0% found this document useful (0 votes)
34 views9 pages

AEM 3e Chapter 17

The document defines and provides examples of complex functions and operations involving complex numbers, including: - Powers and roots of complex numbers are defined using trigonometric forms. - The argument of a complex number or the argument of a ratio of complex numbers is defined. - Examples of limits of complex functions are given along different paths approaching a point. - Differentiation and simplification of complex functions are demonstrated.

Uploaded by

AKIN EREN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views9 pages

AEM 3e Chapter 17

The document defines and provides examples of complex functions and operations involving complex numbers, including: - Powers and roots of complex numbers are defined using trigonometric forms. - The argument of a complex number or the argument of a ratio of complex numbers is defined. - Examples of limits of complex functions are given along different paths approaching a point. - Differentiation and simplification of complex functions are demonstrated.

Uploaded by

AKIN EREN
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Part V Complex Analysis

17 Functions of a Complex Variable

EXERCISES 17.1
Complex Numbers

3. i8 = (i2 )4 = (−1)4 = 1
6. −3 − 9i
9. 11 − 10i

12. −2 − 2i
2 − 4i 3 − 5i −14 − 22i 7 11
15. · = =− − i
3 + 5i 3 − 5i 34 17 17
3 − i 11 + 2i 35 − 5i 7 1
18. · = = − i
11 − 2i 11 + 2i 125 25 25
21. (1 + i)(10 + 10i) = 10(1 + i)2 = 20i

24. (2 + 3i)(−i)2 = −2 − 3i
x
27.
x2 + y2
30. 0

33. 2x + 2yi = −9 + 2i implies 2x = −9 and 2y = 2. Hence z = − 92 + i.

36. x2 − y 2 − 4x + (−2xy − 4y)i = 0 + 0i implies x2 − y 2 − 4x = 0 and y(−2x − 4) = 0. If y = 0 then x(x − 4) = 0


√ √
and so z = 0 and z = 4. If −2x − 4 = 0 or x = −2 then 12 − y 2 = 0 or y = ±2 3 . This gives z = −2 + 2 3 i

and z = −2 − 2 3 i.

39. |z1 − z2 | = |(x1 − x2 ) + i(y1 − y2 )| = (x1 − x2 )2 + (y1 − y2 )2 which is the distance formula in the plane.

276
17.2 Powers and Roots

EXERCISES 17.2
Powers and Roots

   
3π 3π √ 7π 7π
3. 3 cos + i sin 6. 5 2 cos + i sin
2 2 4 4
√  
3 2 5π 5π
9. cos + i sin 12. z = −8 + 8i
2 4 4
          √ √
π 3π π 3π z1 1 π 3π π 3π 2 2
15. z1 z2 = 8 cos + + i sin + = 8i; = cos − + i sin − = − i
8 8 8 8 z2 2 8 8 8 8 4 4
 √         
π π √ 3π 3π π 3π π 3π
18. 4 2 cos + i sin 2 cos + i sin = 8 cos + + i sin + = −8
4 4 4 4 4 4 4 4
 
9π 9π
21. 29 cos + i sin = −512
3 3
 
√ 4 8π 8π √
24. (2 2 ) cos + i sin = −32 + 32 3 i
3 3
 
2kπ 2kπ
27. 81/3 = 2 cos + i sin , k = 0, 1, 2
3 3
 
2π 2π √
w0 = 2[cos 0 + i sin 0] = 2; w1 = 2 cos + i sin = −1 + 3 i
3 3
 
4π 4π √
w2 = 2 cos + i sin = −1 − 3 i
3 3

    
1/3 1/6 π 2kπ π 2kπ
30. (−1 + i) =2 cos + + i sin + , k = 0, 1, 2
4 3 4 3
 π π 1 1
w0 = 21/6 cos + i sin = √ + √ i = 0.7937 + 0.7937i
4 4 3
2 3
2
 
11π 11π
w1 = 21/6
cos + i sin = −1.0842 + 0.2905i
12 12
 
19π 19π
w2 = 21/6 cos + i sin = 0.2905 − 1.0842i
12 12

33. The solutions are the four fourth roots of −1;


π + 2kπ π + 2kπ
wk = cos + i sin , k = 0, 1, 2, 3.
4 4
We have
√ √ √ √
π π 2 2 5π 5π 2 2
w1 = cos + i sin = + i w3 = cos + i sin =− − i
4 4 2 2 4 4 2 2
√ √ √ √
3π 3π 2 2 7π 7π 2 2
w2 = cos + i sin =− + i w4 = cos + i sin = − i.
4 4 2 2 4 4 2 2

277
17.2 Powers and Roots

  3
3π 3π
    
1 π 1
8 cos + i sin
8 8 29 9π 10π 9π 10π π
36.    = cos − + i − = cos + i sin = i
π π 10 210 8 16 8 16 2 2 2 2
2 cos + i sin
16 16
π π 3π
39. (a) Arg(z1 ) = π, Arg(z2 ) = , Arg(z1 z2 ) = − , Arg(z1 ) + Arg(z2 ) = = Arg(z1 z2 )
2 2 2
π π π
(b) Arg(z1 /z2 ) = − , Arg(z1 ) − Arg(z2 ) = π − = = Arg(z1 /z2 )
2 2 2

EXERCISES 17.3
Sets in the Complex Plane

3. 6. 9.

12. 15. 18.

21.

√  √ 
24. |Re(z)| = |x| is the same as x2 and |z| = x2 + y 2 . Since y 2 ≥ 0 the inequality x2 ≤ x2 + y 2 is true for
all complex numbers.

278
17.4 Functions of a Complex Variable

EXERCISES 17.4
Functions of a Complex Variable

3. x = 0 gives u = −y 2 , v = 0. Since −y 2 ≤ 0 for all real values of y, the image is the origin
and the negative u-axis.
6. y = −x gives u = 0, v = −2x2 . Since −x2 ≤ 0 for all real values of x, the image is the origin and the
negative v-axis.

9. f (z) = (x2 − y 2 − 3x) + i(2xy − 3y + 4) 12. f (z) = (x4 − 6x2 y 2 + y 4 ) + i(4x3 y − 4xy 3 )

15. (a) f (0 + 2i) = −4 + i (b) f (2 − i) = 3 − 9i (c) f (5 + 3i) = 1 + 86i


√ √ √
π 2 2 −1 π 1 3 3 3
18. (a) f (0 + i) = + i (b) f (−1 − πi) = −e (c) f (3 + i) = e + e i
4 2 2 3 2 2
z4 − 1 (z 2 − 1)(z − i)(z + i)
21. lim = lim = −4i
z→i z − i z→i z−i
x+y−1 y 1 x+y−1
24. Along the line x = 1, lim = lim = = −i, whereas along the x-axis, lim =
z→1 z−1 y→0 iy i z→1 z−1
x−1
lim = 1.
x→1 x − 1

27. f  (z) = 12z 2 − (6 + 2i)z − 5

30. f  (z) = (z 5 + 3iz 3 )(4z 2 + 3iz 2 + 4z − 6i) + (z 4 + iz 3 + 2z 2 − 6iz)(5z 4 + 9iz 2 )


(2z + i)3 − (3z − 4 + 8i)2 8 − 13i
33. f  (z) = 2
=
(2z + 1) (2z + i)2
36. 0, 2 − 5i
z + ∆z − z ∆z
39. We have lim = lim .
∆z→0 ∆z ∆z→0 ∆z

If we let ∆z → 0 along a horizontal line then ∆z = ∆x, ∆z = ∆x, and


∆z ∆x
lim = lim = 1.
∆z→0 ∆z ∆x→0 ∆x
If we let ∆z → 0 along a vertical line then ∆z = i∆y, ∆z = −i∆y, and
∆z −i∆y
lim = lim = −1.
∆z→0 ∆z ∆y→0 i∆y
Since these two limits are not equal, f (z) = z cannot be differentiable at any z.
dx dy
42. The system = −y, = x can be solved as in Section 3.11. We obtain x(t) = c1 cos t + c2 sin t,
dt dt
y(t) = c1 sin t − c2 cos t.

279
17.4 Functions of a Complex Variable

45. If y = 1 2
2x the equations u = x2 − y 2 , v = 2xy give u = x2 − 14 x4 , v = x3 . With the aid of a
computer, the graph of these parametric equations is shown.

EXERCISES 17.5
Cauchy-Riemann Equations

∂u ∂v
3. u = x, v = 0; = 1, = 0. Since 1 = 0, f is not analytic at any point.
∂x ∂y
∂u ∂v ∂u ∂v
6. u = x2 − y 2 , v = −2xy; = 2x, = −2x; = −2y, − = 2y
∂x ∂y ∂y ∂x
The Cauchy-Riemann equations hold only at (0, 0). Since there is no neighborhood about z = 0 within which
f is differentiable we conclude f is nowhere analytic.
∂u ∂v ∂u ∂v
9. u = ex cos y, v = ex sin y; = ex cos y = ; = −ex sin y = − . f is analytic for all z.
∂x ∂y ∂y ∂x
∂u ∂v ∂u ∂v
12. u = 4x2 + 5x − 4y 2 + 9, v = 8xy + 5y − 1; = 8x + 5 = , = −8y = − . f is analytic for all z.
∂x ∂y ∂y ∂x
∂u ∂v ∂u ∂v
15. =3=b= ; = −1 = −a = − . f is analytic for all z when b = 3, a = 1.
∂x ∂y ∂y ∂x
∂u ∂v ∂u ∂v
18. u = 3x2 y 2 , v = −6x2 y 2 ; = 6xy 2 , = −12x2 y; = 6x2 y, − = 12xy 2
∂x ∂y ∂y ∂x
u and v are continuous and have continuous first partial derivatives. The Cauchy-Riemann equations are satisfied
whenever 6xy(y + 2x) = 0 and 6xy(x − 2y) = 0. The point satisfying y + 2x = 0 and x − 2y = 0 is z = 0. The
points that satisfy 6xy = 0 are the points along the y-axis (x = 0) or along the x-axis (y = 0). The function
f is differentiable but not analytic on either axis; there is no neighborhood about any point z = x or z = iy
within which f is differentiable.
21. Since f is entire,
∂u ∂v
f  (z) = +i = ex cos y + iex sin y = f (z).
∂x ∂x

∂2u ∂2u ∂2u ∂2u ∂u ∂v


24. 2
= 0, 2
= 0 gives + = 0. Thus u is harmonic. Now = 2−2y = implies v = 2y−y 2 +h(x),
∂x ∂y ∂x2 ∂y 2 ∂x ∂y
∂u ∂v
= −2x = − = −h (x) implies h (x) = 2x or h(x) = x2 +C. Therefore f (z) = 2x−2xy+i(2y−y 2 +x2 +C).
∂y ∂x
∂2u 2y 2 − 2x2 ∂ 2 u 2x2 − 2y 2 ∂2u ∂2u ∂u 2x ∂v
27. 2
= 2 2 2
, 2
= 2 2 2
gives + = 0. Thus u is harmonic. Now = 2 =
∂x (x + y ) ∂y (x + y ) ∂x2 ∂y 2 ∂x x +y 2 ∂y
y ∂u 2y ∂v 2y
implies v = 2 tan−1 + h(x), = 2 = − = 2 − h (x) implies h (x) = 0 or h(x) = C.
x ∂y x + y2 ∂x x + y2

280
17.6 Exponential and Logarithmic Functions

 y 
Therefore f (z) = loge (x2 + y 2 ) + i tan−1 + C , z = 0.
x
x y
30. f (x) = 2 −i . The level curves u(x, y) = c1 and v(x, y) = c2 are the family of circles x = c1 (x2 +y 2 )
x + y 2 x2 + y 2
and −y = c2 (x2 + y 2 ), with the exception that (0, 0) is not on the circumference of any circle.

EXERCISES 17.6
Exponential and Logarithmic Functions

√ √
π π 2 2
3. e−1+ 4 i = e−1 cos + ie−1 sin = e−1
π
+ i
4 4 2 2

3π 3π
6. e−π+ = e−π cos + ie−π sin = −e−π i

2 i
2 2
9. e5i = cos 5 + i sin 5 = 0.2837 − 0.9589i
5π 5π 5π
12. e5+ 2 i = e5 cos + ie5 sin = e5 i
2 2
15. ez = ex −y +2xyi = ex −y cos 2xy + iex −y sin 2xy
2 2 2 2 2 2 2

ez1 ex1 cos y1 + iex1 sin y1 (ex1 cos y1 + iex1 sin y1 )(ex2 cos y2 − iex2 sin y2 )
18. = =
ez2 ex2 cos y2 + iex2 sin y2 e2x2
= ex1 −x2 [(cos y1 cos y2 + sin y1 sin y2 ) + i(sin y1 cos y2 − cos y1 sin y2 )]
= ex1 −x2 [cos(y1 − y2 ) + i sin(y1 − y2 )] = ex1 −x2 +i(y1 −y2 ) = e(x1 +iy1 )−(x2 +iy2 ) = ez1 −z2
∂u ∂v ∂u ∂v
21. u = ex cos y, v = −ex sin y; = ex cos y, = −ex cos y; = −ex sin y, − = ex sin y
∂x ∂y ∂y ∂x
Since the Cauchy-Riemann equations are not satisfied at any point, f is nowhere analytic.
 π   π 
24. ln(−ei) = loge e + i − + 2nπ = 1 + − + 2nπ i
2 2
√ √ √ π  π 
27. ln( 2 + 6 i) = loge 2 2 + i + 2nπ = 1.0397 + + 2nπ i
3 3
30. Ln(−e3 ) = loge e3 + πi = 3 + πi
√ √ π π
33. Ln(1 + 3 i)5 = Ln(16 − 16 3 i) = loge 32 − i = 3.4657 − i
3 3
1 i
36. = ln(−1) = loge 1 + i(π + 2nπ) = (2n + 1)πi and so z = − .
z (2n + 1)π
π
39. (−i)4i = e4i ln(−i) = e4i[loge 1+i(− 2 +2nπ)] = e(2−8n)π

2+i(− π
= e 2 −4nπ [cos(loge 2) + i sin(loge 2)] = e−4nπ [3.7004 + 3.0737i]
π
42. (1 − i)2i = e2i ln(1−i) = e2i[loge 4 +2nπ)]

45. If z1 = i and z2 = −1 + i then


√ 3π
Ln(z1 z2 ) = Ln(−1 − i) = loge 2− i,
4
whereas  
π √ 3π √ 5π
Lnz1 + Lnz2 = i + loge 2 + i = loge 2 + i.
2 4 4

281
17.6 Exponential and Logarithmic Functions

48. (a) (ii )2 = (ei ln i )2 = [e−( 2 +2nπ) ]2 = e−(π+4nπ) and i2i = e2i ln i = e−(π+4nπ)
π

(b) (i2 )i = (−1)i = ei ln(−1) = e−(π+2nπ) , whereas i2i = e−(π+4nπ)

EXERCISES 17.7
Trigonometric and Hyperbolic Functions

π  π π
3. sin + i = sin cosh(1) + i cos sinh(1) = 1.0911 + 0.8310i
4 4 4
π  cos( π + 3i) −i sinh(3)
6. cot + 3i = 2
= = −0.9951i
2 sin( π2 + 3i) cosh(3)

9. cosh(πi) = cos(i(πi)) = cos(−π) = cos π = −1

12. cosh(2 + 3i) = cosh(2) cos(3) + i sinh(2) sin(3) = −3.7245 + 0.5118i


eiz − e−iz √
15. = 2 gives e2(iz) − 4ieiz − 1 = 0. By the quadratic formula, eiz = 2i ± 3 i and so
2i

iz = ln[(2 ± 3 )i]
 √ π  π √
z = −i loge (2 ± 3 ) + + 2nπ i = + 2nπ − i loge (2 ± 3 ), n = 0, ±1, ±2, . . . .
2 2

ez − e−z √
18. = −1 gives e2z + 2ez − 1 = 0. By the quadratic formula, ez = −1 ± 2 , and so
2

z = ln(−1 ± 2 )
√ √
z = loge ( 2 − 1) + 2nπi or z = loge ( 2 + 1) + (π + 2nπ)i,

n = 0, ±1, ±2, . . . .

21. cos z = cosh 2 implies cos x cosh y − i sin x sinh y = cosh 2 + 0i and so we must have cos x cosh y = cosh 2 and
sin x sinh y = 0. The last equation has solutions x = nπ, n = 0, ±1, ±2, . . . , or y = 0. For y = 0 the first
equation becomes cos x = cosh 2. Since cosh 2 > 1 this equation has no solutions. For x = nπ the first equation
becomes (−1)n cosh y = cosh 2. Since cosh y > 0 we see n must be even, say, n = 2k, k = 0, ±1, ±2, . . . . Now
cosh y = cosh 2 implies y = ±2. Solutions of the original equation are then

z = 2kπ ± 2i, k = 0, ±1, ±2, . . . .

ex+iy − e−x−iy 1 1
24. sinh z = = (ex eiy − e−x e−iy ) = [ex (cos y + i sin y) − e−x (cos y − i sin y)]
2 2 2
 x   x 
e − e−x e + e−x
= cos y + i sin y = sinh x cos y + i cosh x sin y
2 2
27. | cosh z|2 = cosh2 x cos2 y + sinh2 x sin2 y = (1 + sinh2 x) cos2 y + sinh2 x sin2 y
= cos2 y + sinh2 x(cos2 y + sin2 y) = cos2 y + sinh2 x

282
CHAPTER 17 REVIEW EXERCISES

sin z sin z cos z [sin x cosh y + i cos x sinh y][cos x cosh y + i sin x sinh y]
30. tan z = = =
cos z | cos z|2
cos2 x + sinh2 y
(sin x cos x cosh2 y − sin x cos x sinh2 y) cos2 x sinh y cosh y + sin2 x sinh y cosh y
= + i
cos2 x + sinh2 y cos2 x + sinh2 y
sin x cos x(cosh2 y − sinh2 y) sin y cosh y(cos2 x + sin2 x)
= 2 + i
cos2 x + sinh y cos2 x + sinh2 y
sin x cos x sinh y cosh y sin 2x sinh 2y
= 2 +i 2 = 2 +i
2
cos x + sinh y 2
cos x + sinh y 2
2(cos x + sinh y) 2(cos x + sinh2 y)
2

But
2 cos2 x + 2 sinh2 y = (2 cos2 x − 1) + (2 sinh2 y + 1) = cos 2x + cosh 2y.
Therefore tan z = u + iz where
sin 2x sinh 2y
u= , v= .
cos 2x + cosh 2y cos 2x + cosh 2y

EXERCISES 17.8 Inverse Trigonometric


and Hyperbolic Functions

2nπ + i loge 1 2nπ


3. sin−1 0 = −i ln(±1) = = = nπ, n = 0, ±1, ±2, . . .
(2n + 1)π + i loge 1 (2n + 1)π

√ 2nπ − π
+ i loge (2 + 5 )
6. cos−1 2i = −i ln[(2 ± 5 )i] = 2 √ , n = 0, ±1, ±2, . . .
2nπ + π
2 − i loge (2 + 5 )
i i+1 i π i π
9. tan−1 1 = ln = ln(−i) = −nπ + + loge 1 = − nπ, n = 0, ±1, ±2, . . .
2 i−1 2 4 2 4
−1
Note that this can also be written as tan 1 = 4 + nπ, n = 0, ±1, ±2, . . . .
π


−1
√ loge (1 + 2 ) + ( π2 + 2nπ)i
12. cosh i = ln[(1 + ± 2 )i] = √ , n = 0, ±1, ±2, . . .
loge ( 2 − 1) + (− π2 + 2nπ)i

CHAPTER 17 REVIEW EXERCISES

3. − 25
7

6. The closed annular region between the circles |z + 2| = 1 and |z + 2| = 3. These circles have center at z = −2.
π 
9. z = ln(2i) = loge 2 + i + 2nπ , n = 0, ±1, ±2, . . .
2
 π π
12. f (−1 + i) = −33 + 26i 15. Ln(−ie3 ) = loge e3 + − i=3− i
2 2

283
CHAPTER 17 REVIEW EXERCISES

1 17
18. − − i
13 13
21. The region satisfying xy ≤ 1 is shown in the figure.

24. The region satisfying y < x is shown in the figure.

27. The four fourth roots of 1 − i are given by


    
π kπ π kπ
wR = 2 1/8
cos − + + i sin − + , n = 0, 1, 2, 3
16 2 16 2
  π  π
w0 = 21/8 cos − + i sin − = 1.0696 − 0.2127i
16 16
 
7π 7π
w1 = 21/8 cos + i sin = 0.2127 + 1.0696i
16 16
 
15π 15π
w2 = 2 1/8
cos + i sin = −1.0696 + 0.2127i
16 16
 
23π 23π
w3 = 21/8 cos + i sin = −0.2127 − 1.0696i
16 16

30. Im(z − 3z̄) = 4y, zRe(z 2 ) = (x3 − xy 2 ) + i(x2 y − y 3 ). Thus,

f (z) = (4y + x3 − xy 2 − 5x) + i(x2 y − y 3 − 5y).

33. z = z −1 gives z 2 = 1 or (z − 1)(z + 1) = 0. Thus z = ±1.

36. z 2 = z̄ 2 gives xy = −xy or xy = 0. This implies x = 0 or y = 0. All real numbers (y = 0) and all pure imaginary
numbers (x = 0) satisfy the equation.
√ π √ π
39. Ln(1 + i)(1 − i) = Ln(2) = loge 2; Ln(1 + i) = loge 2 + i; Ln(1 − i) = loge 2 − i.
4 4
Therefore,

Ln(1 + i) + Ln(1 − i) = 2 loge 2 = loge 2 = Ln(1 + i)(1 − i).

284

You might also like