MA1301 Introductory Mathematics
Tutorial 2 Solution
                      TAN BAN PIN
                National University of Singapore
TAN BAN PIN       MA1301 Introductory Mathematics   1 / 29
Question 1
(a) Find the smallest positive integer n for which the sum of the first n
terms of the following arithmetic sequence
                               5, 8, 11, 14, · · ·
exceeds 1500.
(b) Find the smallest positive integer n for which the sum of the first n
terms of the geometric sequence
                                64, 32, 16, · · ·
exceeds 127.95.
      TAN BAN PIN          MA1301 Introductory Mathematics                  2 / 29
Question 1(a) Suggested Solution
Note that the terms form an arithmetic sequence with first term 5 and
common difference 3. Then the sum of the first n terms is
                  n                        n
                    [2 × 5 + (n − 1) × 3] = (3n + 7).
                  2                         2
Then
              n
                 (3n + 7) > 1500 ⇒ 3n2 + 7n − 3000 > 0.
               2
The two roots of 3n2 + 7n − 3000 = 0 are
               p                            √
         −7 + 72 − 4 · 3 · (−3000)    −7 + 36049
                                    =               ≈ −32.8,
               p 2·3                        6
                                            √
         −7 − 72 − 4 · 3 · (−3000)    −7 − 36049
                                    =               ≈ 30.5.
                     2·3                    6
Then
               3n2 + 7n − 3000 > 0 ⇒ n < −32.8 or n > 30.5.
Since n is a natural number, n > 30.5 and thus n > 31.
       TAN BAN PIN         MA1301 Introductory Mathematics              3 / 29
Question 1(b) Suggested Solution
Note that the terms form a geometric sequence with first term 64 and
common ratio 0.5. Then the sum of the first n terms is
                            1 − 0.5n
                     64 ×            = 128(1 − 0.5n ).
                             1 − 0.5
Then
       128(1 − 0.5n ) > 127.95 ⇒ 0.5n < 0.000390625 ⇒ 2n > 2560
                                      ln 2560
                               ⇒n>            ≈ 11.3 ⇒ n > 12.
                                        ln 2
       TAN BAN PIN          MA1301 Introductory Mathematics            4 / 29
Question 2
Evaluate the following telescoping sums.
      99                
      X              r+1
(a)         lg            .
                      r
      r=1
      N
      X        1
(b)                 .
            4r2 − 1
      r=2
        TAN BAN PIN           MA1301 Introductory Mathematics   5 / 29
Question 2(a) Suggested Solution
Note that lg X
             Y = lg X − lg Y .
Thus, lg r+1
             
           r   = lg(r + 1) − lg r = − lg r + lg(r + 1).
Hence,
 99                         99
 X              r+1           X
       lg                 =         (− lg r + lg(r + 1))
                 r
 r=1                          r=1
                          = (− lg 1 + lg 2) + (− lg 2 + lg 3) + (− lg 3 + lg 4) + · · ·
                              + (− lg 98 + lg 99) + (− lg 99 + lg 100)
                          = − lg 1 + (lg 2 − lg 2) + (lg 3 − lg 3) + · · ·
                              + (lg 99 − lg 99) + lg 100
                          = − lg 1 + lg 100
                          =0+2
                          = 2.
        TAN BAN PIN                    MA1301 Introductory Mathematics               6 / 29
Question 2(b) Suggested Solution
Note that 4r2 − 1 = (2r − 1)(2r + 1). Write
             1       A      B      (2A + 2B)r + (A − B)
                 =       +       =                      .
         4r2  −1   2r − 1 2r + 1          4r2 − 1
Compare the coefficients of the numerator:
                    2A + 2B = 0            and             A − B = 1.
Substitute A = B + 1 into 2A + 2B = 0 to get
                                       1       1     1
     0 = 2(B + 1) + 2B = 4B + 2 ⇒ B = − ⇒ A = − + 1 = .
                                       2       2     2
Therefore,
                          1         1         1
                              =          −          .
                       4r2 −1   2(2r − 1) 2(2r + 1)
      TAN BAN PIN            MA1301 Introductory Mathematics            7 / 29
Question 2(b) Suggested Solution
N                N                             
X        1      X           1             1
              =                    −
      4r2 − 1          2(2r − 1) 2(2r + 1)
r=2             r=2                                                                 
                    1         1          1       1          1      1
              =          −         +        −          +       −        + ···
                  2·3 2·5              2·5 2·7             2·7 2·9                                                   
                            1               1
                +                   −
                     2 · (2N − 3) 2 · (2N − 1)                                                   
                            1               1
                +                   −
                     2 · (2N − 1) 2 · (2N + 1)                                                            
                  1             1      1             1       1
              =       + −          +        + −          +       + ···
                2·3           2·5 2·5              2·7 2·7                                                     
                              1               1                1
                + −                  +                  −
                       2 · (2N − 1) 2 · (2N − 1)           2(2N + 1)
                  1             1        1         1
              =       −               = −                .
                2 · 3 2(2N + 1)          6 2(2N + 1)
       TAN BAN PIN          MA1301 Introductory Mathematics               8 / 29
Question 3
(i) Show that for any positive integer r,
                             (r + 1)! − r! = r(r!).
(ii) Use (i) to show that
                            m
                            X
                                  r(r!) = (m + 1)! − 1.
                            r=1
      TAN BAN PIN             MA1301 Introductory Mathematics   9 / 29
Question 3(i) Suggested Solution
Note that for any positive integer r,
            (r + 1)! = 1 · 2 · 3 · · · (r − 1) · r · (r + 1) = r!(r + 1).
Then
         (r + 1)! − r! = (r + 1)(r!) − r! = (r + 1 − 1)(r!) = r(r!).
       TAN BAN PIN            MA1301 Introductory Mathematics               10 / 29
Question 3(ii) Suggested Solution
Since r(r!) = (r + 1)! − r! for all positive integer r,
   m
   X               m
                   X
         r(r!) =         [−r! + (r + 1)!]
   r=1             r=1
                = (−1! + 2!) + (−2! + 3!) + (−3! + 4!) + · · ·
                   + [−(m − 1)! + m!] + [−m! + (m + 1)!]
                = −1! + (2! − 2!) + (3! − 3!) + · · · + (m! − m!) + (m + 1)!
                = −1! + (m + 1)! = (m + 1)! − 1.
         TAN BAN PIN              MA1301 Introductory Mathematics          11 / 29
Question 4
(i) Obtain the binomial expansion of (2 − 3x)6 in ascending powers of x.
(ii) Determine the coefficient of x3 in the expansion of (2 − 3x)8 .
(iii) Find the value of the constant a for which the coefficient of x in the
expansion of (1 + ax)(2 − 3x)6 is zero.
      TAN BAN PIN           MA1301 Introductory Mathematics               12 / 29
Question 4(i) Suggested Solution
By binomial theorem,
 (2 − 3x)6 = [2 + (−3x)]6
                                            
               6 6        0     6 5        1     6 4
           =       2 (−3x) +        2 (−3x) +        2 (−3x)2
               0                1                2
                                              
                 6 3              6 2              6 1
             +       2 (−3x)3 +       2 (−3x)4 +       2 (−3x)5
                 3                4                5
                
                 6 0
             +       2 (−3x)6
                 6
           = 1 · 64 · 1 + 6 · 32 · (−3x) + 15 · 16 · 9x2 + 20 · 8 · (−27x3 )
              + 15 · 4 · 81x4 + 6 · 2 · (−243x5 ) + 1 · 1 · 729x6
           = 64 − 576x + 2160x2 − 4320x3 + 4860x4 − 2916x5 + 729x6 .
      TAN BAN PIN           MA1301 Introductory Mathematics                    13 / 29
Question 4(ii) Suggested Solution
A term in the expansion of (2 − 3x)8 = [2 + (−3x)]8 is given by
                                                       8 8−r               8 8−r
                      2 (−3x)r =          2 (−3)r xr
                   r                   r
So the coefficient of x3 is
               
                8
                   · 28−3 · (−3)3 = 56 · 32 · (−27) = −48384.
                3
      TAN BAN PIN         MA1301 Introductory Mathematics         14 / 29
Question 4(iii) Suggested Solution
Note that x = x · 1 = 1 · x. Then
 coef. of x in (1 + ax)(2 − 3x)6 = (coef. of x in (1 + ax))
                                                      × (coef. of 1 in (2 − 3x)6 )
                                       + (coef. of 1 in (1 + ax))
                                                      × (coef. of x in (2 − 3x)6 )
                                    = a · 64 + 1 · (−576) = 64a − 576.
Then 64a − 576 = 0 implies a = 9.
      TAN BAN PIN         MA1301 Introductory Mathematics                       15 / 29
Question 5
Find the constant term in the binomial expansion of the following.
           12
(a) 3x − x1 .
                       9
          x       √4
(b)       2   +     x
                             .
          TAN BAN PIN            MA1301 Introductory Mathematics     16 / 29
Question 5(a) Suggested Solution
Note that the constant term is the coefficient of x0 .
                  12
A term of 3x − x1     is given by
                          1 r
                             
          12      12−r           12 12−r
             (3x)       −     =     3    (−1)r · x(12−r)−r .
           r              x       r
Let (12 − r) − r = 0. Then r = 6. So the constant term is
                                 12 12−6
                     3    (−1)6 = 924 · 729 · 1 = 673596.
                 6
      TAN BAN PIN           MA1301 Introductory Mathematics    17 / 29
Question 5(b) Suggested Solution
                             9
                x       √4
A term of       2   +     x
                                   is given by
                                 4 r
                                    r
                     9  x 9−r            9  4             r
                                √     =     9−r
                                                · x(9−r)− 2 .
                     r  2         x      r 2
                    r
Let (9 − r) −       2   = 0. Then r = 6. So the constant term is
                                 6
                                9  4          4096
                                   9−6
                                       = 84 ·      = 43008.
                                6 2            8
      TAN BAN PIN                      MA1301 Introductory Mathematics   18 / 29
Question 6
Use the binomial theorem to show that for all natural number n,
                                         
                  n      n      n              n
                      +      +      + ··· +        = 2n .
                  0      1       2             n
      TAN BAN PIN         MA1301 Introductory Mathematics         19 / 29
Question 6 Suggested Solution
 Recall the binomial theorem:
                                                             n     n n       n n−1     n n−2 2         n      n−1   n n
 (a+b) =        a +       a   b+    a b +· · ·+       ab    +    b .
              0        1         2              n−1           n
  Let a = b = 1. Then
                                                    
            n n      n n−1     n n−2 2         n            n n
(1+1)n =        1 +    1   1+     1 1 +· · ·+      1·1n−1 +    1 .
            0        1         2              n−1           n
 That is,                           
                      n   n   n           n
                        +   +    + ··· +     = 2n .
                      0   1   2           n
       TAN BAN PIN          MA1301 Introductory Mathematics   20 / 29
Question 7
             √
(i) Expand       1 − x up to and including the term in x2 .
                      1
                                                                  √        10837
(ii) By taking x =    64   in the expansion of (i), deduce that       7≈   4096 .
      TAN BAN PIN               MA1301 Introductory Mathematics                     21 / 29
Question 7(i) Suggested Solution
Recall that for −1 < x < 1,
                                                n(n − 1) 2
                      (1 + x)n = 1 + nx +               x + ··· .
                                                   2!
             √                        1
Note that        1 − x = [1 + (−x)] 2 . Then
  √                      1 1
                 1        ( − 1)                    1   1
      1 − x = 1 + (−x) + 2 2     (−x)2 + · · · = 1 − x − x2 + · · · .
                 2          2!                      2   8
        TAN BAN PIN            MA1301 Introductory Mathematics      22 / 29
Question 7(ii) Suggested Solution
          1
Let x =   64 .   Then
                 r                       2
                  1        1 1       1     1     32511
             1−      ≈1− ·         − ·         =       .
                 64        2 64 8         64     32768
         q
              1
                    q      q
                             32 ·7
                                       √
Note that 1 − 64 = 63 64 =    82
                                   = 38 7. Then
                        √        32511 8  10837
                            7≈        · =       .
                                 32768 3  4096
     TAN BAN PIN            MA1301 Introductory Mathematics   23 / 29
Question 8
                  x
(i) Express   x2 −3x+2
                         in the partial fraction form.
(ii) Show that, if x is so small that x3 and higher powers of x can be
neglected, then
                               x          1     3
                            2
                                       ≈ x + x2 .
                          x − 3x + 2      2     4
      TAN BAN PIN               MA1301 Introductory Mathematics          24 / 29
Question 8(i) Suggested Solution
Note that x2 − 3x + 2 = (x − 1)(x − 2). Suppose
              x         A   B    (A + B)x + (−2A − B)
                     =    +    =                      .
       x2   − 3x + 2   x−1 x−2        x2 − 3x + 2
Compare the coefficients of the numerator:
                    A + B = 1 and − 2A − B = 0.
Add these two equations:
                    (A + B) + (−2A − B) = 1 + 0.
Then −A = 1 ⇒ A = −1 ⇒ B = 2, and thus
                           x          1   2
                                  =−    +    .
                    x2   − 3x + 2    x−1 x−2
      TAN BAN PIN          MA1301 Introductory Mathematics   25 / 29
Question 8(ii) Suggested Solution
         1
Since − x−1 = [1 + (−x)]−1 ,
          1                      (−1)(−1 − 1)
     −        ≈ 1 + (−1)(−x) +                  (−x)2 = 1 + x + x2 .
       x−1                            2!
       2       1
                                         −1
                  = − 1−1 x = − 1 + − x2
                               
Since x−2  = x −1                             ,
                2           2
                x  (−1)(−1 − 1)  x 2 
 2                                                1   1
    ≈ − 1 + (−1) −   +              −       = −1 − x − x2 .
x−2                2       2!         2           2   4
Therefore, for x small enough,
                      x           1     2
                             =−      +
             x2     − 3x + 2    x − 1 x − 2                      
                                                 1   1
                            ≈ (1 + x + x ) + −1 − x − x2
                                                2
                                                 2   4
                              1     3
                            = x + x2 .
                              2     4
      TAN BAN PIN               MA1301 Introductory Mathematics        26 / 29
Question 9
Show that for sufficiently small x,
                        r
                           4−x         5   55
                                  ≈ 2 − x + x2 .
                           1+x         4   64
      TAN BAN PIN        MA1301 Introductory Mathematics   27 / 29
Question 9 Suggested Solution
        √                      x
                                                1
                                   = 2 1 + − x4 2 ,
                 p                    
Since       4−x=2 1−           4
                      "                      #
   √             1  x  12 ( 12 − 1)  x 2        1   1
        4−x≈2 1+    −   +              −       = 2 − x − x2 .
                 2    4         2!       4          4   64
                           1
Since   √1
         1+x
               = (1 + x)− 2 ,
                         (− 12 )(− 21 − 1) 2
                  
           1        1                            1   3
        √     ≈1+ −   x+                  x = 1 − x + x2 .
          1+x       2            2!              2   8
        TAN BAN PIN                MA1301 Introductory Mathematics   28 / 29
Question 9 Suggested Solution
            q
                4−x
                          √
Note that             =       4−x·   √1 .      Then for sufficiently small x,
                1+x                   1+x
      r                                           
            4−x            1    1 2         1    3 2
                ≈      2− x− x         1− x+ x
            1+x            4    64          2    8
                                 
                                 1        1
                   =2·1+ 2 −         + −      1 x
                                 2        4
                                                
                           3       1    1          1
                     + 2· + −         −     + −        1 x2 + · · ·
                           8       4    2         64
                         5    55
                   ≈ 2 − x + x2 .
                         4    64
     TAN BAN PIN                 MA1301 Introductory Mathematics                29 / 29