Practice questions on Matrices
1) Find the rank of the matrix using Row-echelon form of
following matrix.
6 1 3 6
2 3 1 4
i) A 5 2 3 0 ii) A
10
4 2 6 1
3 9 7
9 8 0 8
16 4 12 13
2) Reduce the matrix to normal form and find it’s rank
1 1 2 3
1 1 0
i) A 2 2 0 ii) A
4 1
0 3
0 2
1 4
0 1 0
0 1 0 2
3) Find the non-singular matrix P and Q such that PAQ is in normal form,
1 2 3 4 1 1 1
i) A 2 1 4 3 ii) A 1 1 1
3 0 5 10 3 1 1
4) Solve the following equations
i) x+2y+3z=0; 2x+3y+z=0; 4x+5y+4z=0; x+2y-2z=0
ii) x+y+2z=0; x+3y+4z=0; x+2y+3z=0; 3x+4y+7z=0
iii) 2x-y+3z=0; 3x+2y+z=0; x-4y+5z=0
iv) 3x+y-5z=0; 5x+3y-6z=0; x+y-2z=0; x-5y+z=0
5) Examine whether the following vectors are linearly dependent or
independent
i) [2,1,1] , [1,3,1], [1,2,-1] ii) [3,1,-4], [2,2,-3], [0,-4,1]
6) Test the following equations for consistency
i) x+2y-z=1; x+y+2z=9; 2x+y-z=2
ii) x-3y-3z=-10; 3x+y-4z=0; 2x+5y+6z=13
iii) 6x+y+z=-4; 2x-3y-z=0; -x-7y-2z=7
7) Find the values of λ for which the system of equations x+y+4z=1;
X+2y-2z=1; λx+y+z=1.
8) Solve the following equations by Gauss elimination method;
i) x+y+z=2; 2x+2y-z=1; 3x+4y+z=9
ii) 2x+y+z=10; 3x+2y+3z=18; x+4y+9z=16
9) Solve the following equations by Gauss-Jorden method,
i) 3x+2y-2z=4; x-2y+3z=6; 2x+3y+4z=15
ii) X+2y+z=8; 2x+3y+4z=20; 4x+3y+2x=16
10) Solve the equations by using Gauss-Seidel method,
i) 15x+y+z=17; 2x+15y+z=18; x+2y+15z=18
ii) 10x+2y+z=9; 2x+20x-2z=-44; -2x+3y+10z=22