0% found this document useful (0 votes)
39 views21 pages

Structuri Algebrice 1

Structuri algebrice (I) discusses algebraic structures like monoids and groups. Key points: (1) A monoid is a set with an associative binary operation and an identity element. A group is a monoid where every element has an inverse. (2) Algebraic structures can be induced on other sets via isomorphisms. If f is an isomorphism from (G,+) to (H,*), then (H,*) inherits the algebraic structure of (G,+). (3) Properties are preserved under isomorphisms. If f is an isomorphism of monoids, (H,*) is also a monoid. If f is an isomorphism

Uploaded by

Lobont Gheorghe
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views21 pages

Structuri Algebrice 1

Structuri algebrice (I) discusses algebraic structures like monoids and groups. Key points: (1) A monoid is a set with an associative binary operation and an identity element. A group is a monoid where every element has an inverse. (2) Algebraic structures can be induced on other sets via isomorphisms. If f is an isomorphism from (G,+) to (H,*), then (H,*) inherits the algebraic structure of (G,+). (3) Properties are preserved under isomorphisms. If f is an isomorphism of monoids, (H,*) is also a monoid. If f is an isomorphism

Uploaded by

Lobont Gheorghe
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

Lectie de pregative

STRUCTURI ALGE BRICE (II

18.83.2023
Structuri algebrice (I) (Teste gril 2022]
1,0) Structura algolonica, adica7F.AXA -> A
1), ACC, yGA
↳ lege
xOy =
FPC,
1

compositie" saw,operate
de binara

amoscute: Semigeup


alabrice all
I structuri
I multimilar
a) Eupuri(Monoizil
incapatantf
imfir
=>

aparte stabila
-
asociativilale
- -

-
-

(4,0) element neutru:


[7 e e 6a.4.x0 10x
=
=

x, Axle I
6

7x6(simetrical (ix)=
[xET.
6
a. cox=<ox= e
Motati: e=elemental neutro -
to
166
-elemental
>

multiplicatio:(6,)
M:

- simetrical invers-a
-

to f
aditio: (6,t)-elementaln:
- simetrical opus---x
=

b) Inels (I,+,) 1,+) commatio (x+y y x

I
+

grup
=

I
Ax,y
(,) monoid
-
11

distributivitate, "fatads, t
1,+) gep commutatio (4x 0)
=

apai (K,+,) (*) gap (A* A(03)


=

distributivitate ----
commtative
Exemple:a) (2,+), (R,1) gepar

(R*,);(*,); (,;) -l-

1)1,1), 0), soy By->gepcomutatio


=

Itebari: 1) Este (x*,) grup?

2) Dar
([-1,1],)?
b) G- :) ,
-1
; fmmlk ) ,
-1
:) ; 4m ,
-1 :)
121 }
*

ME IN

c) (Q :) ;
-1 +
:) ; ¢ ;) ; ftp.t:) -1

(
, ,

p - memoir psim

>" carpal dasdordessturi


modulo p
"
2 Structuraindus pe o altamultime
I copiers de structura" (
H dongmultimi a., exista:
Fie G,
f: 6 + H o
fundie bigstia;
I do(6-H1, cardinale egale).

Fie (6,0) a structura algeloicadatat/monoid saw grup):


Decause
bigective
of
->
If ": H -
6 impersa luit
-Its necesar o
sa
aflam"
Atmni I! operatic binar "pe H 9.4.

1,x) devine a structura algebizaisomora(n (6,0)


ia
f:G -> H itomodism
ste -

(bigivatmarism)
f: (6,0) -> (H,x) morism

f(xog

, xx,y 6

(f) ofa) *te

Exess(daca stim (,*)):


x0y f"(f()*f(z),
=
x,y G
=
Proprietati. Fief:(6,0) -> (H,x) mostism (degreeinsande)
·
Daca (6,0) monoid, VIG)=(xEc/acstesimetrizabil ->
(VIG), oste grup,
·
Dacafste morism de monoiti->

f(2,0.00xn) f(x) 0.* f((n);


= +

Imparticulas: f(x) Af(x), =

Heh, ...., (m, ()EG.


er pie e di

·
Dacaf etoitomalism de monoizi-> f(f)=ei
f(V()) V (H)
=

Daca fets malism de grapes-> f(f)


f(xx))
· eH
=

f(x) =

im (6,) f(x) f(x) t,i(6,t) f(=x)


=
=
= = -

f(ul).
Exemple:
① Fie(R,+) gp si f:R t
R, f(x) ax
= b
+

atr*, bG R

feste bijectivecu f: i
ti, f'(n) (T.A.)
=

->

finduce per operatia,*"datade

f(f((n)of (r)) f/f() F(r))


1xx
=

f(* +
f(*23)
=

-
a.Mtb b
+
u 0
=
+ - b
=

Deci:
(R,+) IR,*), MAV u
= w
+
-
b

Pb : Sedan grupwils (R,+) $i (iR,*), x*y c y 1.


+
= +

Functia of: R i, f(x) ax+b etsizomodism


- =

ob'la (R,+) la dasa,i numai daca a, b =?


(R,x)
aatis:
acasic") F maisa"
de
grape
e
R
A modism f(x y)
=>
+

f(x) f(y),Ac,y
= +

a(x y) b
+ +

(ax b) (ay
=
+
x
b)
+
=

a(x + y) b
+ ax
=
b
+

ay b
+ +

1
+

ay) b axy) 2b
+
+
= +
1
+

->
b 26
=
1
+
= 7
-

b = 1 =>

Et1
Ibijectiva deci rspemsb==1.
: Conform discutiei 0=7 -
b 1
=

0ptSE f
#

a +

T. A: Pb8
② Fie 44*1=110,4;) gsnpnl dat .

Fie f 1-1 :
,
it → 10 a)
,
i fix ) =

1¥ .

"

(G) 01=(1-14,0) ? structure algebricé opiate


,,

TA : Ara-tatica-fstebised-ioei.si afbyti f- !
l" "

este guys comutativ


Him to : •
4-1 )
,
* on /
\ a- '
Am > 0
=µ1 ,

'


f- :(opt →
1- i. A film :# =
Iaxes. We

feesat
A 11) Ven

-
I "( 2) 1) se -

-
- -
8+ year
At 1

y
By 1
+

it 1

1
-
x -

y +
cy
I

isthe
re
x y xy
-
- +
Deci
(40) Eso)"bretit=ixy, x+y Afre).

Pb 773 775
-

Se
dagrpus (6,0),6 (- 1,1)
=

y
siccoy-
Seo: (a) elemental neutru ly=?

(b) E070000otp=?
C) Valmik a,b =? a.4. f:(G,0) (0,0)-),
->

flud-sa tie izomalism de grai


atie:
recomandat ca in astful as problems
-

↳exatie: Este
sa
imper aflats isomoismulai!
an

(C) Dim discutia(z) d sns => a 1,b 1


=
=

T. A:
L Clasic"din I morism
ifbijective
alac a
=>

1,b
=

1)
=

(0,0),0)
-

(a) Deci f(x) #,=


teiromalism (6,0) =

(f(f) (x)
f(x) 1
=

=>

e f() 0.
=

=
b) Notam 9 5070000 to
=

f(9) f(704000.00)
=
f(z).f(t).....7(5)
=

·
I...
-

6
nee
I
2p

=........
I

i
=> f(z)
=
11
=

g
=

f()==I
=
=>
=
=

F I

i.
8in(tre I 2018

⑬3 I
Admitere
2021
-
-
Pb,908: Pe D es dalegta de composities

2, z ziz-
=

ilE, +zz) -1+


i, E1,zz E K.

Se ar: (a) elemental neutru al legi, *"ests?


(b) Multime element eld
/
simetrizabile/inversabile)
all monoidulai(C,*),
() Daca =
t atenci

ste?
Eliteti) 0.
+
*(2+i)
di
2022 de

die.Se (C,*) monoid:


specifica

Stir (04)
a grup das
(C,) movoid.
& ele neute (a= 1

Observe ca

z1 izz 1 3
2,*zz zzz
-
-
+
-
=

zzz i) j(zz i) i
+
-

=
(t,- i)(z-i)
=>
i
+
=

sugneata
z,xzz i
(1 i)(z i) - s definim
-

-
- =

f:0 -> c

f(z) z
=
-

3, bijective
f(z)
z
=
an

+
inversa

12
T. Ae I
(Severifica

f(z,*zz) f(z)).f(zz) 7
= =

monoidal) mauridal i
(G,*) H, ·
f(d 1 4 7(1) =
(a) f(x) en ->
=

= =

->
=

let
of ste isomalism de
3
because monoite ->
(b)
f(x) f(x)
=

f(V(*) U(t,) si f"(V(ki) v12,*)


=
=

=>

f((Y) v1x,y)
=

Da
((((B)
f(0) = i (([7(a))
=

V1,1) aRih
= =

(2) Fie 5+
9= i; Calculam
(dti))
f(z) 4* =

If(d+i)
=

2022

2022
E..... E
= -

E
e
2022
=> 1 =>
E -
=
1 i ws
+
=
+ iSi =

->
q2022(23)674 1
=

f(1) 1 i =
f(z)
+

g
=

1
=

Fi
-
XX

You might also like