0% found this document useful (0 votes)
39 views12 pages

My Sparameters Sum 2

Uploaded by

Nihad Djebbar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views12 pages

My Sparameters Sum 2

Uploaded by

Nihad Djebbar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

General Network Formulation

V1+ I1+
Z 0 ,1
Port Voltages and Currents
I1 V1− I1−
Vk = Vk+ + Vk− I k = I k+ + I k− V1
port 1
+ +
V I 2 2
I2 V 2
Z 0, 2 + N-port

port 2 Network
V2− I 2−
VN
+

Characteristic (Port) Impedances


IN
port N
+ − VN+ I N+
V V
k k
Z 0, k = =− + − Z 0, N
I I
k k VN− I N−
1
Note: all current components are defined positive with direction into the positive terminal at each port
3
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Impedance Matrix
I1 ⎡ V1 ⎤ ⎡ Z11 Z12  Z1N ⎤ ⎡ I1 ⎤
V1 + Port 1 ⎢V ⎥ ⎢ Z
- ⎢ 2 ⎥ = ⎢ 21 Z 22  Z 2 N ⎥⎥ ⎢⎢ I 2 ⎥⎥
I2 ⎢  ⎥ ⎢    ⎥ ⎢  ⎥
V2 + Port 2
- ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
N-port ⎣VN ⎦ ⎣ Z N 1 Z N 2  Z NN ⎦ ⎣ I N ⎦
Network
IN [V ] = [Z ][I ]
VN + Port N
- Vi,oc+ Port i
-
Open-Circuit Impedance Parameters
Ij Port j

Vi ,oc N-port
Z ij = Network
2
Ij Port N
I k = 0 for k ≠ j
4
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Admittance Matrix
I1 ⎡ I1 ⎤ ⎡ Y11 Y12  Y1N ⎤ ⎡ V1 ⎤
V1 + Port 1 ⎢ I ⎥ ⎢ Y ⎥ ⎢ ⎥
- ⎢ 2 ⎥ = ⎢ 21 Y22  Y2 N ⎥ ⎢V2 ⎥
I2 ⎢  ⎥ ⎢    ⎥ ⎢  ⎥
V2 + Port 2
- ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
N-port ⎣ I N ⎦ ⎣YN 1 YN 2  YNN ⎦ ⎣VN ⎦
Network
IN [I ] = [Y ][V ]
VN + Port N
- Ii,sc Port i

Short-Circuit Admittance Parameters +


Vj _ Port j

I i , sc N-port
Yij = Network
Vj Port N
Vk = 0 for k ≠ j 3

5
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

The Scattering Matrix


The scattering matrix relates incident and reflected voltage waves
at the network ports as (assume Z 0,n = Z 0 ):

⎡V1− ⎤ ⎡ S11 S12  S1N ⎤ ⎡V1+ ⎤


⎢ − ⎥ ⎢ ⎢ ⎥
⎢V2 ⎥ = ⎢ S 21 S 22  S 2 N ⎥⎥ ⎢V2+ ⎥ or [V − ] = [S ][V + ]
⎢  ⎥ ⎢    ⎥ ⎢  ⎥
V1+ I1+
⎢ − ⎥ ⎢ ⎥ ⎢ ⎥ Z 0,1
⎢⎣VN ⎥⎦ ⎣ S N 1 SN 2  S NN ⎦ ⎢⎣VN+ ⎦⎥ I1 V1− I1−
V1
+

with voltage and current at port n: port 1


V2+ I 2+
I2 V2
Vn = Vn+ + Vn− Z 0, 2 + N-port

I n = I n+ + I n! port 2 Network
V2− I 2−
VN
+

+ !

IN
= (V ! V n n ) Z0 port N
4 VN+ I N+
Note: S-parameters depend on port impedances Z 0,n = Z 0 Z 0, N
VN− I N−
6
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Transmission Line Basics
Lossless Transmission Line
V2+
V1+ 0 z

Z0,1 1 V V2−Z0,2
+
_
+ + +
_
E1 V1 Z0, ! = "l V2 E2
- -
Port 1 Port 2

V1 = V1+ + V1! V (z) = V0+e! j! z + V0!e+ j! z V2 = V2+ +V2!


I1 = I1+ + I1! + ! j! z ! + j! z I 2 = I 2+ + I 2!
I(z) = I e 0 +I e 0

Phase Constant: ! = " LC

6
L V0+ V0!
Characteristic Impedance: Z0 = = + =! !
C I0 I0
8
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Net Power Flow on Lossless Line


V0−
I(z') ΓL = +
V0
Z 0 = R0 (real)
+
Z 0 γ = jβ V(z') ZL

z' 0

V ( z ' ) = V0+ e + jβz ' + ΓL e − jβz '


( )
V0+ + jβz '
I ( z' ) = e ( − ΓL e − jβz ' )
Z0

2
* 2
1
V0+ #
Pave (z) = 2 Re V (z) ( I (z))
{ } = $1! " L %& = const.
2R0
7

9
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Generalized Scattering Parameters
considerations and definitions
V+
! !0 E
Z0 V− V+ =
I 2
+
+
_ Z0 ZL
E V V − Z L − Z0
- Γ= + =
V Z L + Z0
+ +
ZL !
V = Z0 I V − = −Z 0 I − V= E
Z L + Z0
V = V + +V − I = I+ + I− 1
V+ = 2
(1 + Γ )E
Z0 V−
+
I
1 P + = 12 Re V + ( I + )*
{ }
V = (V + Z 0 I )
2 +
+
_ ZL 2
E V = 12 V + R0
V − = 12 (V − Z 0 I )
8
-
= Pmax
(assuming Z0 is real Z0 = R0)
10
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Normalized Wave Quantities


§ It is useful to express power P without characteristic impedance
(port impedance) Z0 = R0 (but P still depends on R0)

+ + + * + 2
V+
P = 12 Re V ( I ) = 12 V { } R0 a=
R0

− − − * − 2
V−
1 1 b=
P = − Re V ( I ) = V 2 { } 2 R0 R0

a 2 2
R0 b V+ V−
I
+
PL = P + − P − = −
+
_ ZL 2 R0 2 R0
E V
- 1 2 2
= 2
{a −b }
9
(assuming real Z0)
11
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Scattering Matrix
R0,1 I1
+
_
+
E1 V1 Port 1 ⎡ b1 ⎤ ⎡ S11 S12  S1N ⎤ ⎡ a1 ⎤
- ⎢b ⎥ ⎢ S
N-port ⎢ 2 ⎥ = ⎢ 21 S 22  S 2 N ⎥⎥ ⎢⎢ a2 ⎥⎥
R0,2 I2 Network ⎢  ⎥ ⎢    ⎥ ⎢  ⎥
+ + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
E2 _ V2 Port 2 ⎣b2 ⎦ ⎣ S N 1 S N 2  S NN ⎦ ⎣a N ⎦
-

R0,N IN bi
Sij =
+ aj
EN +_ VN Port N ak = 0 for k ≠ j
-

Vi − R0,i Vi R0,i
Sij = =10 (i ≠ j )
E j 2 R0, j
( ) E j 2 R0, j
( )
E k = 0 for all k ≠ j E k = 0 for all k ≠ j

12
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Scattering Parameters
2
Physical meaning of S ij ( Z0 = R 0 = real)
2 Pi − actual power leaving port i
Sij = = (i ≠ j )
Pmax, j Ek = 0 maximum power from port j Ek = 0
k≠ j k≠ j

R0,1 I1
2
+
Physical meaning of S jj V1 Port 1
-
N-port
bj V j− R0, j Z L , j − R0, j Network
= = R0,j I
j
S jj = +
aj ak = 0 V j R0, j Z L , j + R0, j + Port j
k≠ j Ej _ Vj +
-
ZL,j
2 R0,N IN
PL , j = Pj+ − Pj− = Pmax 1 − S jj + Port N
{ 11
} VN
-
13
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Relation to Z-Matrix
Impedance matrix: ⎡ Z11  Z1N ⎤
V = ZI ⎢
with Z =   ⎥
⎢ ⎥
⎢⎣ Z N 1  Z NN ⎥⎦
Express V,I in terms of a and b

R10/ 2 (a + b ) = Z R 0−1/ 2 (a − b ) b = (Zn + U)−1 (Zn − U)a


with normalized impedance matrix Z n = R 0−1/ 2 Z R 0−1/ 2
( Z0 = R 0 = real) ⎡ R0,1 0 0 ⎤
⎢ ⎥ −1
and port impedance matrix R10/ 2 = ⎢ 0  0 ⎥ R0−1/ 2 = R10/ 2 ( )
⎢ 0
⎣ 0 R0, N ⎥⎦

−1 12 −1
S = (Zn + U) (Zn − U)= (Zn − U)(Zn + U)
14
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Scattering Parameters
§ Port n is said to be matched when it is terminated
with a load having the same impedance as the port
impedance Z0,n.

§ Often, all port impedances are chosen to be equal


and Z0,n = 50 Ω.

§ The values of the scattering (S-) parameters depend


on the chosen port impedances.

§ S-parameters can be algebraically renormalized to


different and unequal port impedances. (see later)
13

15
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Two-Port Networks
Insertion and Return Loss
Z 0 ,1
⎡ S11 S12 ⎤
+
_
E ⎢S ⎥ Z 0, 2
⎣ 21 S 22 ⎦

RL IL
Return Loss
indicates the extend of mismatch in a network in dB
port 1: RL = −20 log10 S11 in dB
Insertion Loss
measure of transmitted fraction of power in dB
14
from port 1 to port 2: IL = −20 log10 S21 in dB
16
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Example
Lossless Transmission Line:
V1+ V2+

Z0,1V1 V2−Z0,2
+
_
+ + +
_
E1 V1 Z0 θ V2 E2
- -
Port 1 Port 2

If Z0,1 = Z0,2 = Z0, the scattering parameters can be easily obtained by


inspection:
S11 = S22 = 0 S12 = S21 = e − jθ
⎡1 0⎤ ⎡ 0 e − jθ ⎤
[U ] ± [ S ] = ⎢ ⎥ ± ⎢ − jθ ⎥ −1
⎣0 1⎦ ⎣e 0 ⎦ [Z ] = Z0 ([U ] + [S ])([U ] − [S ]) =
−1
−1 ⎡ 1 − e − jθ ⎤ Z 0 ⎡ 1 e − jθ ⎤ ⎡ 1 e − jθ ⎤
= ⎢ ⎥ ⎢ ⎥ =
([U ] − [ S ]) = ⎢ − jθ ⎥ 1 − e − j 2θ ⎣e − jθ 1 ⎦ ⎣e − jθ 1 ⎦
⎣− e 1 ⎦
1 ⎡ 1 e − jθ ⎤ Z 0 ⎡1 + e − j 2θ 2e − jθ ⎤ ⎡ − jZ 0 cot θ − jZ0 sin θ ⎤
= = ⎢ ⎥ = ⎢
⎢ ⎥ 1 − e − j 2θ ⎣ 152e − jθ 1 + e − j 2θ ⎦ ⎣− jZ 0 sin θ − jZ0 cot θ ⎥⎦
1 − e − j 2θ ⎣e − jθ 1 ⎦
17
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Properties of S-Parameters
Reciprocal networks:
S ij = S ji or [ S ] = [ S ]T Matrix symmetry!

Symmetrical networks:
Electrical Symmetry
S ii = S jj and S ij = S ji
and Matrix symmetry!
Lossless networks:
For a lossless passive network the scattering matrix [S] is unitary:
transpose complex-conjugate

[S ]T [S ]* = [U ]
Example: two-port network

⎡ S S12 ⎤ 18
[ S ] = ⎢ 11 ⎥ [ S ]T [ S ]* = ?
⎣S 21 S 22 ⎦
20
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Properties of S-Parameters
Reciprocal networks:
S ij = S ji or [ S ] = [ S ]T Matrix symmetry!

Symmetrical networks:
Electrical Symmetry
S ii = S jj and S ij = S ji
and Matrix symmetry!
Lossless networks:
For a lossless passive network the scattering matrix [S] is unitary:
transpose complex-conjugate

[S ]T [S ]* = [U ]
Example: two-port network

⎡ S S12 ⎤
[ S ] = ⎢ 11 ⎥ 19
[ S ]T [ S ]* = ?
⎣S 21 S 22 ⎦
21
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Lossless Two-Port Networks
⎡ S S12 ⎤ T⎡ S S 21 ⎤ *
⎡ S11* S12* ⎤
[ S ] = ⎢ 11 ⎥ [ S ] = ⎢ 11 [ S ] = ⎢ * * ⎥
⎣S 21 S 22 ⎦ ⎣ S12 S 22 ⎥⎦ S
⎣ 21 S 22 ⎦

Then
2 2 * ⎤
⎡ S S 21 ⎤ ⎡ S11* S12* ⎤ ⎡ S11 + S 21 S11S12* + S 21S 22
[ S ]T [ S ]* = ⎢ 11 ⎢ * * ⎥
= ⎢ * 2 2 ⎥
⎣ S12 S 22 ⎥⎦ ⎣ S 21 S 22 ⎦ ⎢⎣ S12 S11* + S 22 S 21 S12 + S 22 ⎥⎦

From unitary condition follows: Example: lossless TL


⎡ 0 e − jθ ⎤
2 2 2 2 [ S ] = ⎢ − jθ ⎥
S11 + S21 = 1 = S12 + S22 ⎣e 0 ⎦
2 2 2 2
* * * * S11 + S21 = 0 + e − jθ = 1
S S +S S =0=S S +S S
12 11 22 21 11 12 21 22
*
20 S12 S11* + S22 S21 = e − jθ ⋅ 0 + e − jθ ⋅ 0 = 0

22
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Lossless Two-Port Networks


⎡ S S12 ⎤ T⎡ S S 21 ⎤ *
⎡ S11* S12* ⎤
[ S ] = ⎢ 11 ⎥ [ S ] = ⎢ 11 [ S ] = ⎢ * * ⎥
⎣S 21 S 22 ⎦ ⎣ S12 S 22 ⎥⎦ ⎣S 21 S 22 ⎦
Then
2 2 * ⎤
⎡ S S 21 ⎤ ⎡ S11* S12* ⎤ ⎡ S11 + S 21 S11S12* + S 21S 22
[ S ]T [ S ]* = ⎢ 11 ⎢ * * ⎥
= ⎢ * 2 2 ⎥
⎣ S12 S 22 ⎥⎦ ⎣ S 21 S 22 ⎦ ⎢⎣ S12 S11* + S 22 S 21 S12 + S 22 ⎥⎦

From
for passive condition
unitary(lossy) follows:
networks

2 2 2 2
S11 + S21 ≤=11≥= S12 + S22
* *
S12 S11* + S 22 S21 = 0 = S11S12* + S21S 22
21

23
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Applications
Terminated Port: All port (reference)
impedances are
ZS port 1 port 2 Z 0,ref
⎡ S11 S12 ⎤
+
_
E ⎢ ⎥ ZL
⎣S 21 S 22 ⎦
ΓL V2+ = ΓLV2−
one-port network
Γin
V1− = S11V1+ + S12V2+ ΓL S 21
V2+ = ΓL S 21V1+ + ΓL S 22V2+ V2+ = V1+
V2− = S 21V1+ + S22V2+ 1 − ΓL S 22

special case: ZL=0 è ΓL = -1


ΓL S12 S 21
Γin = S11 + S12 S 21
1 − ΓL S 22 22 Γin = S11 −
1 + S 22
(Z s = Z 0,ref )
24
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Shift in Reference Plane


S12A
S 21A
S11A S 22A
θ1 = βΔl1 Two-Port θ 2 = βΔl2
Z0 Network Z0
V1B + = e − jθ1V1A+ A+
VB+ [SB] V B+
V2A+ V2B + = e − jθ 2V2A+
V1 1 2
B− B−
V1A− V
1 V 2
V2A−
V1B− = e jθ1V1A− Δl1 Δl2 V2B − = e jθ 2V2A−
A B B A
shift in shift in
reference plane reference plane

⎡e − jθ1 0 ⎤ ⎡V1B − ⎤ ⎡ S11A S12A ⎤ ⎡e jθ1 0 ⎤ ⎡V1B + ⎤


⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ 0 e − jθ 2 ⎦ ⎣V2B − ⎦ ⎣S 21A S 22A ⎦ ⎣ 0 e jθ 2 ⎦ ⎣V2B + ⎦

⎡ S11B S12B ⎤ ⎡e jθ1 0 ⎤ ⎡ S11A S12A ⎤ ⎡e jθ1 0 ⎤


⎢ B B ⎥
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣S 21 S 22 ⎦ ⎣ 0 e jθ 2 ⎦ ⎣23S 21A S 22A ⎦ ⎣ 0 e jθ 2 ⎦
25
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
S-Matrix Renormalization
−1 −1
S = (Zn + U) (Zn − U)= (Zn − U)(Zn + U)
−1
Z n = (U + S )(U − S)
−1/ 2 −1/ 2 old
Znew
n = R 0, new Z R 0, new = F Z n F

( Z0 = R 0 = real)
Renormalization matrix

⎡ R old R new 0 0 ⎤
⎢ 0,1 0,1 ⎥
F = ⎢ 0  0 ⎥
⎢ 0 24 0 R0old new ⎥
,N R0, N ⎥
⎣⎢ ⎦
26
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

Voltage Transfer Function from


Scattering Parameters
R0 I1 I2
+ ⎡ S11 S12 ⎤ +
+
_ R0
E V1 ⎢S ⎥ V2
- ⎣ 21 S 22 ⎦ -
1 1
V1+ = 2
(V1 + Z 0 I1 ) V2− = 2
(V2 − Z 0 I 2 )
1 + S11 V1 V1 1 − S11
Z in = R0 =I1 =
1 − S11 Z in R0 1 + S11

V V − R0 I 2 2V2 V
S 21 = 2+ = 2 = =  = 2 (1 + S11 )
V1 V1 + R0 I1 ⎛ 1 − S11 ⎞ V1
V1 ⎜⎜1 + ⎟⎟
⎝ 1 + S11 ⎠
V2 S
= 21
V1 1 + S2511
29
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011
Properties of Network Parameters
§ Symmetric Two-Port Network

Z11 = Z22 Y11 = Y22 S11 = S22 A= D


assuming the same port impedances

§ Reciprocal Network
Z ij = Z ji Yij = Y ji S ij = S ji AD − BC = 1

§ Lossless Network

T *
Re{B, C}= 0
Re{Z ij }= 0 Re{Yij } = 0 S S =I Im{A, D} = 0
28 2 2
e.g. S11 + S21 = 1
34
Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011

You might also like