0% found this document useful (0 votes)
54 views6 pages

Report 8

The document describes a load flow analysis algorithm implemented in MATLAB. It involves: 1) Building an admittance bus matrix from line data. 2) Using the Fast Decoupled method to iteratively solve for bus voltages and angles until convergence within a tolerance. 3) Calculating line flows and losses from the solved voltages. 4) Verifying active and reactive power balance at each bus.

Uploaded by

mdasslam8323
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
54 views6 pages

Report 8

The document describes a load flow analysis algorithm implemented in MATLAB. It involves: 1) Building an admittance bus matrix from line data. 2) Using the Fast Decoupled method to iteratively solve for bus voltages and angles until convergence within a tolerance. 3) Calculating line flows and losses from the solved voltages. 4) Verifying active and reactive power balance at each bus.

Uploaded by

mdasslam8323
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 6

POWER SYSTEM LABORATORY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS


ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY,
TIRUCHIRAPPALLI.

Exp. 8 Dep: Electrical and Electronics Engineering Date: 21/3/2023

No.
Name: HARI VARSHAN Roll No.: 107120051
Load Flow Analysis

AIM:
SOFTWARE USED: MATLAB R2021b

ALGORITHM FOLLOWED IN STEPS:

STEP – 1: Start
STEP – 2: Read the given data and initialize it as variables.
STEP – 3: Build an Admittance Bus.
STEP – 4: Start iteration process for Fast Decoupled method.
STEP – 5: Use the obtained values to calculate the Power supplied by each bus, and Power flow in
the lines.
STEP – 6: Using the Power flow in the lines calculate the Power losses in the line.
STEP – 7: Stop.

PROGRAM (CODE) :

fprintf('---------------------------------------------------------------\n');
fprintf('FAST DECOUPLED METHOD :\n');
fprintf('---------------------------------------------------------------\n');
n = input("ENTER THE NUMBER OF BUS : ");
Ybus = zeros(n,n);
InputData = [1 2 0 0.02 ;1 3 0 0.045 ;2 3 0 0.02 ;]; %input("ENTER THE INPUT DATA : "); %
for i = 1 : size(InputData)
data = InputData(i,:);
B1 = data(1);
B2 = data(2);
R = data(3);
X = data(4);
Y = (1 / (R + 1i*X) );
Ybus(B1,B1) = Ybus(B1,B1) + Y;
Ybus(B2,B2) = Ybus(B2,B2) + Y;
Ybus(B1,B2) = Ybus(B1,B2) - Y;
Ybus(B2,B1) = Ybus(B2,B1) - Y;
end
fprintf('YBUS :\n');
disp(Ybus);
fprintf('\n');
YbusMag = zeros(n,n);
YbusAng = zeros(n,n);
for i = 1 : n
for j = 1 : n
YbusMag(i,j) = abs(Ybus(i,j));
YbusAng(i,j) = angle(Ybus(i,j));
end
end
% GIVEN
tolerance = 0.0001;
Base = 100 ;
P2 = -390 / Base;
Q2 = -190 / Base ;
P3 = 290 / Base ;
V = [ 1.025 , 1 , 1.03] ; %input("ENTER THE BUS VOLTAGE MAGNITUDE : "); %
S = [ 0 , 0 , 0]; %input("ENTER THE BUS VOLTAGE ANGLE : "); %

iter = 1;

while 1
Matrix = zeros(2,2);
Matrix(1,1) = Matrix(1,1) + (abs(V(2)) * abs(V(1)) * YbusMag(2,1) * sin ( YbusAng(2,1) + S(1) - S(2)) );
Matrix(1,1) = Matrix(1,1) + (abs(V(2)) * abs(V(3)) * YbusMag(2,3) * sin ( YbusAng(2,3) + S(3) - S(2)) );

Matrix(1,2) = -1 * abs(V(2)) * abs(V(3)) * YbusMag(2,3) * sin ( YbusAng(2,3) + S(3) - S(2)) ;


Matrix(2,1) = -1 * abs(V(3)) * abs(V(2)) * YbusMag(3,2) * sin ( YbusAng(3,2) + S(2) - S(3)) ;
Matrix(2,2) = Matrix(2,2) + abs(V(3)) * abs(V(1)) * YbusMag(3,1) * sin ( YbusAng(3,1) + S(1) - S(3)) ;
Matrix(2,2) = Matrix(2,2) + abs(V(3)) * abs(V(2)) * YbusMag(3,2) * sin ( YbusAng(3,2) + S(2) - S(3)) ;

MatrixQ = 0;
MatrixQ = MatrixQ - abs(V(1)) * YbusMag(2,1) * sin ( YbusAng(2,1) + S(1) - S(2)) ;
MatrixQ = MatrixQ - abs(V(3)) * YbusMag(2,3) * sin ( YbusAng(2,3) + S(3) - S(2)) ;
MatrixQ = MatrixQ - 2*abs(V(2)) * YbusMag(2,2) * sin ( YbusAng(2,2) + S(2) - S(2)) ;

dMatrix = [ 0 ; 0];
dMatrixQ = 0;
for i = 1 : 3
dMatrix(1,1) = dMatrix(1,1) + abs(V(2)) * abs(V(i)) * YbusMag(2,i) * cos (YbusAng(2,i) + S(i) - S(2));
end
for i = 1 : 3
dMatrix(2,1) = dMatrix(2,1) + abs(V(3)) * abs(V(i)) * YbusMag(3,i) * cos (YbusAng(3,i) + S(i) - S(3));
end
for i = 1 : 3
dMatrixQ = dMatrixQ - abs(V(2)) * abs(V(i)) * YbusMag(2,i) * sin (YbusAng(2,i) + S(i) - S(2));
end
dMatrix(1,1) = P2 - dMatrix(1,1) ;
dMatrix(2,1) = P3 - dMatrix(2,1) ;
dMatrixQ = Q2 - dMatrixQ ;

delta = Matrix\dMatrix ;
deltaQ = MatrixQ\dMatrixQ;

S(2) = S(2) + delta(1,1);


S(3) = S(3) + delta(2,1);
V(2) = V(2) + deltaQ;
fprintf('ITERATION : %d\n',iter);
fprintf('BUS VOLTAGE MAGNITUDE : ');
disp(V);
fprintf('\n');
fprintf('BUS VOLTAGE ANGLE : ');
s = S;
for i = 1 : 3
s(i) = mod(s(i),pi);
end
disp(S);
fprintf('\n');

if delta(1,1) < tolerance && delta(2,1) < tolerance && deltaQ < tolerance
break;
end

iter = iter + 1;
end
i = 1i;
V1 = V(1)*cos(S(1)) + V(1)*sin(S(1))*i;
V2 = V(2)*cos(S(2)) + V(2)*sin(S(2))*i;
V3 = V(3)*cos(S(3)) + V(3)*sin(S(3))*i;

I12 = -1*Ybus(1,2) * ( V1 - V2) ;


I23 = -1*Ybus(3,2) * ( V2 - V3) ;
I13 = -1*Ybus(1,3) * ( V1 - V3) ;

S12 = V(1) * conj(I12);


S21 = V(2) *conj(-1* I12);

S23 = V(2) * conj(I23);


S32 = V(3) *conj(-1* I23);

S13 = V(1) * conj(I13);


S31 = V(3) *conj(-1* I13);

fprintf('POWER FLOW IN LINE 12 :\n');


disp(S12);fprintf("\n");
fprintf('POWER FLOW IN LINE 23 :\n');
disp(S23);fprintf("\n");
fprintf('POWER FLOW IN LINE 13 :\n');
disp(S13);fprintf("\n");

fprintf('LOSS IN LINE 12 :\n');


disp(S12 + S21);fprintf("\n");
fprintf('LOSS IN LINE 23 :\n');
disp(S23 + S32);fprintf("\n");
fprintf('LOSS IN LINE 13 :\n');
disp(S13 + S31);fprintf("\n");

K = 0;

vv = [V1,V2,V3];

for i = 1 : 3
K = K + conj(V1) * Ybus(i,1) * vv(i);
end

fprintf('P1 :%d\n', real(K));


fprintf('Q1 :%d\n', -1*imag(K));

MATLAB OUTPUT:
OBSERVATION:

● The values of voltages of each bus approaches a value for successive iterations.

● This method is a little time consuming but can provide better results. Its process of convergence
can be sped up by using voltage correction methods.

INFERENCE:

● Load flow studies are the computational procedures (numerical algorithms) required

to determine the steady-state operating characteristics of a power system network


from the given line data and bus data.

You might also like