Isolated and Stepped Footing - r1
Isolated and Stepped Footing - r1
F1 F2 F3 sw1 sw2
PCC size B'×L' 2500 × 2800 300 × 300 300 × 300 300 × 300 300 × 300
Footing size B×L 2200 × 2500 0×0 0×0 0×0 0×0
D 500 0 0 0 0
t 500 0 0 0 0
Steel // B 10 # 20 Nos #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Steel // L 10 # 17 Nos #DIV/0! #DIV/0! #DIV/0! #DIV/0!
Load applied at the base of footing is increase 10% of Axial load for self weight of footing
393 + 39.3 = 432.30 kN
Trial with B & L = 1.73 m
B = 2.2 m
L = 2.5 m
D = 0.5 m
t = 0.5 m D
t
For SBC OK
Depth (bending) OK My
Punching stress OK 41.91 kN/m2
Shear Stress OK
My d Mx
F M c1
Pmax x 2.2 b
A Zx Zy m
F Mx My
Pmin c2
A Zx Zy
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = 450.00 mm
Vu = 131.55 kN
Tv = 0.390 Mpa
Design shear = ks*Tc where ks = (0.5+βc)
βc = shorter side of column / longer side of column
ks ≤ 1
Design shear = 1.12 Mpa Safe in punching shear
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = 450.00 mm
Vu = 199.21 kN
Tv = 0.422 Mpa
Tc design = 1.12 Mpa Safe in punching shear
QUANTITY OF STEEL AND CONCRETE
PCC : 0.70 m3
RCC: 2.75 m3
Reinforcement 53.33 kg
DESIGN OF ISOLATED FOOTING BY LIMITE STATE METHOD
Load applied at the base of footing is increase 10% of Axial load for self weight of footing
0 + 0 = 0.00 kN
Trial with B & L = 0.00 m
B = 0m
L = 0m
D = 0m
t = 0m
D
t
For SBC #DIV/0!
Depth (bending) #DIV/0! My
Punching stress #DIV/0! #DIV/0! kN/m2
Shear Stress #DIV/0!
My d Mx
F M c1
Pmax x 0 b
A Zx Zy m
F Mx My
Pmin c2
A Zx Zy
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Design shear = ks*Tc where ks = (0.5+βc)
βc = shorter side of column / longer side of column
ks ≤ 1
Design shear = #DIV/0! Mpa #DIV/0!
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Tc design = #DIV/0! Mpa #DIV/0!
QUANTITY OF STEEL AND CONCRETE
PCC : 0.01 m3
RCC: 0.00 m3
Reinforcement #DIV/0! kg
DESIGN OF ISOLATED FOOTING BY LIMITE STATE METHOD
Load applied at the base of footing is increase 10% of Axial load for self weight of footing
0 + 0 = 0.00 kN
Trial with B & L = 0.00 m
B = 0m
L = 0m
D = 0m
t = 0m
D
t
For SBC #DIV/0!
Depth (bending) #DIV/0! My
Punching stress #DIV/0! #DIV/0! kN/m2
Shear Stress #DIV/0!
My d Mx
F M c1
Pmax x 0 b
A Zx Zy m
F Mx My
Pmin c2
A Zx Zy
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Design shear = ks*Tc where ks = (0.5+βc)
βc = shorter side of column / longer side of column
ks ≤ 1
Design shear = #DIV/0! Mpa #DIV/0!
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Tc design = #DIV/0! Mpa #DIV/0!
QUANTITY OF STEEL AND CONCRETE
PCC : 0.01 m3
RCC: 0.00 m3
Reinforcement #DIV/0! kg
DESIGN OF ISOLATED FOOTING BY LIMITE STATE METHOD
Load applied at the base of footing is increase 10% of Axial load for self weight of footing
0 + 0 = 0.00 kN
Trial with B & L = 0.00 m
B = 0m
L = 0m
D = 0m
t = 0m
D
t
For SBC #DIV/0!
Depth (bending) #DIV/0! My
Punching stress #DIV/0! #DIV/0! kN/m2
Shear Stress #DIV/0!
My d Mx
F M c1
Pmax x 0 b
A Zx Zy m
F Mx My
Pmin c2
A Zx Zy
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Design shear = ks*Tc where ks = (0.5+βc)
βc = shorter side of column / longer side of column
ks ≤ 1
Design shear = #DIV/0! Mpa #DIV/0!
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Tc design = #DIV/0! Mpa #DIV/0!
QUANTITY OF STEEL AND CONCRETE
PCC : 0.01 m3
RCC: 0.00 m3
Reinforcement #DIV/0! kg
DESIGN OF ISOLATED FOOTING BY LIMITE STATE METHOD
Load applied at the base of footing is increase 10% of Axial load for self weight of footing
0 + 0 = 0.00 kN
Trial with B & L = 0.00 m
B = 0m
L = 0m
D = 0m
t = 0m
D
t
For SBC #DIV/0!
Depth (bending) #DIV/0! My
Punching stress #DIV/0! #DIV/0! kN/m2
Shear Stress #DIV/0!
My d Mx
F M c1
Pmax x 0 b
A Zx Zy m
F Mx My
Pmin c2
A Zx Zy
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Design shear = ks*Tc where ks = (0.5+βc)
βc = shorter side of column / longer side of column
ks ≤ 1
Design shear = #DIV/0! Mpa #DIV/0!
Punching shear check at d/2 distance from face of column (if c1 govern)
dyeff = #DIV/0! mm
Vu = #DIV/0! kN
Tv = #DIV/0! Mpa
Tc design = #DIV/0! Mpa #DIV/0!
QUANTITY OF STEEL AND CONCRETE
PCC : 0.01 m3
RCC: 0.00 m3
Reinforcement #DIV/0! kg
Unit F1 F2 F3 sw1 sw2
Service load (F): kN 393.00
Moment in X direction (Mx): kN-m 74.00
Moment in Y direction (My): kN-m 11.00
Column width b: m 0.3
Column depth d: m 0.6
Trial with B & L = m 0.00 0.00 0.00 0.00 0.00
Footing B = m 2.2
Data L = m 2.5
D (req for bending)
rd
m 0.000 0.000 0.000 0.000 0.000
D = m 0.5
t = m 0.5
DATA:
AXIAL LOAD = 800 KN
COLUMN SIZE = 0.4 X 0.4 m
SBC = 200 KN/m2
CONCRETE = 20 N/mm2
STEEL GRADE = 415 N/mm2
CLEAR COVER = 50 mm
DESIGN:-
1 SIZE OF FOOTING
Load of column P = 800 KN
Self weight of footing 10% = 80 KN
Total Load on Soil P1 = 880 KN
SBC of soil = 200
Area of footing required = 880
200
= 4.4 m2
B X D
Privide footing of 2.1 x 2.1
= 4.4 m2
STEP3
STEP2
STEP1
X1 0.9 1.5 2.1
X2
X3
S
0.9
1.5
2.1
5 REINFORCEMENT:
K = Mu
bd2
= 219 x 1000000
933 x 532 x 532
= 0.8
pt from table 2 fro SP16 = 0.3
Ast = 0.3 x 933 x 532
100
= 1246.3 mm2
T 16 @ 150 mm = 1339.73 mm2
6 CHECK FOR CRACKING
8 DESIGN OF STEP-2
8 DESIGN OF STEP-3