Adobe Scan 21 Oct 2021
Adobe Scan 21 Oct 2021
ptro ductio n
~ere arc: tw(J typcH qf lin ear 1-;imultan cow-~eq uations,
(i) AX /J ( N ,111- homogcr ww, lin ear cyuati om,J.
(ii) AX (J ( lf()tr,ogc nou H lin ear cquation 8).
Thtrc an; varnJui1mcth,,d11 UJ Holvc the ahovc cyuatiun s as substitution, eliminat ion, cross-mu ltiplicati on
etc, Solvi ng th c l inear r1y f{ lc m cyuati on by matrix rnc1hod is caJJed Linear Algebra. /
The w<m-1 ,natr'i,~ wa~ introtJuccd in l ~~-,() by a French Mathematician \cayJ~ 1
The 11 lu1 v1; rn:1t rix ~;11J be rcprcHent.cd in <.: ompac.;t form a8,
A I a,, I"'""
'~,, ·1 1m1td x all iJhown below,
( '0 )111111 11;
a b c ll d]
Example: lf A=[d e .]. then A.,, = b e
,/ . M / '
C
r - · 1, 2
2
a, , =a, ,a22 - u, 2a2,
Then, the determinant of given matrix is IAj =/a,' ti22 2,2
. . Jll21
2 3 2
ll22 Cl23 I I Cl21
· a, a, j
and matnx of order 3x), A= aa,, a a then /A/ =a,
21 22
I 23 1
· - a, 2
Cl3 I
a23 I + al) ,a_, an'
Cl33 Cl31 Cl32
C/32 Cl33
[ G31 G32 G33
] x ] +4X 3 J X 2+4X 4] [I 3
AB = 2xl.+5 x3 2x2+ 5x4 = 17 24
18]
[ 21
3xl+6 x3 3x2+ 6x4 Jx2 30 M
c::::=n
GATE ACADEMY® Linear Algebra 1.3
Here, number of elements= 6
Number of multiplications= 12
Number of addition= 6
~m~key
'l~ -:1;
:.·
Point
I. Let A 111 x11 and B,,xp are two matrices then, the resultant is ABmx p' has
4. Minor of an Element :
Minors obtained by removing just one row and one column from square matrices (first minors) are
required for calculating matrix cofactors, which in tum are useful for computing both the
determinant and inverse of square matrices. Minor of an element is denoted by M iJ.
Example : A = [ :
-4
! ~]
4 7
then one of the minors of A will be M 11 = ! I
7
= 35-4 = 31
5. Cofactor of an Element
1
The cofactor is obtained by multiplying the minor by (-1 y+ .
6. Adjoint of a Matrix
Adjoint is only valid for a square matrix. The adjoint of matrix is transpose of the cofactor matrix.
A, Ai A3 ]
then Adj (A)= B, B2 B3 where A1 represents the cofactor
Example : If A = [:: :: [
G3 b3
C, C2 C3 3x3
of element a, of matrix A.
W Key Potnt
( Il I , \ d_1 I ) ,, , HIJ .f I I
(\ ) A . •t = A ' ·A - I ( V I) Adj( Ad j A) A ,. I
·A
f \ 11 l .-\ dJ , I - A " · ( V Jj j) l',dj(Ad1A1 A
I I "\ ) -\ djl ·I "' l = (/Hl jA J"' ( 7.) /\rl jf fA J k.' ( /-Ji 1.A ), f. (: p
.._
Types o f Matrices According to Dimension.a {R, C)
R ows and column'-. arc all togcthcT c,ai<l to he the d imen·. irm~: <1f rriatrf:r, ~(JJ'../../): d ing tr) tr;c d :r:..e,:,.1,.1/ ,r.g
there.: a rc two type of matri x , rec tangular mat rix and '.i{Uarc rMdn x .
I. Recta ngular .\ 1atri x. :
A matrix in which the number o f row'-. i" n<Jt cq w...1 ti> the r11..tr(l t"¼'i r:,f <./J!urr.:n Vi} k:.rn,r:. a~~
rectangular matrix ( R ct:-C or m * n) ,
A - faIJ IM"n m -:t- n
2. Square Vlatrix : A matrix in which the numh{...-r r)f r<JW ':-. GI.TC c<.p.u:J tr> the; nurnr/4.-r r:,1 u./ A"?":::·--i :-i
known a s a square matrix ( R = CJ .
Lo <J f-,
W K ey Point
:v1inirnum numbe r of 1/..ern~ in a diagrmal matrir. r) f r,rck.-r n i~
A B = diag ( a,, a.r a-) / diag ( h,, h2 , h-) =diag ( a;h_, a✓,hi., aj)·:J
2. Sca lar Matrix : A diag<>nal m~trix in which all th; dh1gfJnal c;k-roc-nt ~. M(.; c;q,,1.at, ?': kn,'> ;;r~,1.-. ~ ;:.c,;J;:;r
matr ix .
3 () ()
E.x.ampk : A = 1 () 3 <, A = diag (3, 3, 3 J
\ (J (J 3 I. ,
• · . ,,. •A
- d. r,·.,l:, ,rnat r ix in which all the diagr,nal (.;ll.-rriL·r,t.~ t:1.rc; unity i·, knrnm ,;;:, vr, rt
3. u Oll , .-,atrt X : iago t1 • ._,
· 'd t ' t matr·, v The id<.,-ntity·· matr ix <)f <,rd<..,--r n j{, dl.-r1otcd by I , .
mat n;,; o r I en I y ,... .
() () I\
F, » mpl• : / ,.• \ :, () \
I () (J l j,,:
~.....-.
.,,~ ""3
_,.,,_,i,.,~¥--
&A TE ACADEMY
,S'
Unear Algebra I 1.5
l"pper Triangular ::\latrix : A square matrix A= [ a,_ is said to be
upper triangular matrix , if J
0
-= o \\-heneYer i > j.
t -._ 0 0
Examp le: .-1 = fi· _
1 ~
.J -- -. ?
__.t_ ___5_ ____ ___6:-., .
- .J.~
j- . "I'/ -
·~ ;fey Point
..,
' For diagonal and triangular matrix (upper triangular or lower triangu
lar) the determinant is equal
to product of leading diagonal elements.
Symmetric ,1amx : A square matrix is said to be symmetric,
if ~ A w·here AT or A' is
transpose of matrix A. In transpose of matrix the rows and columns are
interchanged.
A= ½[A + A 1
] + ½[A - A r] = A_\· + A s 11
ll 2 -21
tran .. r o~c o f ort hog onal ma trix is
equ al to the inv ers e of the ma trix
i.e. 1 1
A = A- •
ilnd
0
01
0 A =A.,.
1
==-1 2 l' 2
I
-21
If ma trix A is ort hog ona l then
l - \, I 3 2 -2 ~IL
(iJ Its inv ers e and tran spo se arc
a lsu orthogonal.
(ii) Its d~t erm ina nt is unity i.e. \A\
=± 1.
(iii ) I A 11 A 7 I= I
C) Copyrf&ht !fea d Offi ce: Al ll4-1 15, S mrit l
N11gar, Bhihtl (C.G .), Con tact : 9713 www.gateacademy.co.ln
1131 56, 95891194176
Bran ch Ofnc t: lblpu r, " ' : 71J743
-'JOU37, HbopMl, " ' : HIJ51Jl-11705l, www~IJlicebook.com}pttacademv
Indor e, 0 : 971~4- 11112
ACALH MY ,~' Linear Algebra I 1.7
·'~ ' /. ~
3 2 +J i 3
J 1 '
~I 1 + Ji
:t , ', l· 2i 2 == A
' .,i -i '.'\
8-Kl'" lkrmithm ,\:\trix : :\ sqtmrc matrix A is said to be skew hermitian if~- ~ =_·A0 J
1 2 4
.·l -l- 2~ 3i ~Jj :/;]
- 4 + ~i 2i - 3i
Hi]
.h.1
.-\ ll d1e-~l~gopa l clements of Skew Hem1itian ma~ aree 1U1er zero _Qr pure imaginary
(ii) . .:\ II-the di:rn:o~~~ k mems offkl·mitiar;·~ tri;-are real. ·----.__ \
-----::::.. ----
{iii') l 'pper :lnd lower diagonal elements should be complex conjugate pair.
£.xample : A =
1+ ;
2
1-i
-l + i
--
2
-1-i
⇒ Ae =
[ 1-i
2
-12-i
I +i
2
-I +i
l ⇒ A·A ' =[1 O
~L
2 2 J x:! 2 2x2
@ Key Point
If matrix A is unitary then
(i) Its inYerse and transpose are also unitary.
(ii) Its detem1inant is unity i.e{I2G_ :ilJ
(iii) ' .-l -4 6 I= l
l4. Periodic ~1atrix : A square matrix is said to be a periodic if
· K is known as perio.d _Qf the matrix.
---=
AK +i A where, K: Positive integer.
__________,,,
is; lnYoluto~· MatrL~ : A matrix is said to be involutory if ~ ? ~
Bud Office: A/114-11S, Smriti Nagar, Bhilai (C.G.), Contact: 97131131S6, 9589894176 www,..-acade co.lo
Bruch om~ : Ra.ipur, 0 : 79743-90037. Bhopa.l, 0 : 89591-87052, Indore, 0 : 97134-11112 www.l}lcebook.c:om/~,mv
1 .8
I . .
Eng1neenng Mathematics
. GATE ACADta...
. . ...,, 1
which, when mult1phed itse f1.e. I _y
b:-;--:.:... •
. • ,
. •0 .
_.(·-1 = A ,41-1= A ⇒⇒
,f =A
•
··1 potent· 1,11. 1atnx .. . ·1 , t 1118...11·ix if there exists a positive 1'nte&er/(
17. ,-~• : A square mamx 1s called a 111 po1en ' • ·
suchtnat .-f;.· = O.
The least positive value of K is called t11e index of nilpotent matrix A.
SA - 14 = 0 ⇒ A
2 2
11. - TA.+ 2A- J4 _ 0 1
-
- ⇒ 11, =7,-2
Head Office: A/114- 115, Smriti Nagar, Bhilai (C.G.) ContIC1 •, 9713113156 9S8989 de .
- - ! ·
Cl Copyright - -- -
Branch Office : Raipur, 0 : 79743-90037, Bhopal, " : 89591_
870
- .!.__ _4~ WWW,1ate8C8
52, Indore, " : 97134-11112 Iwww,l)acebook.-
GATE ACADEMY OJ) Linear Algebra I 1.9
- Properties of Eigen Values or Characteristics Roots
(i) The sum or Eigcn values of a matrix is equal to the trace of the mati:_ix w_h~re the sum of the
clements of principal diagonal of a matrix i~ c~lle._~--~~ i,"rac_e.~_f.mat.rix.
L 0\,,) = "-1 + "-2+ "- 3= Trace of matrix
I
✓ -I 1 I 1 1
A are- ,- , - ..... - ✓ A+KJare "J.. 1 +K,"J.. 2 +K, "A 3 +K ............."A,, +K
A1 "A2 A3 \,
Eigen Vectors
If a matrix A having characteristic root A then we have a non-zero vector X which satisfies the
equation [ A _ ')..,J] [ X] =[O] . Where the non-zero vector X is cal led characteristic vector or Eigen
vector.
Head Office: /\/114-115, Smrlll N111e11r, Bh.!!_ai_(~ G.), Con~~t: 97]} _113_1~6, ,!~119119~17!'_ www.1ateacad~my.co,ln
C Copyrlcht ·· llnn<h ornce: ~•lpur, 0 :711743_9;;;137, Bhopal, 0 :H9591 -H7052, Indore, 0 :97134-11112 www.ll1cebook,com/1ateacadeniv
1.1 O Engineering Mathematics GATE ACADEMY®
If there exist Eigenvector X
corresponding to Eig en va lue
"- then the rel~tion for ma trix
by , A is given
AX='"A.X
Properties of Eigen Vecto
rs
(i) For every Eigenvalue the
re exist atleast on e Eig en ve
(ii) If "J,... is an Eig en va lue cto r.
of a matrix A, then the corres
ponding Ei ge nv ec tor Xi s
we have infinite number of no t un iqu e. i.e.
Eigen vectors corresponding
to a single Eigen value.
(iii)lf Ap "J,... , .. .. . A" be distin
ct Eigen values of a n x n ma
2 trix, then corresponding Eig
X P X , ..... X ,, form a linearly en ve cto rs ==
2 independent set.
(iv) If two or more Eig en va
lue s are equal then Eig en ve
cto rs are linearly dependen
(v) Two Eigenvectors X and t.
X are called orthogonal vecto
1 2 rs if ·I)(/ X 2 = 0 .
(vi) A matrix is said to be
defective if it fails to have
n linearly ind ep en de
therefore it is not diagonaizab nt Ei ge n vectors and
le. All defective matrices ha
but not all matrices having ve few er tha n n dis tin ct Eig en values,
fewer than n distinct Eigen
values are de fec tiv e.
Normalized Eigen Vectors
:
A normalized Eigen vector
is an Eigen vector of length
one. Co nsi de r an Eig en ve
cto r X =\al
then length of this Eigen ve
ctor is II X 11= ,Ja2+ b2
lbl xl
a
Normalized Eigen vector is ✓ a2 + b2
X = _! !_ = Ei ge n ve cto r
11 X II Le ng th of Ei ge nv ec tor =
b
,Ja2+ b1
2xl
Ex am ple : X ~ [~ ] , II X II= -,h2 + 7 2 = ✓53
(iii}1·1ic number of' zer~s preceding the first non-zero elemen t in a row is less
Unear Algebra I 1.11
than the numbe r of such
1/.cro in the succeeding row.
I 5 3 2
0 0 4 6
;1 _ is an Echelo n form.
0 0 0 5
0 0 0 0
Rank of Matr ix :
The rank or a matrix is a numbe r equal to the order of the highest order non-va
nishing minor, that can
be formed from the matrix.
The rank of a matrix is said to be r if,
I. There is at least one non-ze ro minor of order r.
2. Every minor of A having order higher than r is zero.
Head Office: A/114-115, Smriti Nagar, Bhilai (~~~-), _Contact: 9713113156, 9589894176 . .pte~~ "emy.~.ln
· -- Brunch
· --- -Office
---· : Raipur.
• w~ ~,
79743~;;;;;;
•
Bhopal ~ : 89591-87052, Indore, 0 : 97134-11112 f(}aceboo!t.epm/pteacademy
'W
1. 12 Engineering Mathematics
GATE ACADEMY e
Steps to investigate the consistency of system
of linear equations.
1. First represent the equations in matrix
fonn as AX= B.
2. System equation AX= Bis checked for con
sistency as to make Augmented Matrix (A
: B].
Augmented Matrix
(A : B)
Inconsistent Consistent
p(A) -:t p(A: B) p(A) = p(A : B)
Result No solution When p(A) = p(A: B)
= No. of unknown variables
Result : Unique solution
When p(A) = p(A: B)
< No. of unknown variables
Result : Infinite solution
Let A be a rn x n matrix. A homogeneous syst
em of equations AX= 0 will have a unique
the trivial solution X = 0, if and only if rank solution,
(A) = n. In all other cases, it will have infi
many solutions. As a consequence, if n > nitely
rn i.e,, if the number of unknowns
number of equations, then the system will is larger than the
have infinitely many solutions.
W Key Point
The number of linear independe~t infinite
soluti_ons of hom~genous linear equations
n variables is (n- r), where r ts rank of AX = having
matnx A. n - r 1s also the number of pa 0
infinite solution. t . h
rame ers mt e
If A is a square matrix of order n and
(i) \A\=0 then the rows and columns are linearly dependent and system has
a . . .
many solution. non-tnv1al solution or
(ii)\A\*o then the rows and columns are
linearly independent and system h ..
. ue solution
umq . .
as tnvial solution or
❖❖❖❖