Calculus WIs
Answers to selected exercises from 04_HW
(𝑥 𝑝 )′ = 𝑝𝑥 𝑝−1 , 𝑝∈𝑅
1 1 1
(ln 𝑥)′ = , (log 𝑎 𝑥)′ =
𝑥 𝑥 ln 𝑎
(𝑒 𝑥 )′ = 𝑒 𝑥 , (𝑎 𝑥 )′ = 𝑎 𝑥 ⋅ ln 𝑎
1
(sin 𝑥)′ = cos 𝑥 , (cos 𝑥)′ = − sin 𝑥 , (tan 𝑥)′ =
cos 2 𝑥
1 −1
(𝑎𝑟𝑐 sin 𝑥)′ = , (𝑎𝑟𝑐 cos 𝑥)′ = ,
√1 − 𝑥 2 √1 − 𝑥 2
1 −1
(𝑎𝑟𝑐 tan 𝑥)′ = , (𝑎𝑟𝑐 ctan 𝑥)′ =
1 + 𝑥2 1 + 𝑥2
1. (𝑐𝑓 ′ ) = 𝑐𝑓 ′ , (𝑓 ± 𝑔)′ = 𝑓 ′ ± 𝑔′
2. (𝑓 ⋅ 𝑔)′ = 𝑓 ′ 𝑔 + 𝑓𝑔′
𝑓 ′ 𝑓 ′ 𝑔 − 𝑓𝑔′
3. ( ) =
𝑔 𝑔2
′
4. ( 𝑓(𝑦(𝑥)) ) = 𝑓 ′ (𝑦) ⋅ 𝑦 ′ (𝑥)
′ ′
5. 𝑓 ′′ (𝑥) = (𝑓 ′ (𝑥)) , 𝑓 𝑛 (𝑥) = ( 𝑓 𝑛−1 (𝑥))
𝜋
sin(𝑥)−sin( )
7
0. 𝑎) lim𝜋 𝜋 = 𝑎. It is easily seen that this is the definition f the derivative sin 𝑥, at 𝑥0 =
𝑥→ 𝑥−
7 7
𝜋 𝜋
7
, so 𝑎 = cos 7 .
𝑓(𝑥)−3
b) Suppose that 𝑥0 = 1 belongs to the domain of 𝑓(𝑥). If lim 𝑥−1
= 3, find 𝑓 ′ (1).
𝑥→1
First we note that 𝑓(1) = 3, 2. Next from the definition of the derivative we obtain, that 𝑓′(1) = 3.
1. Calculate the following simple derivatives
(𝑥 𝑝 )′ = 𝑝𝑥 𝑝−1 , 𝑝∈𝑅
𝑎) (𝑥 4 )′ = 4𝑥 3
𝑏) (7)′ = 0
𝑐) (3𝑠)′ = 3
1
7
𝑑) (𝑥 −7 )′ = −7𝑥 −8 = −
𝑥8
′ 1 ′ 1 1 1
𝑒) (√𝑡) = (𝑡 2 ) = 𝑡 −2 =
2 2√𝑡
′ 1 ′ 1 −3 1 1
𝑓) ( 4√𝑥 ) = (𝑥 4 ) = 𝑥 4 = 4
4 4 √𝑥 3
3 ′ 4 ′ 4 1 43
𝑔) ( √𝑥 4 ) = (𝑥 3 ) = 𝑥 3 = √𝑥
3 3
1 ′ −1
ℎ) ( ) = (𝑦 −1 )′ = −𝑦 −2 = 2
𝑦 𝑦
𝑖) 𝑓 ′ (𝑦) = 0 , the function f is a function of y, x does not change, so also 1/𝑥 3 does not change
with respect to y.
1 ′ 2 ′ 2 5 2 1
𝑗) ( 3 ) = (𝑥 −3 ) = − 𝑥 −3 = − 3
√𝑥 2 3 3 √𝑥 5
𝑎 ′ 1 ′ 7
𝑘) ( 8 ) = ( 7 ) = ( 𝑎 −7 )′ = −7𝑎−8 = − 8
𝑎 𝑎 𝑎
′
𝑥4 8 ′ 4 ′ 4 1 43
𝑙) ( 3 ) = (𝑥 4−3 ) = (𝑥 3 ) = 𝑥 3 = √𝑥
√𝑥 8 3 3
2. Find the derivatives of the following functions.
e − (ln t )et
1 t 1
b) f (t ) =
ln t (ln t ) e − (ln t ) e
'
=
' t
( )t '
= t = t
− ln t
t
( )
'
e et ( )
2
et
2
( ) et
1
'
(2 z )− 3 2 + 2 z .
c) f (z ) = 3
1 1 2
'
= −
2 z + z
2
(
3
2
)
2 z + z 2 3
1
'
(2 )− 3 2 + 2 x .
d) f ( ) = 3
1 1 2
'
= −
2
2 + x ( 3
2 + x 2 3
2
)
'
g) f ' ( y ) = 5 tan + tan = 5
y 1 1 1
+0=
5 8 y 5 y
cos2 cos2
5 5
2
1
1 +
'
2 x
h) f (x ) = x + x + x =
1
'
1 +
2 x+ x+ x 2 x+ x
1
−
'
− − − x − (1 − ln x )
x
i) y' = f ' (x ) = sin 2
1 ln x 1 ln x 1 ln x
= 2 sin cos
x x x x2
2 +𝑙𝑛 𝑥+1 1 2 1
′ 2 +𝑙𝑛 𝑥+1 ′ 𝑒𝑥 (2𝑥 + 𝑥 ) √𝑥 − 𝑒 𝑥 +𝑙𝑛 𝑥+1
1 𝑥 2 +𝑙𝑛 𝑥+1
𝑒𝑥 2√𝑥
𝑘) 𝑓 ′ (𝑥) = ( 𝑒 ) =( ) = =
√𝑥 √𝑥 𝑥
2 +1 1 1
𝑒𝑥 𝑥 [(2𝑥 + 𝑥 ) √𝑥 − ]
2√𝑥 2 1 1
= = 𝑒 𝑥 +1 [(2𝑥 + ) √𝑥 − ]
𝑥 𝑥 2√𝑥
′
𝑙) 𝑦′ = 𝑓 ′ (𝑥) = (𝑒 𝑠𝑖𝑛 𝑥 ) = 𝑒 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥
3. Find the derivatives of [hint: use the equality x = e ln x ]
𝑎) 𝑦 = 𝑥 𝑥 ;
𝑥 ′ ′ 1
(𝑥 𝑥 )′ = (𝑒 ln(𝑥 ) ) = (𝑒 𝑥⋅ln(𝑥) ) = 𝑒 𝑥⋅ln(𝑥) (𝑥 ⋅ ln(𝑥))′ = 𝑒 𝑥⋅ln(𝑥) (ln 𝑥 + 𝑥 )
𝑥
𝑥⋅ln(𝑥) (ln 𝑥
=𝑒 𝑥 + 1) = 𝑥 (ln 𝑥 + 1)
b) y = sin x x
𝑥 ′ ′ 𝑐𝑜𝑠 𝑥
𝑓 ′ (𝑥) = ((𝑠𝑖𝑛 𝑥)𝑥 )′ = (𝑒 𝑙𝑛((𝑠𝑖𝑛 𝑥) ) ) = (𝑒 𝑥 𝑙𝑛(𝑠𝑖𝑛 𝑥) ) = 𝑒 𝑥 𝑙𝑛(𝑠𝑖𝑛 𝑥) (𝑙𝑛(𝑠𝑖𝑛 𝑥) + 𝑥 ⋅ )=
𝑠𝑖𝑛 𝑥
= 𝑒 𝑥 𝑙𝑛(𝑠𝑖𝑛 𝑥) (𝑙𝑛(𝑠𝑖𝑛 𝑥) + 𝑥 ⋅ 𝑐𝑜𝑡 𝑥) = (𝑠𝑖𝑛 𝑥)𝑥 (𝑙𝑛(𝑠𝑖𝑛 𝑥) + 𝑥 ⋅ 𝑐𝑡𝑔𝑥)
c) y = x
sin x
( '
) ( sin x
) (
'
) 1
f ' (x ) = x sin x = e ln (x ) = e sin x ln x = e sin x ln x cos x ln x + sin x =
'
x
1
= x sin x cos x ln x + sin x
x
e)
f ( x) = (cos3 x) cot x e 2 x
( ) ( ) ( )
f ' (x ) = (cos3 x) cot x e 2 x = (cos3 x) cot x e 2 x + e 2 x (cos3 x) cot x =
' ' '
3
(e ( ln (cos3 x )cot x
) (
) ' e 2 x + 2e 2 x (cos3 x) cot x = ecot x ln (cos x ) ' e 2 x + 2e 2 x (cos3 x) cot x =
3
)
( 3 1
sin x
)
= e cot x ln (cos x ) − 2 ln cos3 x + cot x
1
3
cos x
( )
3 cos2 x (− sin x )e 2 x + 2e 2 x (cos3 x) cot x =
ln cos3 x
= (cos3 x) cot x e 2 x − − 3 + 2
= −
(
(cos3
x ) e
)
cot x 2 x ln cos x
3
+ 1
( )
2 2
sin x sin x
1
f) 𝑓(𝑦) = (cos 𝑦)𝑦
1 ′ 1 ′ 1 1 ′
′(𝑦) ln (cos 𝑦)⋅ ln cos 𝑦⋅
𝑓 = 𝑦
((cos 𝑦) ) = (𝑒 𝑦) =𝑒 𝑦 (ln (cos 𝑦) ⋅ )
𝑦
1 −sin 𝑦 1 −1
ln cos 𝑦⋅
=𝑒 𝑦 ( + ln cos 𝑦 2 ).
cos 𝑦 𝑦 𝑦
d2y
4. Find 𝑦" or for
dx 2
a) y = x 1 + x 2
(
f ' (x ) = x 1 + x 2 = 1 + x 2 + x )
'
2 1+ x2
1
2x = 1 + x 2 +
x2
1+ x2
=
1 + 2x 2
1+ x2
1 + 2x
' 4x 1 + x 2 − 1 + 2x 2 ( ) 1
2x (
4x 1 + x2 − 1 + 2x2 ) x
2 1 + x2 1 + x2 =
2
f '' (x ) = =
=
1+ x
2
1 + x2 1 + x2
𝑥
4𝑥√1 + 𝑥 2 − (1 + 2𝑥 2 ) ⋅
√1 + 𝑥 2 4𝑥(1 + 𝑥 2 ) − (1 + 2𝑥 2 ) ⋅ 𝑥 4𝑥 + 4𝑥 3 − 𝑥 − 2𝑥 3
= = =
1 + 𝑥2 (1 + 𝑥 2 )√1 + 𝑥 2 (1 + 𝑥 2 )√1 + 𝑥 2
3
2𝑥 + 3𝑥
=
(1 + 𝑥 2 )√1 + 𝑥 2
2)
b) 𝑦 = 𝑒 (−𝑥
2 ′ 2 2)
𝑓 ′ (𝑥) = (𝑒 (−𝑥 ) ) = 𝑒 (−𝑥 ) ⋅ (−2𝑥) = −2𝑥 ⋅ 𝑒 (−𝑥
2 ′ 2 2 2 2)
𝑓 ′′ (𝑥) = (−2𝑥 ⋅ 𝑒 (−𝑥 ) ) = −2𝑒 (−𝑥 ) − 2𝑥𝑒 (−𝑥 ) ⋅ (−2𝑥) = −2𝑒 (−𝑥 ) + 4𝑥 2 𝑒 (−𝑥
2
= 𝑒 (−𝑥 ) (4𝑥 2 − 2)
d2y
5. Let f (x) be two times differentiable. Find y' ' or for
dx2
a) y = f ( x )
2
4
′
𝑎) 𝑦 ′ = (𝑓(𝑥 2 )) = 𝑓 ′ (𝑥 2 )2𝑥, 𝑦 ′′ = (𝑓 ′ (𝑥 2 )2𝑥)′ = 𝑓 ′′ (𝑥 2 ) ⋅ 2𝑥 ⋅ 2𝑥 + 2𝑓 ′ (𝑥 2 ).
( )'
y ''' = 2 f ' ( x 2 ) + 4 x 2 f '' ( x 2 ) = 2 f '' ( x 2 ) 2 x + 8x f '' ( x 2 ) + 4 x 2 f ''' ( x 2 ) 2 x =
= 12x f '' ( x 2 ) + 8 x 3 f ''' ( x 2 )
b) y = f (1 / x)
y ' = ( f (1 / x) ) = −
1
f ' (1 / x)
'
2
x
′′
𝑦 ′′ = (𝑓(𝑥 −1 )) = (−𝑓 ′ (𝑥 −1 ) ⋅ 𝑥 −2 )′ = 𝑓 ′′ (𝑥 −1 ) ⋅ 𝑥 −2 ⋅ 𝑥 −2 + 𝑓 ′ (𝑥 −1 )2𝑥 −3 lub
'
1 2 1 1 2 1
y '' = − 2 f ' (1 / x) = 3 f ' (1 / x) + − 2 − 2 f '' (1 / x) = 3 f ' (1 / x) + 4 f '' (1 / x)
x x x x x x
'
2 1
y = 3 f ' (1 / x) + 4 f '' (1 / x) =
'''
x x
6 ' 2 1 4 1 1
− f (1/ x) + 3 f '' (1/ x) − 2 + − 5 f '' (1/ x) + 4 f ''' (1/ x) − 2 =
x x x
4
x x x
6 ' 6 1
− 4
f (1/ x) − 5 f '' (1/ x) − 6 f ''' (1/ x)
x x x
c) y = f (ln x)
′′ ′ (ln
1 ′ 1 1
(𝑓(ln 𝑥)) = (𝑓 𝑥) ) = 𝑓 ′′ (ln 𝑥) 2 − 𝑓 ′ (ln 𝑥) 2 .
𝑥 𝑥 𝑥
The equation of a line tangent to f (x) at (x0, f (x0)):
𝒚 = 𝒇(𝒙𝟎 ) + 𝒇′(𝒙𝟎 )(𝒙 − 𝒙𝟎 )
6. Find the equation of the tangent line to the given function 𝑓 (i.e. the linear function
which is the approximation of 𝑓 ) at the indicated point
𝑏) 𝑓(𝑥) = 2𝑥 2 + 3𝑥 − 7 at (−1, −8) Df = R
𝑓′(𝑥) = (2𝑥 2 + 3𝑥 − 7)′ = 4𝑥 + 3
𝑓′(−1) = −4 + 3 = −1
𝑦 = −8 − 1(𝑥 + 1)
𝑦 = −8 − 𝑥 − 1 𝑡ℎ𝑢𝑠 𝑦 = −𝑥 − 9
Ans: The tangent line to the graph of 𝑓(𝑥) = 2𝑥 2 + 3𝑥 − 7 at (−1, −8) is 𝑦 = −𝑥 − 9.
5
7. a) Determine the equation of the tangent line to the curve y = x 2 + 2 x at point (1, 3).
𝑥0 = 1
𝑓(𝑥0 ) = 3
𝑓(𝑥) = 𝑥 2 + 2𝑥
𝑓 ′ (𝑥) = 2𝑥 + 2
𝑓 ′ (𝑥0 ) = 4
𝑦 = 3 + 4(𝑥 − 1)
𝑦 = 3 + 4𝑥 − 4
𝑦 = 4𝑥 − 1
Ans.: The tangent to 𝑓(𝑥) = 𝑥 2 + 2𝑥 at (1,3) is 𝑦 = 4𝑥 − 1
1 1
𝒃) 𝑓(𝑥) = 1+𝑥 2 , 𝑥0 = −1, 𝑓(𝑥0 ) = 2
2𝑥
𝑓 ′ (𝑥) = − (1+𝑥 2)2
1
𝑓 ′ (−1) =
2
1 1 1 1 1 1
𝑦= + (𝑥 + 1) ⇒ 𝑦= + 𝑥+ ⇒ 𝑦= 𝑥+1
2 2 2 2 2 2
1 1
Ans.: The tangent to 𝑓(𝑥) = 1+𝑥 2 at (−1, 1/2) is 𝑦 = 2 𝑥 + 1.
WolframApha: tangent to 1/(1+x^2) at x=-1
𝑥
𝑐) 𝑆𝑒𝑟𝑝𝑒𝑛𝑡𝑖𝑛𝑒 𝑓(𝑥) = , 𝑥 = −3, 𝑓(𝑥0 ) = −0.3
𝑥2 +1 0
6
𝑥 2 + 1 − 𝑥 ⋅ 2𝑥 1 − 𝑥2
𝑓 ′ (𝑥) = =
(𝑥 2 + 1)2 (𝑥 2 + 1)2
8 2
𝑓 ′ (−3) = − =−
100 25
2 2 27
𝑦 = −0.3 − 25 (𝑥 + 3) = − 25 𝑥 − 50 - tangent line.