0% found this document useful (0 votes)
111 views21 pages

Advanced Vector Calculus Guide

1. The document discusses vector calculus concepts including vector differentiation, the gradient, divergence, curl, and Laplacian operators. 2. Formulas are provided for calculating the gradient of a scalar function, the divergence and curl of a vector function, and the Laplacian of a scalar function. 3. Examples are given of applying these operators to specific functions to find their gradient, divergence, curl, and Laplacian.

Uploaded by

Saquib
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
111 views21 pages

Advanced Vector Calculus Guide

1. The document discusses vector calculus concepts including vector differentiation, the gradient, divergence, curl, and Laplacian operators. 2. Formulas are provided for calculating the gradient of a scalar function, the divergence and curl of a vector function, and the Laplacian of a scalar function. 3. Examples are given of applying these operators to specific functions to find their gradient, divergence, curl, and Laplacian.

Uploaded by

Saquib
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

Vector Calculus

Vector Differentiation

dF d 2F dF d 2F
If F(t)=ti+t2j+t3k find dt , dt 2 , dt x dt 2

dF d 2F
dt =i+2tj+3t2k dt 2 =2j+6tk

dF d 2F i j k 6t 2i  6tj  2k
dt dt 2 1 2t 3t 2
x = 0 2 6t
=
Product formula
d ( F .G ) dG dF
 F.  G.
dt dt dt
d ( FxG ) dG dF
 Fx  xG
dt dt dt
Problem
d ( PxP)
 PxP
Show that dt
d ( PxP)
 PxP  PxP  PxP
dt

Problem of partial differentiation


e st i  (2 s  t ) j  t sin sk  2r  2r r r
x
If r= find s 2 , t 2 , s t

r  2r
 te st i  2 j  t cos sk  t 2e st i  t sin sk
s s 2

r  2r
 se st i  j  sin sk  s 2e st i
t t 2

r r i j k (2 sin s  t cos s )i  j ( se st t cos s  e st sin s )  k (te st  2 se st )


x
s t te st 2 t cos s
= se
st
 1 sin s =
Problem
f f f
i  j k
Find a unit vector in the direction of x y z at (1, 0, 2)
where f ( x, y, z )  4( x 2  y 2 )  z 2
f f f
 8x  8y  2 z
x y z
f f f
i  j k
x y z =8xi+8yj-2zk=8i-4k
f f f 8i  4k 2i  k
i  j k
Unit vector along x y z is 80 = 5

Gradient, Divergence and Curl


   
i  j k
The vector operator (del or nabla) is defined by x y z
Definitions:
1. Gradient- If    ( x, y, z ) is scalar point function then gradient
of  written as grad  or   is defined as
   
   i  j  k  
 x y z 
  
i  j k
x y z (vector quantity)

2. Divergence- If v= v (x,y,z)=v1(x,y,z)i+v2(x,y,z)j+v3(x,y,z)k is
a vector point function then divergence of v written as divv or
. v is defined as
.    
  i  j  k 
v  x y z  .( v1i+v2j+v3k)
v1 v2 v3 .  
 
= x y z (scalar quantity) v v.

3. Curl- If v= v (x,y,z)=v1(x,y,z)i+v2(x,y,z)j+v3(x,y,z)k is a
vector point function then curl of v written as curlv or  x v is
defined as
    
  i  j  k 
xv  x y z  x( v1i+v2j+v3k)

2
i j k  v v   v v   v v 
i 3  2   j  1  3   k  2  1 
  
 y z   z x   x y 
x y z
= v1 v2 v3 = (vector quantity)

Problem
1. If f ( x, y, z ) =3x2y-y3z2 find f at the point P(1,-2,-1)
f  (3x y  y z )
2 3 2
 (3x y  y z )
2
 (3x 2 y  y 3 z 2 )
3 2
i j k
= x y z
=6xyi+(3x2-3y2z2)+2y3zk
f (1,-2,-1) =-12i-9j-16k

1 r  x2  y 2  z 2 

2. Ex. If r and find
 1  1  1  1
 i   j  k  
= r = x  r  y  r  z  r 
  1  r   1  r   1  r r 2  x 2  y 2  z 2 2r r  2 x
i    j   k  
= r  r  x r  r  y r  r  z , x
1 1 1 r x r y r z
 3 xi  3 yj  3 zk   
= r r r x r y r z r
1 1
 3 ( xi  yj  zk )  3
= r = r r

3. Ex. If A=x2z2i-2y2z2j+xy2zk find . A at P(1,-1,1)


. A1 A2 A3
 
A= x y z
  
= x (x2z2)+ y (-2y2z2)+ z (xy2z)
=2xz2-4yz2+xy2
. A(1,-1,1) =2+4+1=7

4. Ex. If A=x2z2i-2y2z2j+xy2zk find  xA at P(1,-1,1)


 i j k
  
x y z
xA= x2 z 2  2 y2z2 xy 2 z

3
  ( xy 2 z )  (2 y 2 z 2 )    ( x 2 z 2 )  ( xy 2 z )    (2 y 2 z 2 )  ( x 2 z 2 ) 
i    j     k  
=  y z   z x   x y 
=(2xyz+4yz2)i+(y2z-2x2z)j
hence at P,  xA=2i+j

1. Prove that  .(  A) = (  ).A+  (  .A)


hence find  .( r 3 r)
Let A=A1i+A2j+A3k
 .(  A)=  .(  A1i+  A2j+  A3k)
     
= x ( A1)+ y ( A2)+ z ( A3)
 A1  A  A 
 2  3
= x +A1 x + y +A2 y + z +A3 z
    A1 A A
 2  3
= x A1+ y A2+ z A3+ x + y + z
      A1 A2 A3
 i  j k  z
=  x y z  . (A1i+A2j+A3k)+ ( x + y + )
=(  ).A+  (  .A)
 .( r 3 r) = ( r 3 ).r+ r 3 (  .r)
.    
  i  j  k 
r  x y z  .(xi+yj+zk)
x y z
 
= x y z =3
 3  3  3
r 3
i  
r  j  
r k r  
= x y z
 3 r  3 r  3 r r
i  
r j r  
k r  
r 2  x2  y 2  z 2 2r  2x
= r x r y r z , x
x y z r x r y r z
3r 2 i  3r 2 j  3r 2 k   
= r r r x r y r z r
= 3r ( xi  yj  zk )
= 3r r
 .( r 3 r) =(3rr).r+ r 3 (3)= 6 r 3

 2  2  2  2
 
= x 2 y 2 z 2

4
 2                  
2 2 2
 i  j  k . i j k   2 2
= . =  x y z   x y z  = x y z
2

2  2 2 2
 
= x 2 y 2 z 2 Laplacian

2. Prove that  x(  A) =  (  xA)+  xA


Let A=A1i+A2j+A3k

 x(  A) =  x(  A1i+  A2j+  A3k)


i j k
  
x y z
= A1 A 2 A 3
  (A 3 )  (A 2 )    ( A1 )  (A 3 )    (A 2 )  ( A1 ) 
i    j    k  
=  y z   z x   x y 
=
 A 3  A 2  
i   A3    A 2 
 y y z z 
 A  A 3    A 2  A  
 j 1  A1    A 3   k    A2   1  A1 
 z z x x   x x y y 
 A A   A A   A A  
  3  2 i   1  3  j   2  1 k 
=  y z   z x   x y  
+
            
 A3  A 2 i   A1  A 3  j   A2  A k 
 y z   z x   x y  
  i j k
  
x y z
= ( xA)+ A1 A 2 A3
=  (  xA)+  xA

Alternative method
   
  i
x
j
y
k
z
i
= x
 
=  i x

5
A  A1i  A2 j  A3k
A A A
. A  1  2  3
x y z
A  A A A  A
i.  i.i 1  j 2  k 3   1
x  x x x  x
A  A A A  A
j.  j.i 1  j 2  k 3   2
y  y y y  y
A A3
k. 
z z
A A A A
. A  i.  j.  k.   i.
x y z x

. 
=  x
i.

v=v1i+v2j+v3k
    
  i  j  k 
xv  x y z  x( v1i+v2j+v3k)
i j k  v v   v v   v v 
i 3  2   j  1  3   k  2  1 
  
 y z   z x   x y 
x y z
= v1 v2 v3 =

v  v v
iX  i X (v1i + v 2 j + v3k)  k 2  j 3
x x x x
v  v v
jX  j X (v1i + v 2 j + v3k)  k 1  i 3
y y y y
v  v v
kX  k X (v1i + v 2 j + v3k)  j 1  i 2
z z z z
Xv v v v v
iX
= x
 jX
y
kX
z =
 i X x
X 
=  iX
x

Prove that
3. . (FxG) = G.curlF-F.curlG

6
. 
 i. x ( FXG )  i. Fx XG  FX Gx 
(FxG) = =  
 F   G 
 i. XG   i. FX
=  x x


 F   G 
=
 G. i X    F .
x   x
X i 

F G
G . i X  F . i X
= x x
=G.curlF-F.curlG

4. X (FxG)=FdivG-GdivF+(G.  )F-(F.  )G

5.  (F.G)=FxcurlG+GxcurlF+(F.  )G+(G.  )F

Vector analysis by Raisinghania

Ex. 1. Prove that  x  =0 curlgrad  =0


    2  2    2  2    2  2 
  i     j    k
i j k  yz z y   z x x z   xy y x 
  
x y z
  
x = x y z = =0
Remarks: If  xv=0 then v must be 

Ex. 2. Prove that  . (  xA)=0 divcurlA=0


    
  i  j  k 
xA  x y z  x( A1i+A2j+A3k)
i j k  A A   A A   A A 
i 3  2   j  1  3   k  2  1 
    y z   z x   x y 
x y z
= A1 A2 A3 = (vector quantity)

7
         A A  A A  A A 
 i  j  k  i 3  2   j  1  3   k  2  1 
. ( xA)=  x y z  .   y z   z x   x y 
  2 A3  2 A2    2 A1  2 A3    2 A2  2 A1 
          
= x y xz   yz yx   z x z y 
=0
Remarks: If  .v =0 then v must be  xA

Definition:
Level surface: The family of surfaces f(x,y,z)=k is called iso-
surface or level surface. For different values of c the surface
such as x 2  y 2  z 2  c 2 represents a family of concentric spheres
with center at the origin and varying radius c and they constitute
a level surface. The surfaces (i) of constant temperature known
as isothermal surface (ii) of constant gravitational or electric
potential known as equipotential surface are examples of level
surfaces.


x y z c
2 2 2 2
o

x2  y2  z 2  c2 o

Level curve: In two dimensions the family of curves f(x,y)=k is


called level curve. For different values of c the curve such as
x 2  y 2  c 2 represents a family of concentric circles with centre at
the origin and varying radius c and they constitute a level curve.
The curve of constant temperature known as isothermal curve is
an example of level curve.

8
 normal
x2  y2  c2 o

Geometrical meaning of gradient of scalar 


Theorem
Prove that f is a vector perpendicular to the level surface
f ( x, y, z )  c where c is a constant.

Let r=xi+yj+zk be the position vector to any point P(x, y, z) on


the surface. Then dr=dxi+dyj+dzk lies in the tangent plane to
the surface at P.
f ( x, y , z )  c
df  0
f f f
dx  dy  dz  0
x y z
f f f
i  j k
( x y z ). (dxi+dyj+dzk)=0
f .dr =0
So that f is perpendicular to dr i.e. perpendicular to the tangent
plane to the surface at (x,y,z).
Hence f is a vector perpendicular to the surface f ( x, y, z )  c at
any point (x, y, z).

 ( x, y , z )  c
r
r+  r 
p
r

9
o

Formula
The unit normal to the surface f ( x, y , z )  c at the point
f
(x,y,z) is n= f
Problem
Find the unit normal to the surface x2y+2xz=4 at the point
(2,-2, 3).

  ( x 2 y  2 xz )  ( x 2 y  2 xz )  ( x 2 y  2 xz )
i j k
(x2y+2xz)= x y z
=(2xy+2z)i+x2j+2xk
=-2i+4j+4k
The unit normal to the surface is
f  2i  4 j  4k 1 2 2
 i j k
n= f = 36 = 3 3 3
Problem
Find the angle between the surfaces xy 2 z  3x  z 2 and
3 x  y  2 z  1 at (1, -2, 1)
2 2

Let f(x, y, z)= xy 2 z  3x  z 2


g(x, y, z)= 3x 2  y 2  2 z  1
 ( xy 2 z  3x  z 2 )  ( xy 2 z  3x  z 2 )  ( xy 2 z  3x  z 2 )  ( xy 2 z  3x  z 2 )
i j k
f= = x y z
=i(y2z-3)+j2xyz+k(xy2-2z)
=i-4j+2k
 g=6i+4j+2k
 f.  g= f . g cos 
 f .g (i  4 j  2k ).(6i  4 j  2k ) 6
cos = f g = 21 2 14 = 14
6
  cos 1
14
=============================================

10
Slope/gradient/rate of change in different dimensions in
differential caculus
One dimensional body T=f(x)
yor T

T=x2+2
o x
T=x +2
2

x
o
A piece of heated wire
Geometrically y or T = f(x) is the equation of a curve
dy

dx rate of change of y along x-axis/directional derivative of y
along x-axis/ gradient of y with respect to x,
dy
dx =Slope of the tangent at P to the curve y = f(x)
dT
Ex. T=f(x), dx

Two dimensional body T=f(x,y) y

11
y

(x,y)
(2,1) x
o
o x

T=x2+y2
z or T A sheet of heated tin

Geometrically z = f(x,y) is the equation of a surface


z z
x , y are
the rate of changes of z along x and y-axes/directional
derivative of z along x and y-axes/ gradient of z with respect to
x and y,

T T
Ex. T=f(x,y) x , y

Three dimensional body T=f(x,y,z)


u u u
u=f(x,y,z), (solid) x , y
and are the rate of changes along
z
x, y and z-axes/directional derivative along x, y and z-axes
T T T
Ex. T=f(x,y,z) , and
x y z
What is the relation between Gradient of a scalar in vector
calculus and Slope/gradient/rate of change in differential
calculus
One dimension
    (x) y  f (x) T  T (x)
  i
x

12
 
 .i 
x = Slope/gradient/rate of change of with respect to x
dy dT
or
in differential caculus = dx dx
Two dimension
     ( x, y ) z  f ( x, y ) T  T ( x, y )
  i  j
x y , ,
 
 .i 
x = Slope/gradient/rate of change of with respect to x
z T
or
in differential caculus= x x
 
 . j 
y = Slope/gradient/rate of change of with respect to y
z T
or
in differential caculus = y y

Three dimension
      ( x, y , z ) u  f ( x, y , z ) T  T ( x, y , z )
  i  j k
x y z
 
 .i 
x = Slope/gradient/rate of change of with respect to x
u T
or
in differential caculus = x x
 
 . j 
y = Slope/gradient/rate of change of with respect to y
u T
or
in differential caculus = y y
 
 .k 
z = Slope/gradient/rate of change of with respect to z
u T
or
in differential caculus = z z

Directional derivative
  
x , y , z are called directional derivative in vector calculus

 .i 
x

13
The directional derivative of  along x-direction is obtained by
taking dot product of  and unit vector along x-direction

The directional derivative of  along any direction is


obtained by taking dot product of  and unit vector along
that direction.
The directional derivative/rate of change of  along any vector
a is  .â where â is unit vector along a.

Maximum rate of change


Geometrical meaning of 
 .aˆ   1cos   cos where â is unit vector along a
This rate of change is maximum when   0 .
The rate of change is maximum along the normal to the surface
 ( x, y, z )  c and it is equal to 
  2 2 2
        
       
 x   y   z 

a
normal
tangent


x2  y2  c2 o

14
tangent normal

x2  y2  z 2  c2 o

Problem
Find the directional derivative of  =x2yz+4xz2 at P(1,-2,1) in
the direction of the vector a=2i-j-k. Also find the maximum
rate of change of  .
 =x2yz+4xz2
  
  i j k
x y z
 ( x 2 yz  4 xz 2 )  ( x 2 yz  4 xz 2 )  ( x 2 yz  4 xz 2 )
i j k
= x y z
= i(2xyz+4z2)+j(x2z)+k(x2y+8xz)
=j+6k
a 2i  j  k
 aˆ 
The unit vector along a is a 6
 .â  2i  j  k 7
the directional derivative is ( j+6k). 6 = 6
The maximum rate of change of  is
 2 2 2
02  12  62 37
        
       
=  x   y   z  = =

Physical Interpretation of Curl of vector function


  1 
Ex If v= xr, Prove that where = 2 curlv
is a constant
vector.
Let  = 1 i+ 2 j+ 3 k be the angular velocity and r=xi+yj+zk

15
 i j k 2 z  1 y 3 x  1 z 1 y  2 x
1 2 3
xr= x y z =( )i+( )j+( )k
  i j k
  
x y z
curlv= x( xr) = 2 z  1 y 3 x  1 z 1 y  2 x
=2( 1 i+ 2 j+ 3 k)
=2 
 1
= 2 curlv
Thus physically interpreted, curl of linear velocity of any
particle is twice the angular velocity of the particle.
Curl has the effect of rotation curlA=rotA

Condition of irrotatioal motion


curlv= 2  , If curlv=0 the motion is irrotational
Also we know that  x  =0,
If the motion is irrotational i. e. curlv=0 then v must be  ,
 is called scalar potential function.
Ex. Determine the constant a, b, c so that vector
v=(-4x-3y+az)i+(bx+3y+5z)j+(4x+cy+3z)k is irrotational.
Find a scalar function  so that v=  .

v is irrotational if  xv=0
 i j k
  
x y z
xv= - 4x - 3y + az bx + 3y + 5z 4x + cy + 3z

16
=(c-5)i-(4-a)j+(b+3)k =0 =0i+0j+0k

a=4, b=-3, c=5

As  xv=0, v must be 
v= 
  
i j k
(-4x-3y+4z)i+(-3x+3y+5z)j+(4x+5y+3z)k = x y z

x = -4x-3y+4z ……. (1)

y = -3x+3y+5z ……….(2)

z =4x+5y+3z ………….(3)
Integrating (1) with respect to x partially
 =-2x2-3xy+4xz+f(y,z) …..(4)
 f ( y, z )
y =-3x+ y ……….(5)
 f ( y, z )
z = 4x+ z …………(6)
f ( y, z )
Comparing (2) and (5) y =3y+5z ….. (7)
f ( y, z )
Comparing (3) and (6) z =5y+3z ….. (8)
3
Integrating (7) with respect to y, f(y, z)= 2 y +5zy+g(z)
2

f ( y, z )
 5 y  g ( z )
z ….. (9)
g ( z )  3z 3 2
g ( z)  z c
Comparing (8) and (9) 2
3 3
therefore f(y, z)= 2 y +5yz+ 2 z2+c
2

 3 3
hence =-2x -3xy+4xz+ 2 y +5yz+ 2 z2+c
2 2

Alternative method
v= 
  
i j k
(-4x-3y+4z)i+(-3x+3y+5z)j+(4x+5y+3z)k = x y z

17

x = -4x-3y+4z ……. (1)

y = -3x+3y+5z ……….(2)

z =4x+5y+3z ………….(3)
 =-2x2-3xy+4xz+f(y,z)
 3
= -3xy+ 2 y2+5yz+g(z,x)
 3
= 4xz + 5yz + 2 z2 +h(x,y)

 =-2x2-3xy+4xz+ + + +f(y,z)
 3
= -3xy+ + 2y
2
+ 5yz + +g(z,x)
 3
= + +4xz + + 5yz + 2z
2
+h(x,y)
3 3
f(y,z)= 2 y +5yz+ 2 z2
2

3
g(z,x)= -2x +4xz+ 2 z2
2

3
h(x,y)= -2x -3xy+ 2 y2
2

 3 3
hence =-2x -3xy+4xz+ 2 y +5yz+ 2 z2+c
2 2

Physical interpretation of divergence of the vector function


Consider fluid motion in space. Let P(x, y, z) be any point of
fluid at time t. Let v=ui+vj+wk be the fluid velocity at P.
Construct a small rectangular box with edges of length x, y, z
parallel to the respective coordinate axes, having P at one of the
angular points as shown in the figure.

Q( x, y  y, z )
y
Q
v
R R
u y u x
w

18
P( x  x, y, z )
zP( x, y, z )
S ( x, , y, z  z ) S 
x
o

z
Fig18.

Then we have volume of the fluid that passes through the face
PQRS = ( y z )u per unit time
= f ( x, y, z ) per unit time (say)
Hence the fluid that passes out through the opposite face PQRS 
= f ( x  x, y, z ) per unit time
f ( x, y, z )
f ( x, y, z )  x
= x + terms containing higher powers
of x [Taylore’s theorem]
f (x) h 2
f ( x)
f(x+h)=f(x)+h + 2 +………..
The net outward flow from the rectangular box along x-axis per
f ( x, y, z )
f ( x, y, z )  x  f ( x, y , z )
unit time= x
f ( x, y, z )  u
x x uy z xy z
= x = x = x
Similarly the net outward flow from the rectangular box along
u u
xy z xy z
y-axis and z-axis per unit time will be y and z
respectively.
Hence total net outward flow per unit time (rate of flow)
through the rectangular box of volume xy z is
 u v w 
   xy z
 x y z 

The total rate of outward flow of the fluid through a unit volume

19
 u v w  u v w .
   xy z  
 x y z  x y z
= xy z = = v

Thus physically interpreted divv represents the net outward


flow of the fluid per unit volume per unit time.

Divergence=Net outward flow

Remark: The name divergence originated in the above


mentioned interpretation of divv

Equation of continuity of an incompressible fluid:


If the fluid is incompressible then fluid inflow =fluid outflow
and there will be no net outward flow of fluid. Hence divv=0
This is known as condition of incompressibility of fluid or
equation of continuity of incompressible fluid.

Solenoidal force field


Solen (Greek word) -pipe
Solenoid-shape of a pipe, strong magnet

20
Figure of solenoid

In a solenoid the magnetic force F is uniform, So divF=0


If divF=0 then F is a solenoidal
Or, if F is solenoidal then . F =0

Problem
Ex. Determine the constant a so that vector
F =(-4x-6y+3z)i+(-2x+y-5z)j+(5x+6y+az)k is solenoidal.

F is solenoidal if . F=0
.   
F= x (-4x-6y+3z)+ y (-2x+y-5z)+ z (5x+6y+az)=0
Or, -4+1-a=0 a=-3

21

You might also like