LMchon!
4h De inition
Let A % B be two pone emply sets » Then &
Junction tf’ prom seta fo set B is a awde which
associates elements of get Abelements of set 8
such tbat
» ALY elements of ser ane associated to element
jn set B:
is asso clatedto
fin element of stA
i)
a uniqye element inset Bo r@Pk,
& Coolo mat
—
E
aS d Domatu -
~
SL © s
oN =n
4 —~-
3-1
A
No : Yes
@ 4 @)
—~
%
Yestp Mobeg:
-~n mabbing f: Ase
each clement in the
js satd fo be fonchen if
set A has ilk image in
cel B-
6
This may be p
may contain Same $
the images of
oscibde That the set
yc elements which
aa
may not be’ any element of SE
~ Lach cement jn set A cannot lave mone
than one image + Bot this is possibile that
mosie thon one element of A can have same
image :HE Let f=”?
fer =4
$O= 49
Mapping (oD) fev hou
J
ie
A 6
Tage of 2 vuder =4
Comageps ot
% Let Aa B anc fe sets ; Then
fz: are is called a funchion
from Ato B if each element of A has
one 2% only one image ju B:
O doer
qa- § 434 Gol!
B= Sou yw df ck
fs fhe a fa: en
~ : A b@ foe"
A fs
a= (uw
J Yes
_—- '
ay —
3 ei
A ab
@® tw
a = §-U 203 F
ba Ss
L+4 Yes
A B
&) (a) =x?
A= JW), 2) 3
b= f VY, Syof@ foo=e Ves.
freak
@ f= * => We &&
i) P= L 2 Der hf
iii) Pld= Sx D> peer
iy POA FE DH EIOM
® Ley, 6 fefined fre LGD
yo
es b> 0
ye ee
14% asq
+ Function’ ® ee
@ ye ey
Ji nre G2) i 2)
] Yared” 2s (2
4 cadens | |
i
eo sie
Ye (=%q 1 He Yar Je yo?
ved Me) CMa) 2)
“Cig i called co- domai
ae
n chara ks a
Set o} Hhose elements into which the fn
is to be define :
H=_Domain eee i) Hee cot of those steal vakue
of '%" fon which the valve of fr- fo
IS sreal /depive | finite:
Sev A As cabled domain of fn:
rer AS dence Ly D4
EX feo Sing
Dy xeF
we TRS
Q fH-Vxa. A
| 2 > Ronse
Pe (an ge)
‘Demain Coclomain
' ahe
~ What tan go into a fe is cotlbed
domain °
= Whot mM! possibly come out val q fe is
cathed the Codomain ’.
— What ckulty comes oot of od is called
the Range:
ee 4
EX et A’ isthe domain’
- Set'g’ is the codoman:
= fd ove set of elements tha
4o in BC the actoad valves *
r-) age the ange ;
image.
= Domain gt 3g
Codomaiu |. G4, Eb 7,84, 10
Rage * LyiBI1‘4
@ oe & ne Ca,
_ se Cyr v) face oem
@ gov ~ tent de covya)ol ws pede
= Sint
Cost Dy° Re (env,
© O07 oper j (REL
\
a) = eee
ee ae i py. Ao $433
= CaDOrD
@ swale ;
pg (0,9)
ei
© 1 meer
&) SOd= ws y sr —30 44
br Aat Ronge of _ ft 6D Rr: THis the set of
values of flO
On potting abt '* from domain:
a OM fe Ginx
Des XeF
Hl ¢ Siung) ay xER
Hence, Rr = cv
@ foc
“$
Ry = Goths barb
Ry=
*# Let y* feo
fivd whe yasue Gi ‘Yo ;
the wage of fm:
which wide beIr
7 Some imposter dcfivition -
» Polynomial fa
Lf qa foucton of is defined by
Fl) = de + ap agx™ bot et x4 An
vohene: n= non- negative integer
Odo. Joe need numbers
Ratoi then ZF tscabled 9
podynomia’ fouctou of deqaree ome
4) AN gebsaic fouchon:
ois cy ol gebaic far of % if is a
fn Ara satisfies an edge baaic eq" f
the foam
Poca) poor - EPO Y F Pade
ushenes ne tue jntegen
fx yy}
ame oe 2-2 OH) y=\*)ane alge bnatc
tsve-
*
Note: ALD poy nomial fu
but ‘he converse 16 not
1D A far thal is not algebraic 16 cafled
Tgransceatented fu
puchon:
Joucho’:
iii) Ration’ J
A ge that can be waitten as the quer
ic sald tebe a
jent
of two pedynomidl fo
saqhonadl f°
x: otA
eh Ore >
®© ftrye cue =
bam”
iW) Expect fonction’
A fo yefeu is saicl to be an explicit fn-
of x i if the dependent vasiable gy can
be cfd tems ft tr
oo. ot ye oev) Lrapdicil fonction:
A fm y= $00 gs saicl to Le au teaphictt fu:
of x if y caunet be waiter tu
yenms of vA only +
fu
ars zeryt bY 2 agar zsyrcrd
© xz = Sh card)
WD) Boorded fonctor'
A fu- is saich tobe bounded if
neal number +
@ f(ape Sx
\
@ fore weD Quadnatic fonction:
Let fOd= anrtsbxte 5 whene Pek &
a#o
nth m +f ¢be
a
2
J= a | cts) fe | se of & ree,
2 Ma? Maat]
= 2 yack
=a late, n a,
ye) 2 :
(94 Da) a(t Be ~ acre) vs
Thess > y= Joo axe present o parabola whose
axis 3 parattel fo we the y-os
is a (ba? Ha
Con some vadve ef x, f(y may be
negative eno
fon aro , the parakofa open
Qa opens downwards
2 vertex
pesitive,
svpwands
| % tun aco, para be
Ly
\
> 7® Ja amr Ca 40)
—
L opword
poo) \OD a
pe x ver Ys)
Ze iy Maa) ITI?
Je %a™) °
& ) ye tee #209) -
© ge cere foce lb
hicnel tc 24)
Rote ee xt sy
0 ot xER
i) TY $00 7%
7 4 fo ee a LEP, then aco ® a
nec)
(W2) I= te YyAry 5
a
cc
y then aro F DLO
L? Doo
* age
pee PD
£00) 20 ft? 0
fase
—<—Fe) Exponential fon 00"
ye ar ; a>o » aFl
Domatns R
Range (6,2)
y
a>l
cats
ee Oe
-
23% we
7 a uw
7 %
4
x> Logasithmic function:
fe: is the invewse of expone
Legassithm mice ae
Y= Sea, 3 aro 3aFl
ta)
y id
Domains (0, ~)
Range : (<2)
a>
SG fa ph)
be
Yd Qo om
J Q oggFon wiypo F979 5 9° Soyo 2 Aaja°
1) Lepay) = Feat” i | syntac
it) Degg 9) = Deyo ~ Qejad =e)
iii) Degg?) = bor Lega
iv) Degya 3° = -b Rog,
YY Doggt > Lega D> i" >, Wf orl
occ jit ocac!tt Demain:
‘Domain
fo eee ee
Firiction
b Sinn, sx , CD, x-be)
©) 6x3 i dy rorniol,
function of cng degree)
lz} a,c,
mER
ED yea)
Sgn
i) Tax, Secx HER = FIM AIM, ~~ F
oo
LER- San mj
vohene n€T ©
Ii) Cota 7 Coseck yeR- SEEM t20--F
&
eR- Sony 5 whene nel
Lp re (ey)
YER- fot on xece 2)
iv) Ix
wv) Vig
vi) Jeqq4, Sux
vi Stwly Cos lx
witty Tow Cot lx
4X) Cogecle EB) Sec''x
BD 238
x>O
xe Cv) .
ER
we (-a,-Tu [Le
@ \ny)foo \__ Renge OFS
4 :
i) Shot» Ces CHD wy)
iy Tama, Cof %
(aD v [v9
iy Cosecw X, SEX
iv) She cw
vy) ce)
vi) txt four I
C55)
fies
Number uf elements fe
I) GSIN%
vit) Ceosx]
iy U0 Gs]e" merged
ce tt
ee CY | ws}
» Pepeieny Nomben of elements =$
[ee lyht-t, —- -. Cult
mim) > od cen
») Lh GD OY Ce)i) Y= f(a) = Sinx
Domain: R
Raye :C vw]
Sine, poinal € CHI]
fe Cinq =). n= (unt MA 3 net
anc =p UHM 5 ner
Sine -) DX = (CUD see
(Finn ee earn eco oer |» J = Sl = (osx
Demainr Rk
Range: C19
Sx
Cost 5 | cosx | € Col]
Cosma DXF cantomy 3} nel
Costa l ee 5 neb
net
cone Tt are canty mT ;
aes => x annt* ,nel \Dy Seema
Domain: R~ Fees F ee
Range + (-a®)
3x
(
|
\
|
[01,a~
Tanta Hawn | EC
> =n > nee
ese a]W ye ge) = GtX
Domains Ro {nny j nel
Ranges (—00,09)
Y) Y= Fe = Sec
Domain’ R- Kany F 3 nec
Range « (cH A] ul 1,29)
ON
m * =
Y%) ot ty,
\ 1vA) ge fy = Coser
Domain: Ro {nt} j nel
Range: (-o) 1 ul)
y
fo = alosnt b nr
Range YJ foo widhbe
~Jare & Cogn + baum ¢
Janefe
A) Joy = Bela
Domain + T-1,t)
R Alen
auge ¢ [Mo )
Siw [fin = a fox oll x € Cm 1h]
Sin (sivtn) a all rE CIT
(0) 5 fom ebne bl!)
Sinl(ea) oSB) fore Cos!
Domains U WW
Range * tet]
foot ell x € Cov}
fom all % € G AQ
fost all % ecu
(os "(tora = 5
Cos (eosta)= % 3
= TI- Cos!
cos)
iii) gous faite
Domain} &
Range 2 (M) i/)
javd (dau) =e 7 for all x eC MMh)
an( tanta) = 2 j for cull x € R
jor! (0) ~ tanta 3 foorall «eR
af
DXWN) f(a) = (ot
Domains &
Rawge + (% tt)
j foor att CTD
; fox all xeER
aD HER
Cot Ceol) —*
Cot Ceotlx) = %
cot G0) = T= Cott 5 (0%
2X
y feoe sel
C 00,1] uf ve)
to] = tng
Domain *
Range +
Nl CSeca) sae @ fe
Secl (Seer a € (oT I~ {¥
Sec (Sex) = % 5 for al xe Carty)
SelM %) = Tr Seclx 5 -forr all x t cari]uly~)Vi) Joya Cosec'x
Domains oot uC 1)
Range (M7 th ]~ $03
Glee) 4 dee Emm] ~ 483
Cosec (coseda) =x 5 fom afdx € Cortqul)
eee eis (FU
Coseé! (-) =
cu)se
vi) Linea Funckion :
ee
fa erb 5 a#® arch
Slee ab one constant
Domain: R
Range | R
at oo
vii) _ Modulos Fone
y= rl = i
Domains R
forge: Co)“ie Paujenties qf ecules fnchen’
i) \xte a oe
\are4 - Facxe |
grea
0
wy
MV
a wr
© 250°
} ¢
iv) ac \alSb 5 ee eed
CD) aoe o
laf +t91 9 iff a Ry have fhe
at Least one of x xy is
vy) laral
seam sign ED
zero OS) *I2°
= apes sre a
vid \acuye oI
\urztyl 5 CH *S PF
-gao
A (rzsalLffoso [ele 22
) ixnje aD (x= £9 |
ii) 1n[=-2 > Eo
if) (xd 2D D> xe Cor DUC)
in Sp BRE CHALOM?
KE CHD Y Cap)
\ala D> ° 29 20EV
. _ KER [v) )*)
iv) ee Ss 2 ys 2€C43)
nica p 2ECGY
NI) asyy cl tle] 0D Le
[in -tal|
® Je CO
ae O 5 OCKCI:
= | jy 1Ex 2
= 2 52 Exe=k |
viii) Gaeatest Integer fonctions
A jo: i$ saic) to be goreaitest Integen fo yf
i+ ig of the fem of fo=ld oes
Do] = frtegen equel nor fess than *°
ye f= (2
La -
(
» Domains R
Range T@r
i) ogden, (ner) > xe Tn, pt)
i) K-1< Cad oxwg (= [xen] j where net
a
Vv
D tex abr 5 yee
Cay = bol 5 page
iG) G ifxez
(ag rej = 71 if x#%
vin Clon XP jee
pnee
ory on 9D a Cnt
Cajon > antl ites
Ex:
= w)r2 2 we eCvy :
74? eo)
wy 4)
Cries 2
cares 2 OE==
vi Ponctonal_ Past Fonction!
ya hou= gape x OI yeR
ae xt! 5 x 619)
J KH i ze)
acl ! wet?)
5 7 fce
Domains Q
Range : {e-!)ar _Buohenties
Dato) =()tfy}] 5 9 § gaz 4 fF Dies
~axts is wantten 5
ded conid 1"
2s
ge IH=H H- Transformation:
an
e graph of ae fo) is Known | to dav the
goaiph
HER) seo
Process: The 4 coordinate of each point ois
be multipfy by eu Keepivy the came
a cpoardinate+e Gunsfioimation2
to olsiaw
The gorciph ¢| ye foo js Known 4
the gaaph of f (Ese?) C49)
? ;
(CSS The valve ef y which ts
obtain attaea}) is now obtain
at x= A |
Stn the grabh af y= flan):+e T- “Bans foormedtion
to Ana the
“The goaph of yd js Known 5
grape of y - (#097
y-( ha Y tedwee
oy yf osdect
p jp te fooce
2 7 2c jeucsHe Keo Bun feomation
The graph ef yf eda
+o doraw the
EV Ha eee
d- | $e) 7
ty) i if yout
ye) 1 2<%x¢3
i j if eo)4
F_Ailpteation of grephs:
lc fivel the numben of neal ools of the
et foa= 9) ]
‘kb
m0cess! Daw the. graph of y= FO) z
Y= ge) on the same aes
points of jntensedion
Beastly the numben
cs the two geaphs with be the number
eo seal Soots’ | the [gt f= 99 :
% The x-coosd nate oint of intewechon
ane called the stots of the eqts fod= JOO"0 sf x7
ye | 3
100 fae
oO i t Zao
Baocess:
= FOO for the postion
=
y) waiter the goaph J y
which is on We sight side of *he yr orl:
ii) fnrdode o point (0-2) in the goph °
it Reflec! dat position of y= foo which
the Sefi side of y-aris wort:
is On
dhe axis+e “The goa ph of ye fed is known , to dnaw
the gaaph of y= sgn( 4)
ye | if sorre
Tt iy dovce
6 » J for-oa 3 Wf orb
bs of ba
a
Max (ab) |
go) i if fon79”)
Mon (#099) =
go 7 if goo 24
ae Deraw the graph of d= max (00,9)
Process; We daw the graph al yf g
raoces
Y= 9m) on the same axcs 2 then
aduways accept C take) + the upper port of
dhe grab ‘HE Some im poten’ standosd *
DSc Gy x50 2) A> AINK
Sinn = % ru
frm >x 5 xO?
Az O
a 6 Ant
NY fonx a) if x ¢ (o-M/)
fora cx} f HE (1/79)
iil) fam] Coe Ak ER“Ht _Non- Function _Govfhs
“The
goeph a ys feo is Known , to dota)
the gaabh vo
gath ef fig SO |
“Brocess Remove he posthion g
bedow the 7% axis 2 1 P
e above th
yd whieh fie
postion ef ¥ Lo
: efiede ed
as we
which 2
wrart The 7 axiHn +1¥l =K i
* Lu general the gouph
is q squane - zg (+h
Leng vf each side i
Biz:SH The goaph of ya foo fs Known , to naw
the stegion satisfyivg The relation y 7 fC)
©) yofed |
|= Given ve goabh ef Ye Jo , te dea t<
segion nepaesented by
ly) > seg @ wl fe)
Ni) The sregion inside this gaebh 's
sreparcsented by \8\ < feodb Tf sreplacing x by Bee inde cae, ofa cunve
uf the eqs af cunve doesnot change , 1st
the cusve is eymme nical wlth nesped to
Yyraxis:
iy Lf sre placivg y by zy! jn the
y the eq" the cunve cloes net ©
then geaph of the cunve is Sym
eq’.
hange ;
a bnicee
about * axts*