0% found this document useful (0 votes)
40 views7 pages

04 - HW Derivatives Solutions

This document contains: 1) The derivatives of common functions like polynomials, logarithmic, exponential, trigonometric and inverse trigonometric functions. 2) Examples of calculating simple derivatives using the given formulas. 3) Finding the derivatives of more complex functions by using the chain rule and other derivative rules.

Uploaded by

Max
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
40 views7 pages

04 - HW Derivatives Solutions

This document contains: 1) The derivatives of common functions like polynomials, logarithmic, exponential, trigonometric and inverse trigonometric functions. 2) Examples of calculating simple derivatives using the given formulas. 3) Finding the derivatives of more complex functions by using the chain rule and other derivative rules.

Uploaded by

Max
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

Calculus WIs

Answers to selected exercises from 04_HW

(𝑥 𝑝 )′ = 𝑝𝑥 𝑝−1 , 𝑝∈𝑅
1 1 1
(ln 𝑥)′ = , (log 𝑎 𝑥)′ =
𝑥 𝑥 ln 𝑎
(𝑒 𝑥 )′ = 𝑒 𝑥 , (𝑎 𝑥 )′ = 𝑎 𝑥 ⋅ ln 𝑎
1
(sin 𝑥)′ = cos 𝑥 , (cos 𝑥)′ = − sin 𝑥 , (tan 𝑥)′ =
cos 2 𝑥
1 −1
(𝑎𝑟𝑐 sin 𝑥)′ = , (𝑎𝑟𝑐 cos 𝑥)′ = ,
√1 − 𝑥 2 √1 − 𝑥 2
1 −1
(𝑎𝑟𝑐 tan 𝑥)′ = , (𝑎𝑟𝑐 ctan 𝑥)′ =
1 + 𝑥2 1 + 𝑥2

1. (𝑐𝑓 ′ ) = 𝑐𝑓 ′ , (𝑓 ± 𝑔)′ = 𝑓 ′ ± 𝑔′

2. (𝑓 ⋅ 𝑔)′ = 𝑓 ′ 𝑔 + 𝑓𝑔′

𝑓 ′ 𝑓 ′ 𝑔 − 𝑓𝑔′
3. ( ) =
𝑔 𝑔2

4. ( 𝑓(𝑦(𝑥)) ) = 𝑓 ′ (𝑦) ⋅ 𝑦 ′ (𝑥)
′ ′
5. 𝑓 ′′ (𝑥) = (𝑓 ′ (𝑥)) , 𝑓 𝑛 (𝑥) = ( 𝑓 𝑛−1 (𝑥))

𝜋
sin(𝑥)−sin( )
7
0. 𝑎) lim𝜋 𝜋 = 𝑎. It is easily seen that this is the definition f the derivative sin 𝑥, at 𝑥0 =
𝑥→ 𝑥−
7 7
𝜋 𝜋
7
, so 𝑎 = cos 7 .

𝑓(𝑥)−3
b) Suppose that 𝑥0 = 1 belongs to the domain of 𝑓(𝑥). If lim 𝑥−1
= 3, find 𝑓 ′ (1).
𝑥→1

First we note that 𝑓(1) = 3, 2. Next from the definition of the derivative we obtain, that 𝑓′(1) = 3.

1. Calculate the following simple derivatives

(𝑥 𝑝 )′ = 𝑝𝑥 𝑝−1 , 𝑝∈𝑅

𝑎) (𝑥 4 )′ = 4𝑥 3

𝑏) (7)′ = 0

𝑐) (3𝑠)′ = 3

1
7
𝑑) (𝑥 −7 )′ = −7𝑥 −8 = −
𝑥8

′ 1 ′ 1 1 1
𝑒) (√𝑡) = (𝑡 2 ) = 𝑡 −2 =
2 2√𝑡

′ 1 ′ 1 −3 1 1
𝑓) ( 4√𝑥 ) = (𝑥 4 ) = 𝑥 4 = 4
4 4 √𝑥 3

3 ′ 4 ′ 4 1 43
𝑔) ( √𝑥 4 ) = (𝑥 3 ) = 𝑥 3 = √𝑥
3 3

1 ′ −1
ℎ) ( ) = (𝑦 −1 )′ = −𝑦 −2 = 2
𝑦 𝑦

𝑖) 𝑓 ′ (𝑦) = 0 , the function f is a function of y, x does not change, so also 1/𝑥 3 does not change
with respect to y.

1 ′ 2 ′ 2 5 2 1
𝑗) ( 3 ) = (𝑥 −3 ) = − 𝑥 −3 = − 3
√𝑥 2 3 3 √𝑥 5

𝑎 ′ 1 ′ 7
𝑘) ( 8 ) = ( 7 ) = ( 𝑎 −7 )′ = −7𝑎−8 = − 8
𝑎 𝑎 𝑎

𝑥4 8 ′ 4 ′ 4 1 43
𝑙) ( 3 ) = (𝑥 4−3 ) = (𝑥 3 ) = 𝑥 3 = √𝑥
√𝑥 8 3 3

2. Find the derivatives of the following functions.

e − (ln t )et
1 t 1
b) f (t ) = 
 ln t  (ln t ) e − (ln t ) e
'

=
' t
( )t '
= t = t
− ln t
t 
( )
'

e  et ( )
2
et
2
( ) et

   1
'
  (2 z )− 3  2 + 2 z .
c) f (z ) =  3
1 1 2
'
 = −
 2 z + z  
2
(
3
2
)
2 z + z 2  3 

   1
'
  (2 )− 3  2 + 2 x .
d) f ( ) =  3
1 1 2
'
 = −
2 
 2 + x   ( 3
2 + x 2  3
2
) 

'

g) f ' ( y ) =  5 tan + tan  = 5
y 1 1 1
 +0=
 5 8  y 5  y
cos2   cos2  
5 5

2
  1 
 1 +  
'
    2 x 
h) f (x ) =  x + x + x  =
1
'
 1 + 
  2 x+ x+ x  2 x+ x 
 
 

 1 
 − 
'
− −  − x − (1 − ln x ) 
      x
i) y' = f ' (x ) =  sin 2 
1 ln x 1 ln x 1 ln x 
  = 2 sin   cos 
  x   x   x  x2 
 
 
2 +𝑙𝑛 𝑥+1 1 2 1
′ 2 +𝑙𝑛 𝑥+1 ′ 𝑒𝑥 (2𝑥 + 𝑥 ) √𝑥 − 𝑒 𝑥 +𝑙𝑛 𝑥+1
1 𝑥 2 +𝑙𝑛 𝑥+1
𝑒𝑥 2√𝑥
𝑘) 𝑓 ′ (𝑥) = ( 𝑒 ) =( ) = =
√𝑥 √𝑥 𝑥

2 +1 1 1
𝑒𝑥 𝑥 [(2𝑥 + 𝑥 ) √𝑥 − ]
2√𝑥 2 1 1
= = 𝑒 𝑥 +1 [(2𝑥 + ) √𝑥 − ]
𝑥 𝑥 2√𝑥

𝑙) 𝑦′ = 𝑓 ′ (𝑥) = (𝑒 𝑠𝑖𝑛 𝑥 ) = 𝑒 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥

3. Find the derivatives of [hint: use the equality x = e ln x ]

𝑎) 𝑦 = 𝑥 𝑥 ;

𝑥 ′ ′ 1
(𝑥 𝑥 )′ = (𝑒 ln(𝑥 ) ) = (𝑒 𝑥⋅ln(𝑥) ) = 𝑒 𝑥⋅ln(𝑥) (𝑥 ⋅ ln(𝑥))′ = 𝑒 𝑥⋅ln(𝑥) (ln 𝑥 + 𝑥 )
𝑥
𝑥⋅ln(𝑥) (ln 𝑥
=𝑒 𝑥 + 1) = 𝑥 (ln 𝑥 + 1)

b) y = sin x x

𝑥 ′ ′ 𝑐𝑜𝑠 𝑥
𝑓 ′ (𝑥) = ((𝑠𝑖𝑛 𝑥)𝑥 )′ = (𝑒 𝑙𝑛((𝑠𝑖𝑛 𝑥) ) ) = (𝑒 𝑥 𝑙𝑛(𝑠𝑖𝑛 𝑥) ) = 𝑒 𝑥 𝑙𝑛(𝑠𝑖𝑛 𝑥) (𝑙𝑛(𝑠𝑖𝑛 𝑥) + 𝑥 ⋅ )=
𝑠𝑖𝑛 𝑥

= 𝑒 𝑥 𝑙𝑛(𝑠𝑖𝑛 𝑥) (𝑙𝑛(𝑠𝑖𝑛 𝑥) + 𝑥 ⋅ 𝑐𝑜𝑡 𝑥) = (𝑠𝑖𝑛 𝑥)𝑥 (𝑙𝑛(𝑠𝑖𝑛 𝑥) + 𝑥 ⋅ 𝑐𝑡𝑔𝑥)

c) y = x
sin x

( '
) ( sin x
) (
' 
) 1
f ' (x ) = x sin x = e ln (x ) = e sin x ln x = e sin x ln x  cos x ln x + sin x   =
'

 x

 1
= x sin x  cos x ln x + sin x  
 x

e)
f ( x) = (cos3 x) cot x e 2 x

( ) ( ) ( )
f ' (x ) = (cos3 x) cot x e 2 x = (cos3 x) cot x e 2 x + e 2 x (cos3 x) cot x =
' ' '

3
(e ( ln (cos3 x )cot x
) (
) ' e 2 x + 2e 2 x (cos3 x) cot x = ecot x ln (cos x ) ' e 2 x + 2e 2 x (cos3 x) cot x =
3
)
( 3  1
 sin x
)
= e cot x ln (cos x )  − 2 ln cos3 x + cot x
1
3
cos x
( )

 3 cos2 x  (− sin x )e 2 x + 2e 2 x (cos3 x) cot x =

 ln cos3 x
= (cos3 x) cot x e 2 x  − − 3 + 2

 = −
(
(cos3
x ) e
)
cot x 2 x  ln cos x

3

+ 1
( )
2   2
 sin x   sin x 
1
f) 𝑓(𝑦) = (cos 𝑦)𝑦

1 ′ 1 ′ 1 1 ′
′(𝑦) ln (cos 𝑦)⋅ ln cos 𝑦⋅
𝑓 = 𝑦
((cos 𝑦) ) = (𝑒 𝑦) =𝑒 𝑦 (ln (cos 𝑦) ⋅ )
𝑦
1 −sin 𝑦 1 −1
ln cos 𝑦⋅
=𝑒 𝑦 ( + ln cos 𝑦 2 ).
cos 𝑦 𝑦 𝑦

d2y
4. Find 𝑦" or for
dx 2
a) y = x 1 + x 2

(
f ' (x ) = x 1 + x 2 = 1 + x 2 + x )
'

2 1+ x2
1
 2x = 1 + x 2 +
x2
1+ x2
=
1 + 2x 2
1+ x2

 1 + 2x 
' 4x 1 + x 2 − 1 + 2x 2  ( ) 1
 2x (
4x 1 + x2 − 1 + 2x2  ) x
2 1 + x2 1 + x2 =
2
f '' (x ) =   =
 =
 1+ x
2
 1 + x2 1 + x2
𝑥
4𝑥√1 + 𝑥 2 − (1 + 2𝑥 2 ) ⋅
√1 + 𝑥 2 4𝑥(1 + 𝑥 2 ) − (1 + 2𝑥 2 ) ⋅ 𝑥 4𝑥 + 4𝑥 3 − 𝑥 − 2𝑥 3
= = =
1 + 𝑥2 (1 + 𝑥 2 )√1 + 𝑥 2 (1 + 𝑥 2 )√1 + 𝑥 2
3
2𝑥 + 3𝑥
=
(1 + 𝑥 2 )√1 + 𝑥 2

2)
b) 𝑦 = 𝑒 (−𝑥
2 ′ 2 2)
𝑓 ′ (𝑥) = (𝑒 (−𝑥 ) ) = 𝑒 (−𝑥 ) ⋅ (−2𝑥) = −2𝑥 ⋅ 𝑒 (−𝑥

2 ′ 2 2 2 2)
𝑓 ′′ (𝑥) = (−2𝑥 ⋅ 𝑒 (−𝑥 ) ) = −2𝑒 (−𝑥 ) − 2𝑥𝑒 (−𝑥 ) ⋅ (−2𝑥) = −2𝑒 (−𝑥 ) + 4𝑥 2 𝑒 (−𝑥
2
= 𝑒 (−𝑥 ) (4𝑥 2 − 2)

d2y
5. Let f (x) be two times differentiable. Find y' ' or for
dx2
a) y = f ( x )
2

4

𝑎) 𝑦 ′ = (𝑓(𝑥 2 )) = 𝑓 ′ (𝑥 2 )2𝑥, 𝑦 ′′ = (𝑓 ′ (𝑥 2 )2𝑥)′ = 𝑓 ′′ (𝑥 2 ) ⋅ 2𝑥 ⋅ 2𝑥 + 2𝑓 ′ (𝑥 2 ).

( )'
y ''' = 2  f ' ( x 2 ) + 4 x 2  f '' ( x 2 ) = 2  f '' ( x 2 )  2 x + 8x  f '' ( x 2 ) + 4 x 2  f ''' ( x 2 )  2 x =

= 12x  f '' ( x 2 ) + 8 x 3  f ''' ( x 2 )

b) y = f (1 / x)

y ' = ( f (1 / x) ) = −
1
 f ' (1 / x)
'
2
x
′′
𝑦 ′′ = (𝑓(𝑥 −1 )) = (−𝑓 ′ (𝑥 −1 ) ⋅ 𝑥 −2 )′ = 𝑓 ′′ (𝑥 −1 ) ⋅ 𝑥 −2 ⋅ 𝑥 −2 + 𝑓 ′ (𝑥 −1 )2𝑥 −3 lub
'
 1  2  1  1 2 1
y '' =  − 2  f ' (1 / x)  = 3  f ' (1 / x) +  − 2    − 2   f '' (1 / x) = 3  f ' (1 / x) + 4  f '' (1 / x)
 x  x  x   x  x x
'
 2 1 
y =  3  f ' (1 / x) + 4  f '' (1 / x)  =
'''

x x 

6 ' 2  1  4 1  1 
− f (1/ x) + 3  f '' (1/ x)   − 2  +  − 5   f '' (1/ x) + 4  f ''' (1/ x)   − 2  =
 x   x   x 
4
x x x

6 ' 6 1
− 4
f (1/ x) − 5  f '' (1/ x) − 6  f ''' (1/ x)
x x x

c) y = f (ln x)

′′ ′ (ln
1 ′ 1 1
(𝑓(ln 𝑥)) = (𝑓 𝑥) ) = 𝑓 ′′ (ln 𝑥) 2 − 𝑓 ′ (ln 𝑥) 2 .
𝑥 𝑥 𝑥

The equation of a line tangent to f (x) at (x0, f (x0)):

𝒚 = 𝒇(𝒙𝟎 ) + 𝒇′(𝒙𝟎 )(𝒙 − 𝒙𝟎 )

6. Find the equation of the tangent line to the given function 𝑓 (i.e. the linear function
which is the approximation of 𝑓 ) at the indicated point

𝑏) 𝑓(𝑥) = 2𝑥 2 + 3𝑥 − 7 at (−1, −8) Df = R

𝑓′(𝑥) = (2𝑥 2 + 3𝑥 − 7)′ = 4𝑥 + 3

𝑓′(−1) = −4 + 3 = −1

𝑦 = −8 − 1(𝑥 + 1)

𝑦 = −8 − 𝑥 − 1 𝑡ℎ𝑢𝑠 𝑦 = −𝑥 − 9

Ans: The tangent line to the graph of 𝑓(𝑥) = 2𝑥 2 + 3𝑥 − 7 at (−1, −8) is 𝑦 = −𝑥 − 9.

5
7. a) Determine the equation of the tangent line to the curve y = x 2 + 2 x at point (1, 3).
𝑥0 = 1

𝑓(𝑥0 ) = 3

𝑓(𝑥) = 𝑥 2 + 2𝑥

𝑓 ′ (𝑥) = 2𝑥 + 2

𝑓 ′ (𝑥0 ) = 4

𝑦 = 3 + 4(𝑥 − 1)

𝑦 = 3 + 4𝑥 − 4

𝑦 = 4𝑥 − 1

Ans.: The tangent to 𝑓(𝑥) = 𝑥 2 + 2𝑥 at (1,3) is 𝑦 = 4𝑥 − 1


1 1
𝒃) 𝑓(𝑥) = 1+𝑥 2 , 𝑥0 = −1, 𝑓(𝑥0 ) = 2

2𝑥
𝑓 ′ (𝑥) = − (1+𝑥 2)2

1
𝑓 ′ (−1) =
2
1 1 1 1 1 1
𝑦= + (𝑥 + 1) ⇒ 𝑦= + 𝑥+ ⇒ 𝑦= 𝑥+1
2 2 2 2 2 2
1 1
Ans.: The tangent to 𝑓(𝑥) = 1+𝑥 2 at (−1, 1/2) is 𝑦 = 2 𝑥 + 1.

WolframApha: tangent to 1/(1+x^2) at x=-1

𝑥
𝑐) 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝑖𝑛𝑒 𝑓(𝑥) = , 𝑥 = −3, 𝑓(𝑥0 ) = −0.3
𝑥2 +1 0

6
𝑥 2 + 1 − 𝑥 ⋅ 2𝑥 1 − 𝑥2
𝑓 ′ (𝑥) = =
(𝑥 2 + 1)2 (𝑥 2 + 1)2

8 2
𝑓 ′ (−3) = − =−
100 25
2 2 27
𝑦 = −0.3 − 25 (𝑥 + 3) = − 25 𝑥 − 50 - tangent line.

You might also like