0% found this document useful (0 votes)
35 views3 pages

MATLAB Signal Processing Guide

The document contains 3 MATLAB scripts that: 1) Create a transfer function from coefficients and plots the step response. 2) Finds the Fourier series of a periodic square wave from 0 to pi. 3) Finds the Fourier series of a half-wave rectified sine wave from 0 to pi.

Uploaded by

vh12531ece22
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
35 views3 pages

MATLAB Signal Processing Guide

The document contains 3 MATLAB scripts that: 1) Create a transfer function from coefficients and plots the step response. 2) Finds the Fourier series of a periodic square wave from 0 to pi. 3) Finds the Fourier series of a half-wave rectified sine wave from 0 to pi.

Uploaded by

vh12531ece22
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
You are on page 1/ 3

Ss ia-3

1) Write a MATLAB script to create a transfer function representation of a


lineartime-invariant system and then plot its step response.

Program:
% Define the transfer function numerator and denominator coefficients
numerator_coefficients = [1]; % Adjust as needed
denominator_coefficients = [1, 2, 1]; % Adjust as needed

% Create the transfer function


sys = tf(numerator_coefficients, denominator_coefficients);

% Plot the step response


figure;
step(sys);
title('Step Response of the LTI System');
xlabel('Time');
ylabel('Amplitude');
grid on;

Output:

2)Find the trigonometric fourier series representation of a periodic square wave


x(t) = 1, for the interval (0 , pi). Write matlab program

% Parameters
T = pi; % Period of the square wave
t = linspace(0, T, 1000); % Time vector

% Square wave function for one period


x_t_periodic = ones(size(t));

% Fourier series coefficients


a_0 = (1/T) * trapz(t, x_t_periodic);
n_max = 10; % Number of harmonics

a_n = zeros(1, n_max);


b_n = zeros(1, n_max);

for n = 1:n_max
% Compute coefficients
a_n(n) = (2/T) * trapz(t, x_t_periodic .* cos(n * 2 * pi / T * t));
b_n(n) = (2/T) * trapz(t, x_t_periodic .* sin(n * 2 * pi / T * t));
end

% Trigonometric Fourier series


x_t_fourier = a_0/2;

for n = 1:n_max
x_t_fourier = x_t_fourier + a_n(n) * cos(n * 2 * pi / T * t) + b_n(n) * sin(n *
2 * pi / T * t);
end

% Plot the original square wave and its Fourier series approximation
figure;
plot(t, x_t_periodic, 'b', 'LineWidth', 2, 'DisplayName', 'Original Square Wave');
hold on;
plot(t, x_t_fourier, 'r--', 'LineWidth', 1.5, 'DisplayName', 'Fourier Series
Approximation');
title('Trigonometric Fourier Series of a Square Wave');
xlabel('Time (t)');
ylabel('Amplitude');
legend('show');
grid on;

Output:

3) Find the trigonometric fourier series for half wave rectified sine wave.

% Parameters
T = pi; % Period of the half-wave rectified sine wave
t = linspace(0, T, 1000); % Time vector

% Original sine wave


x_t_sine = sin(t);

% Half-wave rectification
x_t_rectified = x_t_sine .* (t >= 0 & t <= pi);

% Fourier series coefficients


a_0 = (2/T) * integral(@(t) sin(t), 0, pi);

n_max = 10; % Number of harmonics


a_n = zeros(1, n_max);
b_n = zeros(1, n_max);

for n = 1:n_max
a_n(n) = (2/T) * integral(@(t) sin(t) .* cos(n * t), 0, pi);
b_n(n) = (2/T) * integral(@(t) sin(t) .* sin(n * t), 0, pi);
end

% Trigonometric Fourier series


x_t_fourier = a_0/2;

for n = 1:n_max
x_t_fourier = x_t_fourier + a_n(n) * cos(n * t) + b_n(n) * sin(n * t);
end

% Plot the original sine wave, half-wave rectified wave, and Fourier series
figure;
subplot(2,1,1);
plot(t, x_t_sine, 'b', 'LineWidth', 2, 'DisplayName', 'Original Sine Wave');
title('Original Sine Wave');
xlabel('Time (t)');
ylabel('Amplitude');
grid on;

subplot(2,1,2);
plot(t, x_t_rectified, 'r', 'LineWidth', 2, 'DisplayName', 'Half-Wave Rectified
Sine Wave');
hold on;
plot(t, x_t_fourier, 'g--', 'LineWidth', 1.5, 'DisplayName', 'Fourier Series
Approximation');
title('Half-Wave Rectified Sine Wave and Fourier Series');
xlabel('Time (t)');
ylabel('Amplitude');
legend('show');
grid on;

Output:

You might also like