246) ;
n
yams
To find Lue
01
"
s a\* I
|
i Si ah
oat
eoiaal : Q.65 Use Das or's series method to solve the equation & =-sy 910) at
ee Oh
Ans. Let fx,y
: . ssa Here
that yl
Q.S1 Use Picard method w approximate y when » = 02
saiicaeat ®t ven
© . 1-7-9
Ane 2 j
| — Pao a
By Pears method
sLP. University-{B Tech]-Akash Books 2021-59
bs ofaehovel
= 0.1F(0.15, 1.1598) = 0.1144
Peake a
hy = Atl +4, y+%
flat genta)
= 0.10.15, 1.1621) = 0.1145
A, = hflx +h,y, +h)
= 0.1 (0.2, 1.2194) = 0.1191
Ascot on ort 02... 1
pies 62 k= 2h, +2h, +2, +h,)
x 2 5 it Bh + 2h, + hy
= 0.9948 (ApPrOX)- a
Seder order msetoed t9 S0t Yun TUNES = 2 (010.6 + 20.1144 + 2% 0.146 + 0.1190
Kul
Co es ay erg YOr* 2018) = 0.1144
: roblem » 5 =
for the initial value P? ae At x, = 02, y,=11049+ 0.1144
dy 2 gry =f) = 1.2193,
aie ate oy,2 b=? ie
heey) Q.67 Using fourth order R - K method to solve 2 = ay+y*,x(0) = 1, Take
ae fern OMOFE = 04 interval h = 0.1. Compute y(0.1) and y(0.2). (2017)
=A ee ‘Ans. Here ftx, y) = xy + y*
h=0.1,x,=0,y,=1
h)-oar(S 1492) : :
ow, 2
h
wu(s0+5190* 7
1.05) = 0.1 x 1.0488 = 0.1049
>
"
)=0.10+1)=0.1
= 0.1 (0.05, )
K, = Re eee
hy ueorF nr) ¥ of aie ze
ae oe: 3.
: ons ca a ne
= 0.1 10.65, 1.0525) = 0.1 x 1.05 oap(or 92.1 +22) 0:1710.05.1.06)
= 0.105 = 0.1(0.05 x 1.05 + 1.052) = 0.1155
[eee
hy = hile, +h, p+ #) K, = ht (xy + "904 ==
2 2
0.10.1, 1.105) = 0.1098
01
aflo+ 21+
oap{o- 2a
oa
2
b= 1 (y+ 2h,+ 2h, +h)
6 = 0.1f (0.05, 1.0578) = 0.1172
= $ (0.1 + 0.10492 + 2 «0.105 + K, = hffx,+h,y,+K,)=0.1 10.1, 1.1172)
= 0.1049 ee
At x, =O, y,= 140.1049 = 1.1049 K= 2K, + 2K, + 2K, + K)
At m= 02
= 1 (01+2%0,1155 + 2 x 0.1172 + 0.1360)
hy = MG, 1 fO.1+ 1.1049 | §
= 0.10982021-61
(0 + log (0.2 + 2.0656)]
| = 21415
= Loss9+2*0 1582 + 2x 0.1610 ~ 0.1889
K = 0.1605 =
x, = 02 3
y,ey, 7K = 11169 + 0.1605 i
ye .
at ee y2= 21416
‘Ans. Let x, =0,¥,=2,b= Thus x 02 o4
for x, y 2.0656 2.1416
(x+y) es fay get
ae Q.69 Apply Range-Kutta method of fourth order, solve 77 = = with
= log (0 +2) = 0.3010 Pox
Now se yO) =Latx=02, 04. eo)
“% =2+0.2x 0.3010 = 2.0602
(2.2602) = 0.3541 Ans. fix,y) = 2%, x) = 07 = Lh = 02
yee “
1-0
= yee foyy) = 597)
- 10-8010 + 0.3541) = 2.0655 &‘Third Semester, Computational Methods
ky, = bf (y yo) = 0.2 x 1 = 0.2 LP. University
ky o2rlog 2021-09
kee (sabre +B) = 02F0+ 0.1403, (0
a? - 0.17)
= I) = 0.25
0.2/0.1.) = 020753,
= 0.1967 k,
x hy. 2 ( 0. bi
k, = i(x+4.00+4 o2f ek sae s
(1.0984? ~ 0.12) 2
= 1,1.0984) = 0.2) =POS4 — 0.1"
pai (1098+ 0.2) | x
= 0.1967
k=
k, = hf, +h,y, +k) =0.200+0.2,140,:
i 0.1891 + 20.1795 + 20.1705 + 0.1686)
1.1967? — 0,22
= 0.2/(0.2,1.1967) = 0.2| 21967 = 0.2")
latiser? +07)
= 0.1793,
At x, = 0.4, y, = 1.196 + 0.1793 = 1.3753
= 0.1891
Q.70. Using Range-Kutta
ethod of Order 4, find y for x= 0.1, 0.2, 0.3. Given
that:
+ hy + Dy + hey)
alm
ie
= Ho2+2x03867 + 20.1067 + 01400 Continue the station sf 01 eaae Maleate
= 0.1960
Atx, =0.2,y,=y, +k = 1+ 0.1960 = 1.196 E
¥) = (0.10.1) = 0.1
Now x, = 0.4, y, = 1.196, x, = 0.2, h = 0.2
1 1
Jn yp +k
aoa
1.1967 + 0.2
k, = hf (x,,y,)= 0.2 x 0.9456 = 0.1891
= (0.1) £11.05, 1.05) = 0.1185
an
‘oo 14)
(era 0.1891 Si 10577 = 0.172
= Milas doo +4) -o2/(02+ 01,1 196 + vce heiga ky <2) 051, LID = 02388 |
[1.2206 ke = Ne, + ey +25 +s)
= 0.2/(0.3,1.2906) 02| See |
Os ae:
1 “0.9949 + 0-19598)= 0.11687 .
= 0.1795 = Lox +02m
y,= yor k= L169Computational Methods
‘hird Semester 4
64-202)
ro find y(0-2) ee
Dee ee ey es) 0.1, 1260) = 0.1800
arenes een ese
es)
ne age 2)
= (0.100. 15, 1.1848) = 0.1681
1
ives)
a wfaedane ds)
(0.1) 0.15, 11959) = 0.1609
bit, +9, *15))= (0) 02, 1.2778) = 0.1055
ee De, + Bky + 2k +h) =O- 1605
é
Thus oa) = ¥,29¢k= 12738
Tosfind (0.3)
Here x, = 0.2, y, = 1.2778, h = 0.1
k= = (0.1) 80.2, 1.2773) = 0.1887
ee
neta
= (0.1) 0.25, 1.8885) = 0.2275
k, = hftx, +h, y, + k,) = (0.1) 0.3, 1.5048) - 0.2716
k= Ue tak, 42k; +k,)=0
Thus 03) = y,=y,+k= 1504
Now the starting values for the Milne’s method are:
oe p= 1.0000
oa = 11169
ep Y= 12773
ee ¥,= 1.6049
Using the predictor
4h
0° @h -f, +21)
LP. University-[B.Tech|-Akash Books 2021-65
= 12773+ 211.8869 + 4(2.7132) + 4.098)
f=
in vsing the corrector
. ae « [1.8869 + 4(2.7132) + 4.1159] = 1.8391
= 4.1182
musing the corrector
: Ys
y0.4)
Hence
Solve the elliptic
7.
cataith boundary, values or shown:
im
Ans.
500 1000 500
0 lc 0
5 Up | Us |amaOy
1000) 1000
A 8
Uy ean
2000 2000
Up | aU |e
1000 2 1000
°
o 500 1000 500 ios
Let u,, U,, U, ..., u, be the value of u at the interior mesh-points.
Since the boundary values
1 are symmetrical about AB
u, = U,u,=u,u, =u,
Also, the value of u beign symmetrical abou: CI
‘hus it is sufficient to find the values u,, U,, Uy U,
6000
= 211000 + 2000 + 1000 + 2000} == =1500
(0 +1500 + 1000 + 2000}= 714500] = 1125
{1000 +1125 +1500 +1125] = 1188Methods
Computational
sthird Semester
1g - 2000+ 1125+ 15001= 1438 LP. University-[B.Tech|~Akash Books
1
oes p
aval interior mesh PIS. We Will imp
values 4 = Lt1000-+ 1063-+ 500-+ 1818) = 969
Now, we have got the Toush £5
ee method (or SFPF). She
values by using Gauss-seldal ae = i +1000 +1201] = 1038
First Iteration: : aie)
cn = 24500+1000+ uf +2 u,® = 112000+1201+ 969 +982] = 1288
any 4
= 24500 + 1000+ 1438+1188) = 1032 aye = 21n268 -1918- 1038 +1063) -1176
4
4 uO , eo:
ues Stroo0 +o +99 sul) Fifth Iteration:
a
u,° = +11000+ 1038 + 500 +1288) = 957
14,000 + 1082+ 1500+ 1125] = 1164 A a 8 + 500+1: 9
4 1
es, 4, = 11957 ~-969+ 1000+ 1176) = 1026
yo = ful? + 2000+ uy” +05") 4
MeL eel
a v= 212000 +1176 +957 + 969] =1276
= Lszoge +2000 +1125 + 1500)=1414 4
4 1
: u,® = 2i1276 +1288 + 1026+ 1038] = 1157
are euP sul +00) 4
eee larly u,© = 951, u,= 1016, u,®= 1266, u,® = 1146
= Apes --1414~ 1188 ~ 1438] = 1301 uy?
4 ae
Second Iteration: 4
u.® = 1000 +116: +500+1414]= 1020 4”
used
4 2) = 1128
a? = 2,y020 = 10521000 -13011= 2088 wu uj! = 1001, u,"? = 1251, u,® = 1126
Thus there is negligible difference between the values obtained in the 11 and 12
1 = 212000 + 1301+ 1020 + 1032] = 1388 iterations,
4 = 1001, u, = 1251, u, = 1126
ee Arnage + 1414 +1088 +1164) = 1251 Q.72. Apply Adams-Bashforth Method, to find a solution to the differential
a -
‘Third Iteration: | equation gexta tx = 1.4 given y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548 and
| y3)= 1.979.
u,® = 1x00 + 1088 +500 +1338] = 982
ae aot Ans. Here h = 0.1 and fix, y)= x41 + y)
ee . %=Lyo=1
u,? = 11962+ 1020 +1000 + 1251] = 1063
4 fixyy)) = x+y) =2
a.1 Sy ans
8 = 712000 +1251 + 982+ 1020] =1313 nL) ice
fix, y,) = x1 +y,)= 2.702
pee 9
= 711313 +1338 +1063 +1088] = 1201 Ba 2s Yaceoae
4
Fourth Iteration: fixyy) = xf +y,)=3.669
— ll eanal Methods
1)
Use predictor
bh ye 37fley 91)~ 5942-72) *
pe yy e Peloton V0 y
02987 gat
0, 02-5:
é DA gna 37427
ype 1979+ 94!
9 x 3.669 + 55
+ 9flx,
Use corrector formula
= 7.004
702-5 3.669 +19
are all zero.
Final value at x= 1418
ues of the following
73. Evaluate the pivotal val
to one half of the period of vil
and up
ps0
> Us dge = 0 OF Ua
rations 1
given u(0, 0) = 05,
u(x, 0) = x45 -»)
a
‘Ans. 2 _ g2 20 is the equation of vibra
Hey uation of vib
vibration = 2
a
Here! = 5, 0°
16(u,,~2u, + u
YF
we got
Taking h =
T6k%u,. — 20, +
@
Uy) = 21-16k)u,, + 16k,
Choose
‘k, 80 that coefficient of u, = 0Computational Methods
70-2021 ‘Third Semester,
Puti=1,2,3,4in 6), we get
Uy = Var t Yor a2
Peon k eA ne
= U4, +%,1— M20
PS eee as sus r+ ods 20
uy + U2,17 Yao
Pesaran 2 = 18)= 10)
= UW tY,
Ugo = Usrt Yara Meo
=0+18-16=2
= Uy ot Ys,07 Yao
The table is as follows:
| =2 -10 -10 ai
elololelololo
| =16 -18 -12 -4