0% found this document useful (0 votes)
352 views29 pages

MA1301 Tutorial 2 Solution

This document contains the solution to tutorial problems for an introductory mathematics course. It includes step-by-step workings to problems involving arithmetic and geometric sequences, binomial expansions, and finding coefficients and constant terms. The document provides detailed explanations of solving various mathematical expressions and sums.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
352 views29 pages

MA1301 Tutorial 2 Solution

This document contains the solution to tutorial problems for an introductory mathematics course. It includes step-by-step workings to problems involving arithmetic and geometric sequences, binomial expansions, and finding coefficients and constant terms. The document provides detailed explanations of solving various mathematical expressions and sums.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 29

MA1301 Introductory Mathematics

Tutorial 2 Solution

TAN BAN PIN

National University of Singapore

TAN BAN PIN MA1301 Introductory Mathematics 1 / 29


Question 1

(a) Find the smallest positive integer n for which the sum of the first n
terms of the following arithmetic sequence

5, 8, 11, 14, · · ·

exceeds 1500.
(b) Find the smallest positive integer n for which the sum of the first n
terms of the geometric sequence

64, 32, 16, · · ·

exceeds 127.95.

TAN BAN PIN MA1301 Introductory Mathematics 2 / 29


Question 1(a) Suggested Solution
Note that the terms form an arithmetic sequence with first term 5 and
common difference 3. Then the sum of the first n terms is
n n
[2 × 5 + (n − 1) × 3] = (3n + 7).
2 2
Then
n
(3n + 7) > 1500 ⇒ 3n2 + 7n − 3000 > 0.
2
The two roots of 3n2 + 7n − 3000 = 0 are
p √
−7 + 72 − 4 · 3 · (−3000) −7 + 36049
= ≈ −32.8,
p 2·3 6

−7 − 72 − 4 · 3 · (−3000) −7 − 36049
= ≈ 30.5.
2·3 6
Then
3n2 + 7n − 3000 > 0 ⇒ n < −32.8 or n > 30.5.
Since n is a natural number, n > 30.5 and thus n > 31.
TAN BAN PIN MA1301 Introductory Mathematics 3 / 29
Question 1(b) Suggested Solution

Note that the terms form a geometric sequence with first term 64 and
common ratio 0.5. Then the sum of the first n terms is
1 − 0.5n
64 × = 128(1 − 0.5n ).
1 − 0.5
Then

128(1 − 0.5n ) > 127.95 ⇒ 0.5n < 0.000390625 ⇒ 2n > 2560


ln 2560
⇒n> ≈ 11.3 ⇒ n > 12.
ln 2

TAN BAN PIN MA1301 Introductory Mathematics 4 / 29


Question 2

Evaluate the following telescoping sums.


99  
X r+1
(a) lg .
r
r=1

N
X 1
(b) .
4r2 − 1
r=2

TAN BAN PIN MA1301 Introductory Mathematics 5 / 29


Question 2(a) Suggested Solution
Note that lg X
Y = lg X − lg Y .

Thus, lg r+1

r = lg(r + 1) − lg r = − lg r + lg(r + 1).

Hence,
99   99
X r+1 X
lg = (− lg r + lg(r + 1))
r
r=1 r=1
= (− lg 1 + lg 2) + (− lg 2 + lg 3) + (− lg 3 + lg 4) + · · ·
+ (− lg 98 + lg 99) + (− lg 99 + lg 100)
= − lg 1 + (lg 2 − lg 2) + (lg 3 − lg 3) + · · ·
+ (lg 99 − lg 99) + lg 100
= − lg 1 + lg 100
=0+2
= 2.
TAN BAN PIN MA1301 Introductory Mathematics 6 / 29
Question 2(b) Suggested Solution

Note that 4r2 − 1 = (2r − 1)(2r + 1). Write

1 A B (2A + 2B)r + (A − B)
= + = .
4r2 −1 2r − 1 2r + 1 4r2 − 1
Compare the coefficients of the numerator:

2A + 2B = 0 and A − B = 1.

Substitute A = B + 1 into 2A + 2B = 0 to get


1 1 1
0 = 2(B + 1) + 2B = 4B + 2 ⇒ B = − ⇒ A = − + 1 = .
2 2 2
Therefore,
1 1 1
= − .
4r2 −1 2(2r − 1) 2(2r + 1)

TAN BAN PIN MA1301 Introductory Mathematics 7 / 29


Question 2(b) Suggested Solution
N N  
X 1 X 1 1
= −
4r2 − 1 2(2r − 1) 2(2r + 1)
r=2 r=2
     
1 1 1 1 1 1
= − + − + − + ···
2·3 2·5 2·5 2·7 2·7 2·9
 
1 1
+ −
2 · (2N − 3) 2 · (2N − 1)
 
1 1
+ −
2 · (2N − 1) 2 · (2N + 1)
   
1 1 1 1 1
= + − + + − + + ···
2·3 2·5 2·5 2·7 2·7
 
1 1 1
+ − + −
2 · (2N − 1) 2 · (2N − 1) 2(2N + 1)
1 1 1 1
= − = − .
2 · 3 2(2N + 1) 6 2(2N + 1)
TAN BAN PIN MA1301 Introductory Mathematics 8 / 29
Question 3

(i) Show that for any positive integer r,

(r + 1)! − r! = r(r!).

(ii) Use (i) to show that


m
X
r(r!) = (m + 1)! − 1.
r=1

TAN BAN PIN MA1301 Introductory Mathematics 9 / 29


Question 3(i) Suggested Solution

Note that for any positive integer r,

(r + 1)! = 1 · 2 · 3 · · · (r − 1) · r · (r + 1) = r!(r + 1).

Then

(r + 1)! − r! = (r + 1)(r!) − r! = (r + 1 − 1)(r!) = r(r!).

TAN BAN PIN MA1301 Introductory Mathematics 10 / 29


Question 3(ii) Suggested Solution

Since r(r!) = (r + 1)! − r! for all positive integer r,


m
X m
X
r(r!) = [−r! + (r + 1)!]
r=1 r=1
= (−1! + 2!) + (−2! + 3!) + (−3! + 4!) + · · ·
+ [−(m − 1)! + m!] + [−m! + (m + 1)!]
= −1! + (2! − 2!) + (3! − 3!) + · · · + (m! − m!) + (m + 1)!
= −1! + (m + 1)! = (m + 1)! − 1.

TAN BAN PIN MA1301 Introductory Mathematics 11 / 29


Question 4

(i) Obtain the binomial expansion of (2 − 3x)6 in ascending powers of x.

(ii) Determine the coefficient of x3 in the expansion of (2 − 3x)8 .

(iii) Find the value of the constant a for which the coefficient of x in the
expansion of (1 + ax)(2 − 3x)6 is zero.

TAN BAN PIN MA1301 Introductory Mathematics 12 / 29


Question 4(i) Suggested Solution

By binomial theorem,

(2 − 3x)6 = [2 + (−3x)]6
     
6 6 0 6 5 1 6 4
= 2 (−3x) + 2 (−3x) + 2 (−3x)2
0 1 2
     
6 3 6 2 6 1
+ 2 (−3x)3 + 2 (−3x)4 + 2 (−3x)5
3 4 5
 
6 0
+ 2 (−3x)6
6
= 1 · 64 · 1 + 6 · 32 · (−3x) + 15 · 16 · 9x2 + 20 · 8 · (−27x3 )
+ 15 · 4 · 81x4 + 6 · 2 · (−243x5 ) + 1 · 1 · 729x6
= 64 − 576x + 2160x2 − 4320x3 + 4860x4 − 2916x5 + 729x6 .

TAN BAN PIN MA1301 Introductory Mathematics 13 / 29


Question 4(ii) Suggested Solution

A term in the expansion of (2 − 3x)8 = [2 + (−3x)]8 is given by


   
8 8−r 8 8−r
2 (−3x)r = 2 (−3)r xr
r r

So the coefficient of x3 is
 
8
· 28−3 · (−3)3 = 56 · 32 · (−27) = −48384.
3

TAN BAN PIN MA1301 Introductory Mathematics 14 / 29


Question 4(iii) Suggested Solution

Note that x = x · 1 = 1 · x. Then

coef. of x in (1 + ax)(2 − 3x)6 = (coef. of x in (1 + ax))


× (coef. of 1 in (2 − 3x)6 )
+ (coef. of 1 in (1 + ax))
× (coef. of x in (2 − 3x)6 )
= a · 64 + 1 · (−576) = 64a − 576.

Then 64a − 576 = 0 implies a = 9.

TAN BAN PIN MA1301 Introductory Mathematics 15 / 29


Question 5

Find the constant term in the binomial expansion of the following.


12
(a) 3x − x1 .
 9
x √4
(b) 2 + x
.

TAN BAN PIN MA1301 Introductory Mathematics 16 / 29


Question 5(a) Suggested Solution

Note that the constant term is the coefficient of x0 .


12
A term of 3x − x1 is given by

1 r
     
12 12−r 12 12−r
(3x) − = 3 (−1)r · x(12−r)−r .
r x r

Let (12 − r) − r = 0. Then r = 6. So the constant term is


 
12 12−6
3 (−1)6 = 924 · 729 · 1 = 673596.
6

TAN BAN PIN MA1301 Introductory Mathematics 17 / 29


Question 5(b) Suggested Solution

 9
x √4
A term of 2 + x
is given by

4 r
       r
9 x 9−r 9 4 r
√ = 9−r
· x(9−r)− 2 .
r 2 x r 2
r
Let (9 − r) − 2 = 0. Then r = 6. So the constant term is
  6
9 4 4096
9−6
= 84 · = 43008.
6 2 8

TAN BAN PIN MA1301 Introductory Mathematics 18 / 29


Question 6

Use the binomial theorem to show that for all natural number n,
       
n n n n
+ + + ··· + = 2n .
0 1 2 n

TAN BAN PIN MA1301 Introductory Mathematics 19 / 29


Question 6 Suggested Solution

Recall the binomial theorem:


         
n n n n n−1 n n−2 2 n n−1 n n
(a+b) = a + a b+ a b +· · ·+ ab + b .
0 1 2 n−1 n

Let a = b = 1. Then
         
n n n n−1 n n−2 2 n n n
(1+1)n = 1 + 1 1+ 1 1 +· · ·+ 1·1n−1 + 1 .
0 1 2 n−1 n

That is,        
n n n n
+ + + ··· + = 2n .
0 1 2 n

TAN BAN PIN MA1301 Introductory Mathematics 20 / 29


Question 7


(i) Expand 1 − x up to and including the term in x2 .
1
√ 10837
(ii) By taking x = 64 in the expansion of (i), deduce that 7≈ 4096 .

TAN BAN PIN MA1301 Introductory Mathematics 21 / 29


Question 7(i) Suggested Solution

Recall that for −1 < x < 1,


n(n − 1) 2
(1 + x)n = 1 + nx + x + ··· .
2!
√ 1
Note that 1 − x = [1 + (−x)] 2 . Then

√ 1 1
1 ( − 1) 1 1
1 − x = 1 + (−x) + 2 2 (−x)2 + · · · = 1 − x − x2 + · · · .
2 2! 2 8

TAN BAN PIN MA1301 Introductory Mathematics 22 / 29


Question 7(ii) Suggested Solution

1
Let x = 64 . Then
r  2
1 1 1 1 1 32511
1− ≈1− · − · = .
64 2 64 8 64 32768
q
1
q q
32 ·7

Note that 1 − 64 = 63 64 = 82
= 38 7. Then

√ 32511 8 10837
7≈ · = .
32768 3 4096

TAN BAN PIN MA1301 Introductory Mathematics 23 / 29


Question 8

x
(i) Express x2 −3x+2
in the partial fraction form.

(ii) Show that, if x is so small that x3 and higher powers of x can be


neglected, then
x 1 3
2
≈ x + x2 .
x − 3x + 2 2 4

TAN BAN PIN MA1301 Introductory Mathematics 24 / 29


Question 8(i) Suggested Solution

Note that x2 − 3x + 2 = (x − 1)(x − 2). Suppose

x A B (A + B)x + (−2A − B)
= + = .
x2 − 3x + 2 x−1 x−2 x2 − 3x + 2
Compare the coefficients of the numerator:

A + B = 1 and − 2A − B = 0.

Add these two equations:

(A + B) + (−2A − B) = 1 + 0.

Then −A = 1 ⇒ A = −1 ⇒ B = 2, and thus


x 1 2
=− + .
x2 − 3x + 2 x−1 x−2

TAN BAN PIN MA1301 Introductory Mathematics 25 / 29


Question 8(ii) Suggested Solution
1
Since − x−1 = [1 + (−x)]−1 ,

1 (−1)(−1 − 1)
− ≈ 1 + (−1)(−x) + (−x)2 = 1 + x + x2 .
x−1 2!
2 1
−1
= − 1−1 x = − 1 + − x2

Since x−2 = x −1 ,
2 2
  x  (−1)(−1 − 1)  x 2 
2 1 1
≈ − 1 + (−1) − + − = −1 − x − x2 .
x−2 2 2! 2 2 4
Therefore, for x small enough,
x 1 2
=− +
x2 − 3x + 2 x − 1 x − 2 
1 1
≈ (1 + x + x ) + −1 − x − x2
2
2 4
1 3
= x + x2 .
2 4
TAN BAN PIN MA1301 Introductory Mathematics 26 / 29
Question 9

Show that for sufficiently small x,


r
4−x 5 55
≈ 2 − x + x2 .
1+x 4 64

TAN BAN PIN MA1301 Introductory Mathematics 27 / 29


Question 9 Suggested Solution

√ x
 1
= 2 1 + − x4 2 ,
p 
Since 4−x=2 1− 4
" #
√ 1  x  12 ( 12 − 1)  x 2 1 1
4−x≈2 1+ − + − = 2 − x − x2 .
2 4 2! 4 4 64

1
Since √1
1+x
= (1 + x)− 2 ,

(− 12 )(− 21 − 1) 2
 
1 1 1 3
√ ≈1+ − x+ x = 1 − x + x2 .
1+x 2 2! 2 8

TAN BAN PIN MA1301 Introductory Mathematics 28 / 29


Question 9 Suggested Solution

q
4−x

Note that = 4−x· √1 . Then for sufficiently small x,
1+x 1+x
r   
4−x 1 1 2 1 3 2
≈ 2− x− x 1− x+ x
1+x 4 64 2 8
     
1 1
=2·1+ 2 − + − 1 x
2 4
      
3 1 1 1
+ 2· + − − + − 1 x2 + · · ·
8 4 2 64
5 55
≈ 2 − x + x2 .
4 64

TAN BAN PIN MA1301 Introductory Mathematics 29 / 29

You might also like