0% found this document useful (0 votes)
72 views26 pages

(理科课本) 02 矩阵

Uploaded by

kadaeraarea
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
72 views26 pages

(理科课本) 02 矩阵

Uploaded by

kadaeraarea
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 26
2.1 3K eo HRNEN FRAT m xn PRE m FF OIE mt Gn2 “dns MY fi — (PSE RE (matrix), FILLE Ac TE EREP , BEA Bm AAT (row), BARA HCO A (column), SEPEP AY 8 — (EAB HUH ETE HR (clement). RTA a, ARMM M TERT, Fey i, j RRM ULF AOD FHT. HM, an RARER BOAT Ro MATER AT AA (ag) RA. ARTA (ag) mn RIGA m Fn Fl, AA, RMGKEH mx n ER, mx n ASE RERTHY (order). fan, ( 54 8 6 3 10 ) Bt 2x3 sere. 24 m =n BY, SE PREM fe m BEIT RE (square matrix of order n). 40, 21 6 0 0 5 | —T=BFRES sl 4 =3 m= 1 APH ERY 1x n SERE (ay a ain) MH AATSERE (row matrix), an n= LASHER AY m x 1 EE 8 ZUSERE (column matrix). £0, an nn 2 (-1 0 3 ~4) Jefrsare, 3 | EPI. 1 eo HSE RDA ERE A 5 BME m xn EME, AIC R TCR BS, BBA 5 Bo WCHESERE (equal matrices), iZfF A=B. arem(S tT ).(3t? 8) kate cet ate -1 ASI XL, PT 2 MTP RETO RTS, LL a=5+b atb=c dzat+e c=-1 MTA BM, Ma=2, b= -3, c=-1, d=1 oe Fae TER HEE 6 HE FO ACRE AE RE (zero matrix), 12fF Oo PARE AT VATE ERB, HER, CREM. we, 00 00 00 (3 0) wax asesine () 2b 32 . 1 ea=( 4 o) RA , 23 8 12 ee 2 ita=(¢ fo). B=( ap) RHA AGE By 2-3 0 -2 30 3 Ba=(5 boo) Bel 3 oy le # (a) A+B (b) 2A-B costa - sina si sine tenn ete en wel (a) A+B (b) 3(A+B) 5. Rw, x, y, 2 oth —15— 2.4 RAR @ ERR BAH —* 1x p BATE (aun an ay), BHF px 1 BASE » BUTE LATER A STEPE BAYER AB A bu b AB= (an az“ ay)| bps = (anbutanbat + aipbp) BRB A 1x1 PERE GS ith: 2 (@ @ -2( 4) () G -4 | 3] 4 (3x14 (-2) x4) m @) @ -2( 4) (=5) weil (b) (3-4 7 od |: (3x 2+ (-4)(-3)+1x4) = (22) BA H—T mx pH, BAT px 1 AR, BAAS BNR au a2 ay bu ba ay Gn dm2 “* Onp auibis + aiaba + ayy bps aubu + ambut midi + Amzb2 + RARBA m x 1 SEP. ae fs} S29 3 2-1 0 2x34 (-1)x (-5)+0x9 wow (l i -2] (ebaaxtesveans ll ~ oa! w (SC) -(223) BEATE mx p EME, Bp xn Ki, BAAS BAIR AB=CH mx n FE, EAVICR cy WERE AR i THT SEM BAIR j WM ICR ORAZ A, ay an ay ay bu bi by bie an an an" ay bu baz by “baw bn bs by ay a2 as ay co by eu en ey mt ein en en ey em FOP cy = aub yy + aabr +7 + aybyy —1— ht) a7 PTET, — RR TG — RT, MUR A HR. Anxy SByan WOH, AAA p WBA pt, RRACH—* mxn Brisa. BD mE (20k (2° ( 143 41 -201 @{ Ateonee 2x4+0x0 2x340x1) 4x1¢1x(-2) 4x441x0 4x341x1 «{? 8 6 “\ 2 16 13 123 : emmra=( 5 1) B=] 0 ABS BARSARL? WR = A, RHEIN. seme (} 7} ) eaxssere, sopem = 3x SERRA NR =i GF BT, UL ABA X. 1 123 we (Sf lx 1+2x0+3x (-1) Ox1+1xO04+1x (-1) =({-? -1 BI WMARSF A MTR, MLA BA RHEL. Pl SHURA] ABAR XM, BAR-TABX. WRBALABX, ABS BA SE — EAB? BIO CAP PI A, B, ABS BA: 1-1 11 a} ® (2) -1 (b) A= (1 1 0. 8-| ‘| (a) a =( | 14 2 2 (a) aB=(_ | heey adel 3) 11 1 <1 00 = i wt lloy Ce i =1) (b) AB= (1 1 0)} 0 | =(-1) 3 =1 =1 =1 0 Bpa=| 0 | 10 =| 0 0 0 3 393 0 Hb HAS BF BT a = AB # BA a | “! 3 B10 CRIA = 1 61) +Be 2 ai C= aR (AB)C 5 A(BC). WAH AHS? -1 3 m case-(7 ~> 1) ee % 1 2 8 1 “i 8 a [ is -(7™ 32 -29 9 AY LAE (ABYC = A(BC) . RE: (1) PEFR, BO (AB)C = A(BC) (2) REET TH LR RT MN A,B A(B+C) = AB+AC (B+C)A = BA+CA (3) Bik WMH, MW R(AB) = (KA)B = A(kB) 2 2c +E (1~ 10): 1 1 waa af] 2 [a]oes 3 3 = (7 5)(5 9) s 1 ya 1 os ' wn woo 2 1 on mex ae) ~ oun 1 eos - on YY wn 2 9. (rd) wT a), T) 2 3 1-21 - = rt ema=(T 3). B= (5) 5 )). eam eorex? ea EX, HH, , 30 zs 14 = -ata= (7 f) Bs 71) e8 (9 23). (a) (AB)C=A(BC) (b) A(B+C) =AB+AC , ei i _( 03 | a . A= ( parle ®e( 93) c= (fo). ae (a) (A+B)C=AC+BC (b) C(A+B)=CA+CB . 00 HY oe. a= (95) = oo) tHE (a) AB (b) BA 13 ‘ 132 as-| 2 i | a os): io =1 3 (a) AB (b) BA 21 -22) | 751) ge. ata ( 9 4). B= (75) c=( 3 3). ste: (a) A(B+C) (b) B(2A +30) +E 1 3 -2)f2 1 7 1 3-2 1-1 3 pcalia cs | o1 4 2-2 4 <1 4 ayhi @ -s -1 1 3)l-1 3 0 ; sina cosa cose sina) a. ee tee! B= (S22 SUE) (a) AB (b) BA =31— @ Shree AL, Hie EBA Efi OY A A FOTO RAE 1, STOR AY FERED 1 0 0 o 1 0 00 1 26 HABE SERE (identity matrix), iZfF 1. EAL HEM: IA=A AI=A 13 . fin cmas( >) ). He (a) A? (b) AY @ (@ at=() ‘y(t 4) (b) A’ = APA —_ 70 =(4 7 = 714 =m = 7A «{ 7 21 14 -7 WE) AP = ACA, A= ACATA >) i 2d HH: 20 20\* nw (59) w (28) 2m (yi) w (1%) (44) w() 4) 0Oaby 0Oaby 3. (a) | OO ¢ (b) | 0 0 € 000 000 4. iA = [ : RAP-A743A-41 6 a . { co89 - sind _{ cos@ sin 8 se ane % ae ( or cos 8 Be (ee ey) + meaBe Ls @ -1 . 6. #a=(5 1). em (a) A?=5A-61 (b) A’=SA?-6A dete, GKVA A AG AS nites (4) ) sa bem. Ras bz ihisl (a) #=0 (b) A (c) A?=A 2.5 RSE sper a =| °* OO | ayer sieeve | OP Gin Gan 7 Onn ‘fi A 9478 SB RE (transpose matrix), icf A'H AT. Bian: abe adg WRA=| de f |, MAA =| 6 € h ghia efi 1 5 1 3 2 Boe map=(5 5 t).maw- [3-3 2 4 A, MH ARE mx n SE, ABZ AYE nx m SERFS fi 12 ka = ( a p= (77 3) oe: -2 1!" 7 = (a) (A+B)' (b) (A-B)’ (a) A+B = (b) A-B = ( = ) (a+B)' = ( és (a-By' = ( ; 3) 2.6 ieee © HAR MEEE BMA H—-TIRAM. MRE TORT B, 12419 AB, BA REF 1, MART BAMA, RTRIE B OH Ahk A AYBAERE (inverse matrix), ic fe A’. HY AA =F ULE, a= (* S)oare(" *). wm (SCE lor) (rz Sig )elo 4) au + bx =1 "= tr +dx =0 [= +by=l cv +dy =0 Mik ABA, SAMY |Al=ad-be « Ot, WH d a ¢ b = TAT © ©" “TAT 8" “TAT 7 = TAT FDA oe EE A a AE, A 6 Al d we.) Tr oT -TaT TAT ye 1 ( d -b =tat( ta) piicmoree a = (° 5 ) siaeceensemaete |A| «0, seemierastie Deer? 2) daliesoy B13 PAS PRIA Re? RA, Ba ea 2 3) 304 wa=(Q 05 1s 20 () B= ( f= (a) |A| = 2x(-7)-(-3)x8 = 1040 . RT EE. =7 @ a 3) ose ot ( 1 ula sly wl= sie (b) |B] = 0 SF PEAT SEP fis eas (7 2), ROHN, Hs XA=L Ld XA =1 XAA! = 1At . Xa 1 5-3 =r | 3) S _3 777 “| 4b 2 “7 7 >) 2e 593 2 4°03 1 A=] -1 0 4/,Be]-1 2 1 |, RA‘, BY 3°97 -5 0-4 5 tae(T op). ee (a) 3a" (b) 3A)’ . 12 “2 - 3. tta=(5 5 )-8 (“) 3)-4 (a) (A+B)! (b) "+B" (e) (A-B)' (ad) a’—B" 4. FAAMFRARAMBH? PRA, SC wes -2 -1 sing -—cosa@ cw ( 6 3) w ( cosa sina ) all ad 40 (7) 73) wag ; 31 -4 3 ; s.tta=(55).B=("> 3).# (a) At (b) Bt (ce) A'BT (d) (AB)~' 6. esotee( 1 >) waseee( 1). Re y Sth 2 -1 1 3 . 1 oa) Be (4g 3) + REREX. thal (a) AX=B (b) BX=A (c) A'X=B (d) AXA*'=B 8. #A=( 3 4) ) meeeRae, Rx it, ab 9. a= (" |) Mesennae, Hie a= (arda, ad @ SFr REA AE SOR PEN PL, ERA A— TSP, ABARTH MEE AB=BA=1=|0 1 FRSC A= TM BOM A ASABE, IPF A. (—) URRRFRREBRE (ar bo ey x ae[ana] ay bs ex 100 0 oo) | FEI A| PATIL TRAE, BAL, Bi, Ci, Aa, Ba, Ca, Ase Bay Cy HERP Bi — 74 A, Bi G re Bz e | As By Cy FEE Ae BEE, IEICE adj At Ai Az As wae Bp ® | Cc adj A PW ERE A HPEBESERE (adjoint matrix of A). IBA, mye ay by ev )f Ad AvadjJA =| az b: e2 || Bi as bs ow ILC {Al 0 0 =| o lal oO o o |al = |All = adjAvA Ar Bo C: eh Fy SR 5 As Bs Cs —37- ERA ER A(TApadia) = (Typ auia) A = A" = Tyyaga (Al #0) FLA = Br Ti BY SE PE FTE AY FOE RE JA] 2 0. 1-101 BIS RGA =| 2 1 3 | ABP A 304 1-1 1 La lAl =|2 1 3] = -10 3042 HELA | PARMAR RCE TU RIE, |! 3] 2 3] 2) ‘| re he eal Bal -B cl }-(7# = =] 42 32 30 4 -4 -1 3 ial -kal bal 1 3] ~|2 3 201 -10 6 -4 as $ =1 <1 Sat 8 -10 6 -4 1 1 Ats-qp] 5 -1 “1 5-7 3 3 2 ley i f. -t, =| 7-2 10 10 a 2 _ pot ~2 10 710 —33— (=) DONT THR IEAERE At A SEF AE (1) afimEE REE (2) HARE AMER (3) eS — AOR — 45 ia A OY TER 3 AEH WE ON FT OTD PERE FIRE RAMONES, Gt : (a) JAR, + Ry RARER. =F Rs (b) AAR: AAV > NF ATER (co) A -2)R. + Rs RAH - 2A HMB = HMM L. DLFEMESH EH (Causs elimination method) RB MEA AER ME = a Ee CFF SPLIT ROPER TE A IE LD RR a BK, MMS A. “FT SHG 12 AYRE, SABLA Kn fag Ak — BB Y-1 1 BMRA I) 2 1 3 |, FRAT —OTAKERE, IRIE PE AL, 304 2 p-141 100 Ail=|2 1 3 $010 3 94 21001 READ A, HSM MAAS AM TKO, PMR. KO AO SRE Em AH SER (augmented matrix) < 2828 5G MERE ANS EP (a) Sse ERE AT (b) FAFA EHS A 1 EHR TY BS (c) RA'=Bo 1-101 wave, wa | 3 1 3 |, Sei: 3.4 2 i-i # 100 All= 2 1 3 ol "| 304 2 oo1 2R+R(d -1 1 100 Pewee! og @ i a I °| o 7-1 -301 ok 1-1 tf 1 0 0 Ree |O 1-3 $ -1-2 1 Oo 7-1 $ -3 0 1 ~men (1 9-2 1 2-2 41 ReR | 0 1 -3 1-2 1 0 0 20 } -10 14 -6 10-2 $ 2 -2 ) -/O 1-3 } 1 -2 2 1 A ud a | ae. 2 10 ~10 3 2 100 1=% 4 ae oro? -+ 4 4 7 “2 10 10 t A athe athe oo “2 1 “10 2 2 1-3 $ at t+ to Av =|! "2 10 10 A HL ~2 10 ~10 Sai 2f VARS AF AF Fi 98 Bt 5k 48 BE (1-3) = 4-1 0 3140 1 ul si 2 4 2/2 5 1 3.) 2 01 121 2 VAR SH RF Fi 46 BE 0 GE $6 PE (4-6) = 11d 1 0 2 4.]3 2 -2 5.) 4 1 3 6. 2-1 3 2-1 0 al 1 3 2.7 FASE RR ETT ASHE AT He WA SO PE ITA TCR 7G, STORE A, a Pe A RRTAR IAL 20. ais woanren { a 3x - dy =6 Sx +2y =-3 DISSE RICA. Jr FEAL TT NRE (372) )- (8) es Jea(§ a (*)= a(§ nF a= dell 3g (5) -a6( 5 3)(4) = 36( 39) IRSUTTA TERE SR ARR FAR SRC RAS HE OTL He AE WR 9, RENERA EER. ‘ Lor+R) : -44 Be 10} oO (3 nq <3!) ~—— Ise | al gia (oo a= x a-y tz ad 4x -4y te = x+y nz BIT RETA BA | Uw A. Dy RSH FE Be ep -|n ln io A]O aa Aen ot aa wla sen HR AT = An alm oe Ala aja alm tot Aa Mla ain a —42- PR WARGMTTA TCR AR HEAR NC HR RT He A WE, RENEKMMSER, 1-1 1} 4 ee 1-1 1 4 4-4 1 basal e 0-3 -9 12-1 1 0 3-2 b <3 1-1 1} 4 wR fg 3 -2 | 3 0 0-3 } -9 1-1 t 4 ' -1 : 3 = , talafiofe |e co ou 1 2 BINS Son aa oro -co wee Saat by as x=2, y=l, 2=3 3) 2g TAF 5 RA AB: ‘. (ena , [ine see2e +y =38 x - by = 16 on ne «{ ety -ze|l 5. {x 2x -3y +2 =0 6. | Qnty +2 =5 x +3y 432 =4 nity ted x -2y 25 [sya 8. foes “aes x Qy tes x tdy-2 =0 9. (x t4rr42e5=4 10. 2x1 -2xrtay=4 x1 -2x243x3=3 —43— BRDB2 392 1 1 0-1/5 5 4 3) 1, Bde X+ 4 Ses nem { 2)ea 2] «(2 ] 403 3. ema * )e3( 2 )= (3 DY as HH (4-8) = eCpaey ecg) . etea= (5 *).p=(3).aan= (9). kab 2 i we O) RAtBEAB, Ray by ee ui, eeaa = (5 U4 3). (5 KA, Be 2 1 ie (a) (A+B)’ (b) AB 3-2 -3 1) , 13. CHA = 4-3 » B= ( D) rf a (a) A” (b) BY (e) AB (a) (AB) ACF FIsE RRA EE (14-15) : 1 0 3 1 2-3 14. 3 1 9 «| 2-1 -4 -2 2 -4 -2 5 1 a 16. RAEREX, & @ (7 3)x-(12) 5 o1 (w) ( 5 3) x (4 : 4) MAF | Rte ALS (7-20) = x+2y 42225 r | 18. | 2a +6y 452 20. 19 | x52 +10=0

You might also like