COMBINATIONAL CIRCUITS
™ Numbey systems, Boolean algebra, Logic garces FMAM,
Sor and pos act as raw materials for building
2 digital system.
S.A clreutt outpute a digit in the form ot 4 bitte”
O te vepresented by 0000,4 is represented by co0|y- 4
by 1001. A combinational circuit is to be derigned
which takes these 4 bits af input and output as 4,
Fo the digit ¢s 25,and © otherwise. a-f only AND/OR
and Not gates moy be used, what it the minymum
dumber of gates required ?
tay 4 uss WR (da
Output= 4) Input zs
= 0, otherwise
Input 79. dont care
<2 Output) = Sm(5,6,4,2,9) +4 (10) My L213 INAS)
cp
AB eo OL u lo
fa A+ BDTBC
x
»
*
x
HS
7
co
*
No-o-f goter = 3
OCAIINEU WILT Lallloca&In the above question, find the Minimum number o
ef gates only it a Input gates are to be uted?
lau SD 3 Le) 2 Cd 4
Output, F- A+BO+Be
A
= A+e(c+d) +
B
vNo-vot 2 Input qates Ls
¢
required =3 . 2D
8: Twe products are cold rom a vending machine,
wehich has two puch buttens Pp, and P,, When o button
ts pressed ithe price of the correcponding product ts
displayed Inia + - segment display. df no buttens are
pressed, ‘o’ ic displayed , signitying Rs ot tf only Py
vs precced, ‘2. (e displayed 1 Signifying ©Rs.Q', If only
Py is pressed, ‘5° is pressed, signitying “Rs+S'. Tf both
Pr and Pa are pressed, ‘E? Is displayed, Siqnitying ‘Erm?
The names of the seqmrents in the 4 - seqment display,
and the glow ef the display for %o', 627, ‘S!, Se’ and
are chown below.
A ° 2 s
2 ee ee
“|
jf Jot ft. fle
Consider
D
c Puch butten pretred|act pressed \n equivalent +e
Logic Llo respectively
OCAINEU WILT Lal locaRNA Segment glowing Inot glowing In the display ts
equivalent +o Logic tlo respectively
Itia seqment ® +t» 4 are considered as -unetions of
‘the following |e correct:
Proand Ps , then whith o
Cr ae
BG Q=PitP2, d=ecte
Co Ge PtPe, ea bre
Po g= Pi tha, go bre
Let us construct @ truth table for @ +o q-
Pr Py a b © d « + q
9 ° ° ‘ ‘ \ t \ ( °
° t 2 { \ ° ' ‘ ° \
4 ° 5 \ ° | ' . \ '
i ( € ' o 0° \ ‘ ‘ ,
ast
b= Po = Ha Pre = %
c= PF
det
© = Smet) 3) = WMA) = fo+P,
fe se mlo, 213) = TMU) = Pot Pa
@= Sm (12,2) = WM lo) = PrtPa
Consider,
e+e = Fett hy
sw d= e+e and q= PitPa
varied wit ValliacaBut
b+e = P+ th thy
ties, b+e #@e
(by What are the minimum number of NOT gates and
Q-Input oR gates required to design the logic of
the driver for this 4-Seqment dicplay?
A-2 NOT and 4 oR
B 2 NOT and 4 oR
cl Not and B OR
D2 Not and 3. og |
A=| kde 4+ Ne gatts required |
!
|
1
Q-NOT gates and 3-0R qotts are required.
skAdvantaget of Digital System!
—> Pigital systems are
\ Compact 6. Cost effective
a. Accuracy
3. Precision
4. Stovage
S: Faster
OCAIINEU WILT LalllocaCombinational creuits
WD Pretent
On pretent input only.
ao Requiyet ho memory
awd No +eed back
Ea* Halt adder, F-Ay
Mur, Decoder ete
ARITHMETIC
> Consider addition ot
° °
° 44 4
eu —_—
° \
SE HALF ADDER?
=> Addt two bits and
A B S Cy
o ° ° °
° \ \ °
\ ° r °
\ \ ° \
ee ada
ty =AB
output depende
Sequential elreults
W Pretent output depende
On precent Input &previot
output:
UD Memory present
dip Feedback is present
FA? Fliptlops, Registers and
counters Cte
CLR CULTS
two binary digits
\
\
=> +!
+ 4 —
— 10
106 rx
carry sum
outputs cayry and cum bit!
A 8
OCAIINEU WILT Lallloca* Halt adder using NANDINOR! |
i
|
CD veing NAND:-
— S=A@B
nBHCy
Min number of NAND gates required = 5
Gb Using Nor:
> Contider,, A@B= ABtAB = (A+B) (A+B)
OR- AND = NoR-NOR |
Cy = AB
Rte = AB—AB= Carry
3
Min no-ot NOR gates = 5
( a 324 6 > In a general addition, we
2 ¢ 2ae need to add a-digit< at
4 oo 6 4 8 a time which are two
- OCanMneu will Valllovcainputs and one carry -tyrom previvue addition.
car roo tt
mw e to toy
ee
Lo ° ' %
Hence we gor -full adder, which performs 3-ble
addition.
HR FULL ADDER! -
A B Cen SF Cy (Cour)
° ° ° ° °
° ° \ \ °
° \ ° ' ny oS = Srolt, 24,4)
° ‘ \ ° ' = A@BO@c
1 ° ° ' ° Cy = Sm( 31516.)
{ ° \ ° \ = A@B)C+aR
‘ \ ° ° '
! \ \ i \
> Consider k-map tor simp lifeation of Cout ,
BC
t 0
s oo ot it Cy = ABTBCTAC
(" .
2 Rect Age tABC+ABC
|
( @
= (A@a)c + AB
OCAIINEU WILT LalllocaA@B
|___+4 A@DRO CHA
© )>
(A@e) ©
OD
— cy= AEH +AS
tov) (Ren
bp) = Cy=ABtec+Ac
—
*4
a* rep of cys Requires Lees number ot gates
and rept Hat Less propagation delay,
'
tpd = ata |
Q. Ln the clrewt of Higure A,8,¢ are the inputs |
and Pi\G are the +wo outputs. The circuit tsa
a B ce
8
p
OCAIINEU WILT LalllocaCAV halt adder where P is -the sum and & {is carry
(By halt adder where P js carry and @ js sum
US Full adder where Pp jig sum and @ js Carry
@) ull adder where ¢ is carry and & is sum
8 = AB+BC +AC = Carry of Full adder
P = A @@@c = Sum of full adder
[—_ cy
# Tenplementaton of FA using tHA's:
ADBOa
=$
A’ —la s
HA WA (a@eye
6 6 Cy
Gy= Aas
| FA = 2 HA + LOR gate (n@ere
a Implement FA using a ip NANDINOR gates
Pipl ly
Bea AB HA08)c
=%y
OCaeU WILT UallouaMin norot gots required = 9
—™ Sum, $= A@®e@®e and carry, Cy = AB+RO+AC are
both self dual Functions: Hence NAND &NOR
trnplementation is same.
Q-A full adder can be made out of
(0) Tus halt adders
Ch) Two halt adders ond a Not gate
Gi twe halt adders and an oR gate
(A) Two halt adders and an AND gate
VPA - 2 HA 4 1 OR qate
&- Which one of +the following will qive the sum of
full adder a4 output!
CH) Three Input majority carry
VI Three bit parity checker
(ce) Three bit comp arater
(A) Three bit counter
Sum of full adder = A@e@c |
= odd parity detector |
Three input Majority carry Carry of full adder
@.tThe halt adder circuit In the given figure bas
Ip
i—)—
inputs ABe Tl
A B
OCAIINEU WILT LalllovcaThe Leqte level of P and 4
outputs will be
(oP =o and ao L6) P=0 and a=!
Ke) P=t and Q@=0 (4) pet and & Consider substractions in decimal and binary syste
Decimal: 1
OY Bor row
3 GB C10)
a
“2 ZA. Decimal “10!
4 04
Difference
Binary:-
TD Borrow
o 1 Oo Uv=2)
- —. =1
of — _—
7 A A ce ditterence
RNOTE*-
X-oR (£ aleo called quarter adder-
FHALF CUBTRAC TOR!
A 8 Dp Be
° ° o D= AGB+AB= AGB
° ' ' ' BL = AB
\ oO ' eo
OCaINIeEU WILT Uallloca™ Hol adder and halt cubtvactor ditty juct
by a tingle inverter
A — o
e— 8.
¥
uy
—> Minimum number of gate required 0 tm plement
holt subtvactor are 5 (2a \\p NANDI NOR gates)
Q@. Consider the +fellowing statements ! A halt—adder
Il. @s a halt subtractyr alco
2. Has two outputs (y= %-y and sy=%@y fer tro Inputs
x and y-
3B. Has two outputs Cy= 444 and Sy= 2OY for two
inputs kK and y:
4. 2e a combinational circuit
Which of the statements given above tslare corrrect?!
@) 1,2 and 4 (ey 1,2 and 4 GF YH only
(ad) 2 and 3 Cer a,4
Halt adder: Sum= 1@y
Carry = 44
It te a combinational circuit
OCAIINIEU WILT LalllovaBorrow qiven=4
Ditference=+
Borrow taken =1
SROFULL SUBTRACT OR!
— Takes three InputS! A,B > Serrow qiven eo nett
(Lower) @tn and outputs : pitterence, Bour (Borre
to be taken trom higher)
A B Be 5 8.
0 o D ° °
° ° ‘ ' \
° \ ° 1 \
° 1 1 ° \
' ° ° ' ”
\ ° ' ° 5
‘ ' ° ° °
Ditterence, D=Sm(1,2,4,9) = A@aOc
Bervow, 6s = Sml1 2139) = Rar l(aovde
OCAINEU WILT LalllovcaOCAIINEU WILT LalllocaBec
A@sOC |
a
|
x Rwac)= ABC*BS)
= ABC+ABC
te 8@c
L :
. Raceawet+ase |
aA S |
Be = Emlt 2139)
Lt if Q full subtvactor
Full subtvacter using halt pybtracter!-
Bo= Aa +(ageye
FS = atts+4 oR
NOTE!
Number of two Input NAND| NOR gates required te
tm plement Full sulstvactor + 979°
—> Consider 4—Lit binary addition,
OCAIINEU WILT LalllocaKY bit Parallel | Ripple carry adder:
aa BS Cs Aa Ba G Ay ® Gg he 8 Gee
a ie E 1
©
Cy 3 le 5 I !
Be N—bit parallel Ripple carry adder?
\
~~ Towel delay = nTp, = Ant, 5 depends on interna
civeurt of FA
Tea = Propagation delay of each full adder
Tea = 214
where, Tq = hate delay
= Tetal delay, Te, = Un-OTe + mat( te, Te)
Te — Prop delay of carry tn FA
in FA
Ty = Prop delay of cum in
should wait
= Tn on bit parallel adder, every ctaqe
tor +he carry tyvom previous stage hence
Tp = Un-i) Te + Max C Tei Te)
OCAIINEU WILT LalllocaEx :- To =3one | Tem 20ne “pat Bons
are ees +=0 \ 40
4 bs ¢
Ca Ag 8 1 Ay Gq he Bo
\ %™ Boos Co=0
i" La |
PAS FAD Fohy EAL
s: Si Ss
oy a Gons a Yont ‘ Dont So
¥ 4 Fons v 4
ton =n il
2 Tetal delay, tT = Ione
lor)
The (4-1) (20) + max (30,20)
= 60430 = WOME
He N-bit parallel adder
> It is a N-bit Full adder
lor)
CN-0 eA + UA Chor us -B)
Since 4% ©Ae ater
N-bIE parallel= (N= (a HAD + UA
adder
=lan-\) HA
> We can Implement e-bit paralle| adder by cascading
two 4 bit parallel addere
> Since carry fs propagated Uke a ripple from one
adder +v other, It It also called ac Rpple carry
adder:
OCAIINEU WILT LalllocaSince carry input in the present state 1s clepending
on carry output from the previous state delay
increases With Increatce th number of bits.
We tan overcome this ditadvantaqe by uring L2ok
ahead carry’ (oy)'Cayry took ahead adder?
BZ the vipple carry adder Shown I+ In each FA sum
requires Yonek carry requires 2ONs
hy 6 Ay B “ Ao Bo ge
“| \ & ‘1 2 1 By bo=O
PAs PAs
cy ts Se \ Se
Determine -+the Ci) Total delay
QD Addition rate
W Ttme delay, Ty = (n-) Tet matlTe,Te)
= (4-1) (20) + mar (42,20)
= 6o440 =loons = 1 *S
GD Addition rate = Novot additions per second
ExT A addition takes OS See
Q additions can be done In 4 see
Here 4 addition takes (o78ee, tn 4 see,
Lm, = ot Additionticec
fom
Addition rate = lot add (sec
OCAINEU WILT Callloca&- A \6-bit ripple carr adder is realised using l6 i dental
full adders(PA) af shown in -the Fiqure:the carry prop”
-agation delay oft each FA jg [ans and the cum
propagation delay of each FA ts 159%: The worst case 5
i
delay (in ns) of this [e-bit adder will be j
Ao Be al Aw Bq Mis Bis
ls Cy i
FA FA, |_--- FAW,
So s ¢
Tes 15ne and Te = lane
Total delay, Tr = (n-OTe 4 maa Te Tey
Number of bite, n= IC
= (6-1) (127) 4 mat (15 112)
|
|
= Woy 15 = 19S NS
6. A hald adder is imple mented with xoR and AND
gatet-A full adder is Implem ented with two halt adderc
and one OR gate: The propagation delay of an KOR gate
1s twice that of an AwploR gate: The propagation delay
et on ANdIOR gate Is wamicreseconds. A Y-bit ripple-
carry binary adder Is implemented by using feur ful)
adders: the total propagation time of this U-bit Ginarg
adder is microseconds is
cad VepRS G) SL cop aype Carla ope
OCAIINIeEU WILT LalllocaDecign vt full adder
HA
hope
Clearly,
To of FA = WB HE
T. of FA = HOPS
Total delay, Tp = (4-1) Cure) a mad (4 8)4-9)
= alte) = 1aape
aA fu adder con be Implemented with hal adders and
DR gates: A 4-bit paralle) full adder without an tntttal
4 e 4
carry requiret
(ae halt-addert, 4~0R gates
Cb) 3) bit parity checker
ce) + halt adders, 4 OF gates
we z halt adders, > OR qatts
yu obit parallel ull adder: 3 FA 4 WA
HOA = FHA
+ 3 OR
v te
aA atta RHA No eR qater qores
41OR +4 oe +4 OF
OCAIINEU WILT Lallloca@& The ctreult shown tn the fiqure hac 4 bores cach
ith
described by PiQiR gnputs and outputs 2 wit
Y= P@RQeR RO+PR+ OP
—_—
Output
The cireult acts ar a
la) 4-bit adder gqiving P+O
SHu-bit subtract qiving P-8
W) Y—bit cubtracter giving 8-P
{d) None
Y= P@R@R = Sum of FA
= DI of Fs
Z= RQ+PR+RP = ABH ACHBC =A-B
= Borrow of FS
= P-8
Tt je 4 bit subtracter giving e-8
ae UNIVERSAL APPER] SUBTRACTOR!-
| Adder: A+B
|
Cubtracttr :A-B = At 2's comp of ‘a!
= A+i's tomp of ‘B44
OCAINEU WILT Lal loca™ Concider,
sit
> ot
8. All
subtracter
A- B= Ayes)
FA
B@o=
&
Ba
~ oath.
FAd
B@4=8
So
oS
ctr l=05
Az Ara Ay Ao
=> ave
G) Ba Bp & B&
ctrl=4 then, 4A
tn
positt on
Aa Ap Ay Ao
=> A4B44 . Ato's comp
Bh wh Be
of &
= A-B
the blanks .Tn the two $i4 full adder!
unit chown In Figs: when the switch ic th
- aor attng ~ ~~ _ arithmetic.
Bo
Bu
Ay As
es eS
Ain
Ben
2 ble
Full adder
cum
OCAIINEU WILT Cdl locaPosition 4: Cin = 0
Position
Pocition a siqnitles subtraction using 9's comp
arith metic
Qs Consider the ALY Shown below
TH the operands are in ave complement reprecentation
which of +the following operations can be pertermed by
cultably setting the control Lineo kK and © only ct and
— denote additien) and subtraction ‘vecpectively) ?
car A+B, and A-B but not A+)
We) AtB, and At, but not A-B&
(e) A+B, but not A-B, Or Aty
Lat ate, A-B and A+)
tT =t and Co=lj} A-B+y = A-B (2's comp)
k=0 and Co= 0} AtBI Add
=o and C='} Add ga
OCAIINEU WILT Lallloca“Figure 2 chowe a U-bit ripple carry adder realited
Bing +ull adders and figure 2 shows the circult of a
Full -adder (FA). The propagation delay of the KOR,;AND
and oR gate in Hqure DZ are aone,tSns and fons,
Fespectively: Assume all the Inputs to the Y-bit adder are
Initially retet to b.
At +t-0,the inputs +o the u-bLit adder are changed ts
FeRyko= 1100, Ya2%%o~ 0100 and %w=loThe cutpuk of the
yipple carr dey willl be stable at tlin ns) =
PP 4 ad
Y, Ka YX YX do
Zn +t
2
5
= =4
Sol. 1 0; 0 le 2.
' ', 0 6
1
° tSoo °
f ‘ j |
vt 0 Oo, 9 = |
ee Tade pendent
—e |
neglect
Independent of
cHirct two addittonePom ely euit given,
Sp- KX @y@z
Ena) = Cx@y)z4¥y
Let ut tind worst care delay for sumicavry of
Full adder |
Scaliieu Witt Galloca~ Tetal delay tor qiven addition = SOns
o 31
\ ° ° t
Se G0 & Consider
1 ' ©
°
A= lons Mons
toto
\ o=p-""* neglect delay
1°
adder realised
Q-Figure 4 Shows a 4-bit ripple carry
using Full addevs and fiqure T shows the cireult of a
full gader Cea) The propagation deloy of the KOR; AND |
+ sn and tons. AiUne
and oR qatts Yn Raure T are Wne, Iso
ia LAE
all inpues te 4 bit adder are Initially reset to?
+ =o, Inpute are appited be termine worst case deloy,
=o,
Fiqures ore mentioned In above question,
20n
@) I8Ons tb) 1eS ns cey uons Cay l2ons
(ey fasns
OCAIINEU WILT LalllocaOCAIINEU WILT LalllocaPE BCD ADDER!
An adder which’ can add two BCD numbers and
Qqivee recult aleo In Ben using binary adder.
BoD range :- © to 4
Range o+ A+R: OF bo G+tq
Oo +o 18
T+ vesuit 0-94 ~s no change Ce,
BCD retult= Binary retult
Tif result >‘a',
Eas 10l0 ~ Binary = | e000 : BeD |
cy oa
a
leolo- Binary
— Concider,
1 0000 vy Doe
> 10 V0 ty tool.
colle * Oh tm
TT ——-
— Hence, 6D recult -Binary result=6 Cres) if recult >
oo
or
Bcd result = Binary result + 6
=> To ged ia valid sep result from addition of two
need to
Bcd numbers using a binary adder, we
perform -following ,
W at re:ult -q — No need +o change retult
<
eo? toa da
UD af resale 74 V-e-) Sum?>9 tov) cy=t’? ,ad +
Binary vetult:
ocanneu Witt CalttstaBinary result BCD refute |
|
i
|
Cy Sa Sp Sy Se Cy Sa & 8
° ° ° ° o ° ° oD °
° ° oo \ ° © oo 4 same |
as
: . i
” binary |
° \ ° ° 1 ° \ oO oO \
Result 4 ts tos ee oe
sum7q | ° Yoo \y o4 © © o 4
Low o wad
° 1 fi ‘ \ vb to 4 1
= ol
“4 ' ° ° ° ce 1to
\ ° ° ° \ o ttt
\ ° ° 1 ° 1 9 0 o
‘ toy rt
ea? tb’ to 1@ > 1 © © 1 oe
@y 11.90 gt to
1 1 8 oo
e,?
— when we add ‘te, cy fs always 4 In the BO
result:
=> Let us find the cipression for tinal carry of
the result:
sum 79 2 Zio, 12,13,
fii aoe lilac Cie ea
(415),
OCAIINEU WILT LalllocaCie
SEN oo e' om to
Ae Sum7d t $2624 S25)
°} Coy?
cya t
ty |G r Py ll ‘
r x Cout = S3Sa483Sir%y
a rfo [|
Pa Sah 485%)
Ay Av At ho B, Bp 8 Bo
<— Bcd inpute
bit Parallel Adder oes
. ell I
Y-wit Parallel Adder
Sg Sy S So
BCD result
Fat BCD Adder
OCAIINEU WILT LalllocaUO Recult <4!
Resulte <9
9)
Cy result 77+
Az Ar Al Ay 63 BA Bo
4 bit paraliel adder—
Cy
Sa $2 $4 Se
4 bit parallel adder
$3 $2 $, Ss
Ay ALAl As By 82% a.
LU
4 bit parallel adderfr—_— Co =o
6
4
Sg Seo Sr
} poo
$3 $7 S\'se
4 bit parallel adder
$3 Sp SUS
|
—_———
BCD retult
OCAIINEU WILT Lallloca
— eco pls
ComeSE CARRY Look AHEAD ADDER !-
— Consider,
«
in 9 ' Gon 8 Cn 6 |
A ° ° A of A i 4
8 ° © 8 1 1 B , '
oo ° o 4 ta _ _
ti—t Qe Oi
Cout Cout
< Cout =
Ce, NO cavry Cout = Cin OCH
c te
Propagate carry rGencrat
4 4
ABIAB=A@QH AB
Cout = PeCin 4 Gi
Cea pe Gir PCE = ALBL 4 (AL @BIICL
= ACBL (CALA BO CO CAttEr minimisation by
5 Here, k-map)
Generate carry, Ge = AC
Pi = ACO Cov) AL+Be
+e
Propagate carry,
HKU-Bit carry look ahead adder!
GES ALEC 5 PE= AT OBL
Ses AT@eBLOeE = NOC
Chay = GOR PEE
Cy = Got Pole
Cae GPL = G+ Py C40 + Pole)
Girt Py Go + PrP ole
OCAIINEU WILT Lal llocaSa= G4 Pats
= Ga Paty t Pah Go 4 Pa PiPole
CH= Ga tea ce
= G2 + Pae
a 382 + Pa Po Gy + Ps P2 Pi Ge + Pa PoP) Polo
circu
y byt carey Qenerater
$3
tq
SS
2+q
Total delay for sum, ts= 4t4
cary, te=3tq
_> The above delay if same irrespective of number of
bits.
consider a y-bit (N-bit) carry Look ahead adder.In
>
carr enerator civcuit,
4q
OCAIINEU WILT LalllocaNo-vo-+ AND qates= 14+ a4 344 = Ip
v
alle s Up
~IAR 42 4-0 4N 2
NIN 4D |
a
MO'Sf OR gates=4oNn
’
|
1
'
'
|
Rip to S Vp gates
&- A carry Look ahead odder fs frequently used for
addition pecause jt
Lets faster (by Ts more accurate
CO Veer Fewer gates Cd) Cocts Lece
Carvy look ahead adder hac relatively less propagation
delay hence lt te facter-
&. Ascertion A. Look ahead carry adders are fast tn
operation
Reason Rs Paralle) cavry generation Improves the speed
ot addition,
Loot ahead carry adder vs Ffatttr v-e) Afcertion
ts true and the reason behind Us the parallel
carry generation.
‘KR is true and 'R per-tectty explains it
6. rn a carry took ahead adder, the carry qenerate
function a and Ne carr propagate function Py for
Cnpuke AuBe are given by
oe GL PRC ce ts the Inpue
see Pt OC and Ceyy= Giri where ie
carry:
Consider the +two-Levet Loqte Implementation of the
look-ahead carry generator. Accume that fo and a
OCAIINEU WILT Lalllocaar
© available tor the carry generator circuit and th
tit
AND and OR qgattee can have any no-vef inputs. THE
humber of AND gates and OR gates needed +o implem
ent the Look ahead Carry generator for a u-bit adder
with §3,6,, Se and Cy at its output are recpectively
A+ G13 BM Ot C1 G4 pb. 19,5
Given gates can have any number of Inputs and
Ne=4
Number of AND gates = Wnad - AUS ~ 6
Number of OR qater =N=4
@.A ubit carry-Look ahead adder, whith adds two
u-bit numbers , ts desiqned using AND OR, Not; NAND,
NOR gates only Assuming that all the inputs are available
uncemplemented Form and dey
Un both complemented ana
of each gate ts one time unit, what is the overall
propagation delay of the adder? Assume that the carry
network has been implemented using two-level AND-OR
Logie
AG time unite 8.6 time unite c. 0 time units
p- la time units
A@e = AB4A 8 - (At8) (AFB) = AB (a+8)
. =n = 1. =>
WW
atq
24
OCAIMEU WILT Cal llocaTetal delay = 6+4
= 6 time units
®-A Y-bit cavry (ook ahead adder, which adds two 4bit
Mumbers, CS designed using AND, oR, NOT,NANP,NOR gaees
only: Assuming that all the Inputs are available In both
complement and uncomplemented form and delay of each
gqatt fs one time unity what ts the everall minimum
ot the addertAcume that
possible propagation delay
implemented using two-level
carry network hat been
ANP-oR Logic?
A> 4 time units B. 6 time units
Us time units bp. # time units
Cony e CAce Bice + Ar Be
= (ac @Bid ce +A be
PL = ACH+BE lord AC OB
minimum propagation detay
Poe Act Be + qives
OCAIINEU WILT Lalllocamultiplied:
numbers
OCAIINEU WILT LalllocaAl Ae B, Be Ye Y 1 Yo
° ° ° o ° ° ° o
oe 2 f oo oO ©
' ° \ ' o 110
' ' \ 1 1 eo eo 1
> Y3) 42, VisVo can be expresced in -berme ot minterme
ond can be solved to cop uting F-map-
@. Consider the ctreuit In taure which hae a four SIE
binary number babebibe oc input and a five bit binary
output: The clreult implements
number dydgdadide at
by br by be
u-bit Co
Couk — Linary addev
ay
da da dy de
lo Binary te Hex convertion
Ww) Binary +o BCD conversion
ce Binary +e QrO4 code conversion
radix -l2 Conversion
4) Binary +
Hy} Output of AND gotene
It (nput:o to
t same
., Result
OCAIINEU WILT LalllocaT+ performe Binary +o vadli-12 conversion.
Q-To add -+ro0 mbit numbers, the required number of
holt adders ts
Ca ams Cb) a™ Coamt) Cd) am
mbit addition tCm-F A + tA
2 alm ta 4] MA
=lam-') HA
implemented
&-A a-bit binary muttiplier ca” be
using
Wa (nputs AND only
Leda input xome and 4 Inpue ANP qnase only
CO) Two a impue Noks and one XNoR gate
) KOR qotes and chitt reqitters
Ay Ao .
Dt requires & inpa
By be qui r
Be Ao Be xoR's and 4 input AND
AaBy Ane gates (eince it requires
tL
cf halt adders).
OCAIINEU WILT LalllocaLoGicAL c£RCLITS
\-bit comparator !-
A>?B AaB A=B
a ® x y z
° ° ° © \
* 7 ° \ °
' © r ° ©
\ \ ° 1 i
X=AB
Y= Re
J
athe ebycult shown in the -Hqure ve
AB
D—
5
CMAN adder ctycule
Cb) Subtractor cireuft
OCAIINEU WILT LalllocaLSA cComporater clr cule
CMA Parity qenerater ctycult
a a
AB! APB
5 AD ye ae
R
Aa—Ace
sat is a comparator et veuit:
“kK Q-bit comparator !-
> Let R= AlAs and B-6,B. be two abit
Xp ALB = ABE
Yoo: Aveee = ALBE
Vir ay=8i > ATORE
() A>Bi-
(ay>ei) er [Careep 2 e789)
we ky be Ke
WwW AeB! 5
CA, ee) of [Caria 8 & UAe < Be)
ye YY +2 to
= 8) and (Ao= 8c)
binary number
OCAIINEU WILT Lallloca3k Method -21-
A B
A, Ao B, By x yo @
° o
G
° °
e °
sr REN AS
Are: x = Sm (4,8,4, 12, 18,14) 2 © times
stat
Reet Y es Smli243,6,9 "26 TY
Ss m(0,5,10,15) > 4 Hees
>
"
B
”
"
OCAINEU WILT Lallloca— ¥%1%,% Can be solved uring F-moP and can Ahen
be implemented-
HK SWAT CHING CLRCUITS:
We MULTIPLE XER*
= G+ fs a combinational cipycutt which contains many
inputs and single output:
— Basted on the selection input it con select any
one o+ the many Inputs and -transters +o the output
> MUX can be uted +o Implement Logic -unctions.
nN selection n cel Up
Up
Dse of mMox Cexample):
6 A Selected Source
MP2 player 5
Docking station 1
Laptop sound cat
Digttal cateltte > |
ba
o 0 MP2
8 (Laptop
° Satellite
Digital cable Tv
1 ot Cable TV
OCAIINEU WILT LalllocaQO Time Division Multiplering:-
¢ felefe le e [4 | °
HQ MUR!
I.—o
as) y
Mvx
a
Se UTE MUX te
o
y
So
o De
Ty
2 Te
1 og,
Bsetit $/E.T2 + SSeTa
ocdiINeu Will UarocaAEMUX wlth delay :-
B.A ate 4 digital multiplexer having a svaftching
delay cof tpe fe Connected a shown in Fig: the outpue
cf the multiplerer fe tield +o THe own gelect input s
The Ppute which gets selected when s=o [8 tied tot
and the tnput that get! celected when s-4 Ie Hed to
O- The output Vo. will be
LAr Oo
cer
S27 Pulse train et Ftrequenty Os Mir
(>) Pulse train of frequency 4-0 MHz
Output of MUX, Yeo SI, 484)
diven, toand =e
a Ys B44 $0 =8
Mot ( Met ea —o
- at outpar
pulse train is of frequency os Ms
of MOY.
OCAIINEU WILT Lallloca“JAS UL
——=
ies ie
OO
7
Time period of v, = T= 2HS
a = OSMHT
a axle &
So Fer the clreurt chown tn Raure,the delays of Nog
gates, multiplerer and inverters are ans,usns and las
respectively. + all the impute Pia,Rs and Tare applied
at the came time instant, the maaimum prepsaction
delaylin ns) of the circuit Us
UATE NS
(bans
te) Sns
(dy ons
t= Ine
OCAIINEU WILT Lalllocaa Matimum delay = max (sc)
=G6n8
It each MvXx
clyeult works
Ve having inte propagation delay then the
as
LaAstoble multvibyater LP Bletable multivibyator
Lomonostakle multivibyate — Cd) none
anverter
1
Laverter Buffer Daverter Dover ter
OCAIINEU WILT LalllocaNoof Inverters, m= 4 Urey even
It lt a Bistable multivibrater.
Q. The output ¥ of a Arbit comparater ts Legie 4
whenever the a-bit Input A ls greater than “the a-bit
Input B-The number vt combinations for which the
logic output fe 4,04
La 4 Le) 6 le) ¢ td) lo
Ba a a-bit comparator: A7B 36
AcB te
A=B: 4
8. The propagation delays ef the KOR gate, AND gate
and multtipleter (Mvx) tn the circuit Shown in the Aiqure
are Ung, 2ns and ins retpectively
P
&
i Se
gf all the inputs P)&,R,S and T are applied simultane—
-ousty and held constant, the maaimum propagatton
delay ofthe circuit cs
uwEns
a. ans
3. tne
ye ons
OCAIINEU WILT LalllocaW let Tao
r Y
ens
delay of the clreult ~ 6ne
Maaimum propagation
Be MUX as a universal ate:
= a a
WDAND gote using 2:1 MUX:
Me thod -Z !-
Y= AB
= ° 8
Output of MUX Y= ST.+6-T) ay Y AB
Substitute, S=A ;Te=t) Gob 6 ] MOR
Ye A.ota-p=ae
s=A
Sta y To=ty a= 8
OCAIINEU WILT LalllocaMethod -a2:
pa
AOR gate using
Method A*-
Ail MUX!-
Y= Ate
Output of MUK! Y= $,Tot SoTy
Subctitute Se =A then
Yo AD tact
“chen,
2 AtKR
yo SE46-3)
>
“tA ty
‘LtA- 0
>
cee) Dap edo
S=A
OCAINEU WILT Lallloua*”
NOR gate using att mor!
Method-1:-
Y= ATE = AB
Y= Sa. 4sq,
Substitute s=4,
VE Ac. 4A-9,
two tl MUX
tence NOR gate implementation requires
Similarly NANP, €X-0R, EX-NOKR can be Jen p lemnerrted
Gate Noof att MUX
required
ANDIOR, NOT a
NAND, NoR, EX-oR,
2
EX-NoR
—> Te implement any & variable -unction|qate using
mvx simply copy tvuth table olp at lp o-f mux.
Ex: EK-OR
F=AB+AB
OCAIINEU WILT LalllocaOCAIINEU WILT LalllocaQe’ +
The “Boolean function realised by the Logie epreuit chown)
cs
6 b= FS enloy 3) S191)
= Sm (03,5, % 1 Sle |
= Sen ( 24,5, IS)
= Ben 2 3,8 47819115)
Sutpus of MBX, F= ABC+ABD+ ABC 4AB CD
Convert the above to canonical form +o qet function:
3 f= Em (2) aS 41895)
fa So (243 STB AN)
OCAIINEU WILT LalllocaB:For the clreult shown in the following fiqure 1te“72
are s are
inputs to the 4/1 multipleter, e(mMeB) and
Control bits.
Find the minimised
expression of output %
¢
>I
2
2 °
Polo
|
-
al?
rr re
OCAIINEU WILT Lallloca. are
Th the Tre circuit shown in the Hqure, So and So
Select linet and ¥%q aNd Xe are Input tines: Se and
Xe are Lsee. The output Y ts
Ns Indeterminate
Be AaB
©: R@B
O- = UX@sB) + c (a @B)
At selection input a, (nput of oR gate ts Floating 75°
it ts treated ac 4 Cn TTL Logic.
Output; Y= Bay BA= BOA
idered at
S, cannot be zero hence, ¥o-K3 are sonsicere
dont cares:
‘ ‘ : g- jpleter cs
Q:A combinational clreuit uring & Y crailtlp ‘
shown in the figure. the minimised expression for the
output (2) es
eo Po
OCAIINEU WILT Lallloca() cl(AAB) (bc (A+e)
GK) TAAB Cay C+aw
= Output eaprection, 2 = ABLE
MS8&:A MOX Circulyt thown In -the Agure below imple-
~ments a Logie function Fi. The correct expression For
A rs
output of 4°F Mux, Fo = S T.48T)
Fo = YUN 4x = KU EY = KOY
Output of and mox, F) = S2+ST
A= SO = 5O2= KOYVYO2
——.
Y@x*@Z or X@Y)@z
"
OCAIINEU WILT LalllocaNOTE :-
2
A@A@e =A@S)OC
——p-
~ A@B
®, —
4 = A@8Ge + AOBOC
© +
A@2@c
te used te
BA 4X1 multipleder with two celect Lines
r
variablec
realise a Boolean +unction € having Four Boolean
6, denote -ehe teack
WIV ;2 and W at shown below:S. ond
Cigniticant bit (iss) and moet significant bie cmsa) of
the celectoy Lines of the Multiple% recpectively, Te; Ti Te
Ze, are input lines of the multiplexer:
zw!—a,
zw——la, Wot €
movx
° a,
2'4w A. 4 Se
x Y
The canonical cum of product representation oft Fie
b EO yt Ww) = SMC TUS)
ar PUry tw = = po Fo, 1 (tH 15)
ee tr) SS (2st)
3-
CEO pwd = Se COU Be HT)
‘ '
OCAIINEU WILT Lalllocaxy
to ° ° 1 ° ZW
& 4 u ‘9
F = Smo.) 34,14)
a
The Boolean eapretsion for the output t of the mult-
-ipleter Shown below ce
Cay PEAR
& —>s
- KT POa@R
z * Ce) PHOLR
R
Gd) P4BeR
P58
output of mux, += FB
& = (PH T+Pones (FAHPHIE
=~ (res) a+ (r@aye
= C@aye + (POaR
at = @@a@er
Q. Consider the following multiplerer where Lo ,T, Ty) Te
are four data tnput Lines selected by two address
Une combinations
ts the output
AjAc= 00, ol, 10," respectively and
of +the
maultpleter. EN iS enable Input:
OCAIINEU WILT LalllocaTe function # (x,y ,2)
ts
EF aye Ce ayte
Address Lines, Ay
Neo
z
ry \ 2 \
oo | ©
oo
2}
mt ©
te | ©
ORE RYT
AeA Hy
per TEEE convention Is shown in Aqure ~) '%
three Logie inputs
the multiplerer volft
wo Smo, tad)
GS Em C315 16/%)
Multtpleter shown
be
E(x, yz) = 2
implemented by the above elrcuit
(444 (d)None of the Above
=v
2
y2 Output
oe. Ig =Y=0
o\ 93-7 =\ ~
“ob te x Enzo
olp is
VN i =x
diea bled
ta Figure -2(+he came ae
fed with
AiB and ¢ ag chown, The output of
(by) S mo, 315) 4)
(4) Sm(1,2,516)
OCAIINEU WILT Lallloca(0 ret
A of] ° 21@
* ils lolole
° A Aol
Q. The Logic -funetion Umplemented by Following qt
MUK Us
x 7s.
y 74% z
x —s
o —{73
(mca) x y (vse)
OCAIINEU WILT LalllocaOutput of MUN -ESeTs HE SoT, +5) Seta + S88 FS
osl
VoRt KYY Ht XV K 4 KYO
= *
+
x
< | 1 \ °
ben ISne pq. 1 BO
as tt \ \ |
'
ee ee ennery
3B
Oe
toate % 0 eees rer
one im
\sne YO WOns Os 1 4
SAG Yas
s Time taken=4ons
OCAIINEU WILT LalllocaDecimal value
OCAIINEU WILT LalllocaHow to tmplement @ function using MUX!
8: Tmplement the following functions using 4*! MOK:
FA Bied= S mlonyei
FAB CdS KBE ARC 4 ABCHABE
= ABLE +4 ABC ABC = ABLABCH+ABC
= AB AAR O+ ABC HABC
con ort to 4 m4
y Tp By
Jp f= Smo 15,4)
Sy $e
a 8
Method-a:
AB
ooo, to Wt
Implementation table :-
c 1 {O12 16 lq
to ee
&. Implement the Followtag functions using Y!l Mok:
FLA B10) = S mlo4,6,4)
# = Sloe)
OCAINEU WILT LalllocaSs Ang
2 Variable function can be imple mented
“SIng a 411 mux, only Some 2 variable functions can
be Implemented.
NBL ang 2 variable and 2 variable functions €4°
be emplemented using tl MUX and a inverter.
Note:-
With @ ars) MUX, we can implement any n-variable
and some tn40 variable functions
While using @ at Mox and an inverter. all Sn?
Variable
and ‘(n+)’ variable
-functions can be implemented
BF (AIBC) = Bm lo,4,6,4) by taking Bc and Ae as
Selection Lines
CO Bic:
Bc 1
* oo Of 1b wy
°
A of/@®]! 2}32 A
kK .[@ s |e @ A
too AOA
QD Arete
OCAIINEU WILT LalllocaNote:-
It a +tunetion ic given in -the Por -torm, convert Tt
Into SOP orm and apply the same procedure
. >
To tmplement any ‘3 -varlable’ function using e: Mox
S°PY truth table output at the
To
Input of MUK,
Implement FA using
of mux
Mux determine the Number
yequlred
Lay a Me 2 Ce) 3 Cay
For a full adder, Sum =
Sz m(1,a,4,4)
Carry = Cy = Sm (3,816,4)
Since we have +o implement two different -functions,
we require 29 MUKe.
B-Implement + laybyc,a)= ZS lol, 4/5,414 10,18, 15) using 3.
MDbK and a: muy.
Dsing &:l mMux:-
abe
a \e00 001 o10 otf too 10! Vio ay
2 0/@/]2 |@Je :|@}@ «|
dy [o * te @l@ |" Je @ |
' © to 4d da 8 g
s
eo ajoaya >
OCAINEU WILT Lalllocac T+P Spach Tdsep
=c@p = cao
DON'T CARE CONDITION:
A If don't cares are qiven then don't care are considered
only tt they are useful for eliminating et+terna)
hardware (qates) otherwise they are neqlected.
€2: + laybic) = S ml2,5) + 403/446)
ab
c Cow 4
Lv
Pre-ferrable
OCAIINEU WILT LalllocaHK AMPLEMENTATZON OF Hager oppeR muy usENa Lowem
ORDER muxi-
Tmplement 4.1 mux using
> Truth table of uit Mux i
Ss Se y
o e x r. °
* ¥ zt, —\
' o de
voy a
oo °
Ts
—> let us concider by taking
Implement Sy MUX using
No-of arr Mox
an
Mv x:
+ pes
Se
ay
Se
an example of S)So=lo
Y= ay
Muys
requived =*
OCAIINEU WILT LalllocaG4 oe
ataty
{+aey ea
a ¥
Novot a: mox required te implement arit Mv
are ang
%—4° ay
ay
\
Sa
se Implement ft Mvx using 4:l MU &!-
No-ot Ys; MUX vequired =3
# ~& a 4st Mor
a 4
aa t a ut Mow lor 4
BU MLK for last
MoxX te a combinational cireuit which contains single
input and multiple outputs.
Based on the selection Lines, Input can be given +9
ony one of the many outputs.
wy br)
“lp
2" olp
He
nm cel lines
=> Since P-Mve has only one inputs tt ie not uced for
Implementing logic -tunctions.
ae La DMUK I s
Ss oY Ye £
1 ¥, Yo
° ° x 32
x y
\ iL ° my
s
OCAIINEU WILT LalllocaS$ Se Ye oN I, My
oo 2 o 0 6
e ' ° To 06
\ ° ° o ft ©
‘ ' ° ° o ©
Sy Ss.
"|
% Implementation ef Higher order D-mvx using Lower
order p-MUKi-
Implement (4 DMLK ating 12 PMUXK!
e510
ih — i!
Sy Se 4
é yeot 4
\ Yod
ne
\ 1 Yg=
OCAIINEU WILT Lallloca>For
example, consider S$\So= lo
tite ty +t is
“4
Yad
<<
Wwase tite ae te ig
we Te
(6 41
. ay
masc 2% ig 2B + Bt = 34 lor) ac 1a w
8 g
Ba244 4) — t+ 4 pmux 6
enough for First stage
pe DECODER !-
decoder is a combinational clreuit which contatae
many inputs and many outputs. Gt jt uced for code
conversion lite binary te octal, decimal ete,
ak ENCODER :-
A combinational circuit which tontaing many Inputs
and many outputs-dt ye uted fer code qeneration (tke
decimal te binard; hexa ts binary etc.
OO Ocdlileu willl GalllocaPIR pEcopER! A |
A 224 DECODER -
then D-MUK become a
LOEn
>It 8,80 PAIS and
decoder:
tnternal structure of decoder is same ag
->since the
Decoder ic aleo called as 2:4 DMUX,
p-Mvx, a4
OCAIINEU WILT Lallloca14
&. tenplement halt adder and half syptractor using #
P~mox?
For a halt adder;
= A@b= Sml,2)
Cy=ABR= S m(2)
For halt cubtracter, D=A@R= 3S m(1,2)
Bo=AB= Sm)
en =a
@ Determine nowt 2:¢ decoders Lok qgatee required tv
\mplement full adder!
Lay tet Ger yr cep ay ® Cd) Buh
Sum! Se Smnlsy2y4,9)
Covryity= S on (3/516)
B18
Bacoder
EN=4
OCAIINEU WILT LalllocaOCAIINEU WILT Lalllocav
SInq active Low (Matems) !
FAI Bic) = S nt, 213, %) = Wm (044,516)
=m UnR 1319)
{> aT M(0,4;516)
=
°
— Te turn LED on, |
cutput should be
ey ;
a and this
conta uration is eq Med
“common cathode’ since
all cathodes of dlodec
are tied together.
— Fer LED 40 ON, olp
|
|
should be ‘0? hence |
In ¢uch cate active |
Zr Ow output decodere arg |
ured Configuretion it
Rk called“common anode”?
4+Vec
OCAIINEU WILT Lallloca*Inplement 31% Decoder ucing 2:4 Decoder!
,
B2@ ay i
€ 3 i
at tee, 3B at d i
: : , 4 decoders 4
- in
—_ 2 324 decorderc 21 112 decoder /
Cor) ‘
Saverter for first {
; sta
CH Using aty pecoders only! “
A Bc
o omy
oy YY,
boo oy
Voy oy
oo Gy
° bY
Vo 8 Ye
roy Ya
(oD Vsing —2s4 KR1E® BDecoders:-
EN=4
OCAIINEU WILT Cdl llocaMW) Being
A 6
Oo °
° °
Oo a
\
°
°
\
\
Note:
Ute
erase
ease
an Inverter and at4 decoder:
c |
oY.
y, |
oN
\ Ys
a
oy
1 Ye
oY
' Ya,
13% 2:3 Decoders
(on
aig pecoder& 2 24
Decoder for first stage
22 = high impedance
(o-¢)
OCAIINEU WILT LalllocaQs The functionally implemented by the civeuit below
vs
e
_——=
|
4
—_____——-+}
s
i any
Decoder
fo.
Enable=4t
(2) 2 te 4+ Multipleter
Us 4 to 4% Multiplerer
oF +o 4 Multi pleter
@)6 to 4 Multiplerer
¢
a
Rg
s
ary
Decoder
Enable=4
o 0 PF fe
Ie Ve cim\lar to 4 to 4
o 1 8 yy
multipleder.
\ ° & Ty
\ 1 os Te
OCAIINEU WILT Lallloca8: The Following susitching functione are +r be implemented
4S\ng a decoder
Fp = Sim (1 hit, &, 10,14)
Fy = Sm (aisyay nd
Fa Sm (a48)6 ,9)
The minimum contHguration of the decoder should be
(a) a-te-4 Line (by B-to-8 Une
ou
te -16) line Ud) 5 —te-32 Une
= Sm(1,a,4, 47 10,14) Mas min term = '4
T+ rvequives min 4 variable
Stenilarly, £22 Ss en(aisa,/N) O41 Var
var
ty2 Sm(ay4siea) >?
since there are minimum 4 variables, a 4 ao (6 Une
decoder i¢ needed:
obtain many
Q With which decoder (t Is postible +
code conversions?
(a> @ Line te 4 Line
(b) 3 Une to & Line
ceyNot possible with any decoder
4 tine te le Une decoder
Binary + Ben, HEx, etc Can be done using Y-16 line
decoder:
OCAIINEU WILT LalllocaQs Which one ot the following statements ts Net Correct?
An ¢ Input MUX can be used +o implement any 4 |
variable function,
BLA 3 Une to @ Line DEMUK can be uted te implenent |
any 4 yariakle Function. i
LS SY input Mux can be built using ole ¢@ inpuk |
MUXs- |
BFA 6 Une te 64 Line DEMUX can be built using nine
3 Line to & Line DE-MOXs,
64) MUX — e@:1 MLK S44. % 24
e 8
eo4y
= S
6w4Y PEMLX — 32°% DEMUY S4 +i =9
B+\
<<
8 Input M44 tA vt AIT Gg variable tunctton:
Burt 3:8 PEMLX cannot be used to Implement any
4U variable -function.
A.Consider the Following statements:
A Urle decoder can be constructed (with enable input)
by:
I bstng four a4 decoder(each with ag enable tgput) only
g-using -five ary decoderc( each with an enable Input) only
te) on)
gusting two 2:@ decoderc (each with an enable (np Ng
uk)
Uiing two 3:& decoders (each with an enable tnput) ard
4) :
an Inverter
which et the statements given above jslare correck
1
OCAIINEU WILT LalllocaOCAIINEU WILT LalllocaTruth table:
En da 46 35 TY 8% HQ Bi FO yD YL Yo
7 x x ox x x x x x 0 vo o lez BR
' © © © %© 0 © oo 1 © © 2»
' ° ° 0 «© © oo 1 80 © © 1
‘ o 5 of} ° \ o oO o too
' ° ° ° ° \ oo © o It
\ 6 oo Lo. & & @ 10 oO
‘ 2 0 4 0 © 8 9 © =
! ° 1 6 0 © © © 8 roe
‘ 1 ° ° 0 o 0 8 © ‘ vt
V2 = Ty 45 +34 15
Y= So45,4 5, +25
Yo = 4 Ta4 W647,
oy EN
Ty Y2 (ov) —-
Se
en
Ty
ay EN y
T, bor)
Fe En
Ty
EN
4 Yo
~ _-\ (on Ta
a3
Bs EN
7
OCAIINEU WILT Lalllocaay. ° Ved, z, ° |
a = a, —|
x, 3e as }
2a fy Ba t
> Tf sys |
3 ' yy ' XY \ \
Be ts Ss
Be x te
I= a, l= a5 = |
— IF more +han one input is 4 at a time, Normal
encoder wilt not work:
>We can overcome thi¢ disadvantage by usleg priority
encoder:
~ Ta priority enceder, If more than 4 ilp=4 ata time
Tt will consider only high Priority input:
We EKS Priority Encoder:
Highest g — 4
L— y)
Lease 7 —p
priort
m1 EN
~ OCAIINEU WILT Lallloca
a
c
Ts —-> t— yo
4
2 Yo
2
1Mea Pr)
En a>
° x
'
°
‘ v
'
°
‘ °
\
°
i
°
\ °
Highert
3,._
Sy:
1,—
ority Encoder!
ae as 34
x x x
°o ° °
© 0 o
© ©
° ° °
oo 1
° t x
1 x x
x x x
41g
Priority
Encoder
Yi = OLR AX RX
© 1oon 1000
© 101 Too;
eo 11o
orlroprag
m3
Ja
Ty) to ya “YO
e x o ° ° lord z 4 %
° \ ° ° °
\ x o ° I
x ok o 1°
© ¥ ° t \ |
|
rook 1 9 ©
yx 1 oo |
¢ 7 )
x * root \
we)
z
eo oc oc 1 °
eo 0 | «eo
Cn
' x Rk OK '
Vp = 001K, I KKK
Colo 100°
|
OcdIINeU WILT UdllloVy = Sen (4y5 16, 4)89, 15) RY Som (9,3,8)9, 10, - 1 1S)
as Oy
TIX op ot Mt te SM \ 50 or (4
e
Q. Consider the following combinational -unction block
Involving four Boolean variaklet %,4,a,b where «a,b ave
inputs and q is the output
OCAIINEU WILT Lallloca# (4, 4, a,b)
{
ila te 4) yea;
elke yah;
}
Which one of the following digital logic blocks is the
most cuitable for implementing this function?
UF Mox (be) D-MUX — (cy DECOBER = (p) EN COPER
From given program,
\ooxke=
y output 2 & e y
¥=0; cutput—b
gt te a MUX
QIn the Following truth table Vea tt and only if
the input (s valid
SNPOTS OUTPUTS
Do Py Dp PB Re ky
o ° ° ° x * ©
' ° ° ° ° o ot
x \ ° ° ° ' ‘
x x \ ° @ 0° \
x xX \ 1 \ \
What function doet the truth +able represent?
GH Priority encoder Cb) Decoder te Multipleter
(d) Demultiple ker 1
OCAIINEU WILT LalllocaHere y th similar +o enable signal, then the
truth table represents priority encoder
R-0'M
. al decoder
> R:O-M it a combinational ctreuit whieh contains
t:
at the input stage and ok gates at +he outpu
> Size of ROM: 2° & mM bits
%
Location:
n-lnpute
. | Decoder
t 4
N-adder
rm oR qatec
— 4 FB memory endicates a'?xg Cres, 1994 boca tionc
and each Location har capacity of & bits.
OCAIINEU WILT Lalllocathe Follow: Punetions
syiate Size
a functions
OCAIINEU WILT LalllocaA ® Awe
A a
Aime BiB Ys Ye ¥, Yo —s m+n
bik
Pv vv 1 0 © 1a» Bata
Rom
man
one (EE A ROM sizes al ya = a ximeny
%, 2,
Lochtiont Each location
hat (man) bits
(W Hence +e implement B-bit binary multielfer,
ROM eize: a?**
X (B43) = ao %G
LW To implement square of a Y-bit number
a bit
AKA
os
Ay Ao ve Ya Y Ye J]
° 1
° ° oO ° x as
9 \ © 0 © 4 6 __| 2
3
\ oe o 4 Oo v
\ x \ ° ° \ Y
Ya Ye VY Ye
t
£ ROM size. ar xy
Addrets Data
‘ oer a x aN
fr n=4 bits,
ROM cize = arx(axa) = ateg
OCAIINEU WILT Lallloca— Consider cquave ef 2 bit number,
Aras Ya
e °
° °
' °
‘ t
Add recs Ya Ya YU Ys
always ROM cize: ar xo -
. tees, a x(an-a)
— With N=4, Rom cize = at (a-a)
= ators
BI+ the Inputs Kakoxyre to the ROM Iq the Hqure
ore & 4 2 | BED numbers ; then the outputs Vere
BLD te decimal decoder s
Do Dy -- -- Ba Py 1
f |
; [ :
\ t Ye
' Ly,
fina
{—NWy———
Yo
CA Gray code numbers cay a4 at BCD Numberc
(e) Etcess 2 code numbert SF None of the above
OCAIINEU WILT Lalllocaimal
Decima 1 ee,
number
° ° o v °
' ° eo oF I
* CS oe tio
5 o et 4 |
4 ° \ ° oy
s o to 1
s rn
* 1 to 4
z t \ \ °
4 1 It \ q
a
St if clearly mot Bed conversjon lov) excess 3 since
0 tp S are same-
Tt obeys 2 4 2) weight but Y and § are not
complimentary pence Me te not @ 4 21 BCD IUMbere
conversion,
Q For the diode matria shown in the figure the output
Y wlll be
NW Ke A) eke
®) Xe
STK Ke
r
TT = Db) Ke tha
= Xe
Ya yt Yo
VN Anputs
OCAIINEU WILT LalllocaLet ut actume x= 1 and
;
ieee
howe f X3 =1
1
' Ye
A
Yue xeyay¥e
8° RK 3 Une +0 & Line decoder, with active low outputs
tS used +o implement a 2 -variable Boolean Funetiont at
Shown |n the Aqure. The simplitied form of Boolean
Function €(A1B,¢) tmplemented tn Product of Sum? form
will be 3x8 Decoder
z—_
y
~T
WAT (att) (4942) CHD
CB) (FAR). (xe Ve D.UV 4%)
Co) (av azy: Ce eye et) eave) Ce ey ae
coy AVA Z)s CREED) © Cy nye ed O74 ®)
f= eet, 3518)
= wm (0, 2,414)
= (x ayer) Cee¥ 42) Cea 42) (X49 42)
OCAIINEU WILT Lallloca= Cx+2) (84942) 4942)
Yu toy)
wore
oo of
of Fe (nae) (RATED OD
|
8- A 3 45 © decoder fs shorn below i
Ga Gy, Yq.
froble Siqnale
AU the output Line of the chip will be high cohen all
the tnputs 2,3
ca) Ave high, Geka. are low
(Are high and G, is Low, Ga Is high
©) Ave Lows G, is low, Ga Is high
(dy Are high; and &, is high, G2 & low |
G@ 4 Pecoder = Te edable decoder,
o 0 Disable B,=e and %~!
° \ En able When decoder It disabled,all |
19 pisable — output ines are high irrespective |
1 1 Disable of inputs
OCAIINEU WILT Lalllocaa
S94 ts detired +o qenerate the -follewing thre
Bovlean +tunctions
Fr = abet abe+be :
Fa- abe pabeare i
Fs= QOLeGxabe 1at b
Gy using an oR gate array as chown in Aiqure where
PL 42 Pe are the product terme in one or move of
i
the vartables a, a,b; ;0 and ©
f Write down -the term:
Pe Per Pa (Ps, Py and Ps
Pz
%y
Ps
Sot" eX Fa Fa
42 =Gbabe = Putts
OCAIINEU WILT Lallloca® Programmable
Programmable o®
Logic Devices (PLD):
PLA Programmable Logic Array
PAL’ Programmable Array loqle
ROM
PROM
PAL
PLA
OR AND
Fired Fired
Prog Fired
Axed Prog
Proq froq
OCAIINEU WILT Lallloca