0 ratings0% found this document useful (0 votes) 67 views39 pagesUnit - 1 DE
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
| Number Aystim —
ao
 
Decimal number
 
db Binary number
GHD Octal nurnbasy
GY) Hexadedmad number
>» Convevign t-
*
Decimes +o _binow Convent ce
fe (22), = Gs
 
 
 
 
al 32 fo
16 |o
fo
aa ° B, = (loooee),
0 ———
I at 4 =
| BI
| I
} @& (43.t25),.= (1)
aie
ait¢
tof
 
 
 
25x22 =
7 250%2 =
+250
+ Soo
—>o
— jo
 
bo bo Jape po
Riis
To {CON
1,000 —7 1
= (lelout. ool)
G& (%),= (1),
5o
23 Jo
typ
is
Sid
ea
 
a
a
 
 
 
bobo
 
= (ro),— #* Decimal -to octal $-
2 (039),= Os
 
 
SPER] -emL
& C®,.= Us
[533]
15331 _
ql és [5
%{ 3 12 = (1025
| a te A
———
* Decimal to Hexadsdmall
Decimal “to Hexadedmes.
& CDe= Cr
 
 
 
 
 
 
 
 
ie 349
{6f 23 [0
Ewe) (178),
eee
ae oe
  
mal _Conveusign. <-
2 (CoVCDnG))ic
GQ @lol) = 0)
a 2 10,
(2 Onn 1x2 Ox2'+1x 2°)
7 NT DRO 1.97
> (b+or4to+1
alee
=@, zh
a= = B42,
le
ea
veag HAH = We
   
  
 
(Fad? xb! + SH) Qad*+ 4x0! + 6x99)
= 4W9+244+5 Cee
= GED
a = (166),
a
(Ba8%,= CLI.
Azto
eet
po
G {ha62-+ fox lg? + We 1g! + lox les)
= (44902)0
Se
4 Binary _-tp__Octoll ce
& (Monod, = (1s ge oe
 
LIONS (ss)
ae
+ octal to Binary oS. G L= ©},
2B =%
& (sua = O),
iN
ier ee Oe
=> (leiiovole),
oe Binosy +p Hexadutmal 2
Q (onod,= 0, Ke
G(Uuowo + (GD),
eaeSRO moe On asy_ o =
ee)
@ (Sea), = Oa i
5 62)
T Roo
ona > (o1o110t1 001%),
a
z
tr Octal +o Hexadedmal {-
Q Gry = We
6 pee
Fixst we Convert fm bPmosy Ram fm Hexadedimall,
642), Gyn
J
12 jo O10 (liotee 10),
Haxadeeimall
p20(I}0l00 O19),
4 @ A XD,
a
4 Hexadsdmal tp octal t
& (co), =(),
@c),,
re eT
Alojiyoo), x
190) ey,
=
a. race @),
oOlv ilo
= (lou),
—_——
————de Numbow wit di ffewnt Bare Cradix Co)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ocean eel seeaura
Bare.e | Bonet)
oO a
1 i"
| cain
3 3 |
qy emacs
5 5 rl
6 6 |
= an
lo %
u 93
12 lo =A
oe el
14 [A =e
is Eee
14 IL 10 I64e fb 1b She
15 Wty IF 15 =F
 
 
 
 
 
 
 
+ Complement of radi Chasdy 3-
© Dedmal C1) @ Binary (2)
Ls 94 Complement LN Complumant
© 10! Compliment Ls 2% Complument
© octal (v) G) Hexadecimal (14)
Ly ay CompLumant Lo 15's compl
& 94 Complement > 16% ComplomeFr Using 15 Complement
G (toro!) — (ololo)=?
m "
15 Comblement of A
Clolo = lojol
tan,
nt 1K Complemad af N
lolol
+tolol
Bey PAS
—
& loro) = ( joo!) = 2.
7 i
VA Complement of N
= Ol0lo0
M+'4  Complemest of N
= @lale
401010
| o100
 
 
again 15 Complement of Sum
=-(lon)
 
dam tamt- note er ae ae = a
important mote = > The prow of Finding 1/6, dy
Gnd 15'5 Com blemends Will semair
Aare.
| * “The prvans af finds
| Pay aes F
ee "a OA, B® 16% Cam p lerrerd
4 Using’s 2's Comblemenb 2ig e1o!0)— Ciotoi)= 7
Vs Complement af N = ololo
 
os Mat 22% Comblemed = I's +1 |
= Olon
M+ 2 Comblmedt of w
= Olola
Oot
RO Corey ie Ove numbex
Ao, agaim, 2% Complerext of Lum
184= Soloro
ah = Atl = —(oten)
a (lotor) — Coteio) =9
™ TN
1% Complement of N = folol
2 Comblyment = I%+l= lol
M +25(omplenent of N = lolol
+ totio
Notows |
ae
(CRY ble discard Cosy 3. AF)
\
3
will ba final angus. 97
= (lon
lugs Using 2'3 Complement , Aolve it —
© (Mloooe) — ( Joio) =?
M N
= Ololo
2'5 — Comblement of N=
Us Comblemed of 19
Wal= Oloti
+Rar,
M424 conblomedt of W
= Iloooo
oo1O il te
‘i| "A Complement ef Aum= 0001 00
2's — Complemend =
Ors rates
Oocolo)
*A = = (ovolot)
2
Using 10 Complement , Solve it 7
+ (9742) - (Gu) =2
™ N
9% Comp Lumet of
=e 9915.
— 064) (ow complannack
Beraraieians = 344
Bae 9359
M+ [9's Comblemert af ND
= 9442
+9359
(D910!
Comy
im FRA We discusd Comey
&
o cy
* (64) —(s5u2)=2
” ©
34 complement ofN= 9993
—9F42
Pay
Ran, ieee
M+ 10% ComHemercd ofN
= oé6ul
025%
aes
IDA Comblamad= 92+)
 
025%
nO Coy ic. Cue nwmben
again Q'5 Com plement af parame?
3} 20
10% Complament =  giod+!
Nrausn = -(9101)
——ae CODE %—
> A Aytem of rebresentation
Of Numeric, Alphabsts or
ssat Charadou Pr ;
Apec eo Chanadin pf bin asy fon for Prowning and
trammissiion wimg Digital techni quus :
> Tiybe_of Code
© Binoy Code 2 The numbex Aypstom LWitR bose 2 1% Known
On bimaryy Code
© Thae aw O amd.
© &ha uel g fetid Code,
£s (%o= Clove),
j Coded decimal * also Known os “BCD Cod’
> A Code or we
 
 
repos emting g dadmal mumbow fn
Which each decimal digit Ps sefmasenttad by 4 bib
bin ony Code - , also Known as motina) BCD
> Decimal digit (0-3) an rebrrented by Rix mectinad
bimary mumbsr equivoleits using UY bit.
> Each decimal digit of duefanad mumbir f4 rebnesented
 
 
by HRs Ubit code  fmdividually.
This cods i also Known as -“BH-21" Code or
Ale bly BCD. Ths fs also a dacightid code
&. Decimal number BD_Cose_
oO 0000
( Ooo
2 Colo
3 oOoll
4 Ol 09
& ol ol
6 o110
q oll
8 1000
e)
lool
aaOO
S¥ Bp cod of (12) YS
(2) a (cel o0!2)
LS cot
001
ode)
@  Exuw-3 code (Be0+3- excess 3.60
| 2 to TR bf
© A Bed code fowmed by adding 3 a 7 Foo
equivalent of fs decimal muimber — i
eaR decimal digit th obtained by adding 2 +,
4R matured «BCD code of Digit
a. 10s
cect Ont)
oes 23 ghg a
FIR
Vole = (oN oon Wo 10s)
1
olll Oo
@ Gray Codes A code tm which only ome bit chang,
betuawm — Aucunive awmber
Ee (iMHIS),
L
1100
(111000100) _
@ Octal codes A code fm wohicR each group of Re
bit Atooding fom Lsg pec
by ih equivalent octal digit. ipsa
Se Cll) iG ee
ay
| Hexadoctmal Code t- g =a,
OS *~ A metRod of ‘i
fm hic eaR group of 4 bit shuns pd ia
excl
2% (ello otto), = (1),
° [g= 2®
= ©,Binary Code 2
Binary ]
RGB, 8,
Q000
Ooo)
Colo
ool)
Oltoo
°
°
!ol
°
tio
Omit)
looo |
lool
lolo
toi
t100
flo
llto
tay
|} ©9000
Ooo}
Ooto
 
 
Excum-Fcod | roy
BEE | OCR
ool C0v0
O100 eco!
Olol eo
fe) i} j) (0) O10
© iii) Oho
looo o1n
lool Olotl
\oto 100
You lloo
'loo lo}
tii
io
lolo
lou (V5
lool re
Lovo 17
 
     
 
g
 
 
>eburert — decimal mumboy tn
(0
cliy
Binosey Code
BCD code
Th) Gxuss~3-code
iv) Gray Code
Octal code
Hexadecimal code
©
bincwy tore wing —
396 © 4o3¢| om 7
O Ye = Glow),
o. be e- 2 Goiwom)
|
@ |
+33
4‘ Now > Colo tole)
) y=) @ woAhon) =¢
@ gin Agi. a 7
fe
(1oMo) 2G. ne
© 3%
36), = Contove),
O ax Rasch
Es ool ‘
pal bacelio (Cot Joo! ono,
@M 356
pean
f : x (oor x Keclize es!) {10 WN)008) _()
one tiee @) 0
® Cotinoos) (one
els dul
tol =(6FO (#8
(I1ooe100) 7 € =
© 409
( (Hoge), = ( [000000000 000),
GD Hos
ont Lk Sono = (lec covefvoj 019),
@ 4096
+330:
as ; RgS a, > OM con tiocioe)
onl oon Noo
® (io 000000 00000)
J
Wid, tooo ;
eee ‘All p00 090 069008), =@)
—a2—< lo
© zd{looooee gocooy), = ws ( oD),
(io ooo) aae Hamming _Code Hamming Code tf used for evar
diction And Corredion ,9¢ ts olso used Conebt of
Addition Parity, bits.
(2's aa Ret Where = pani ty
c eee ee m= menage bite
hengl® of Hamming Code = m+p
Position of Hamming Code = 2" (4 1,.2,4,8, 16...)
 
@
G
 
 
 
Bac caters
BCD Even pasty odd paxity
DcBA e BDCGA P Sp C8 FA
(CL ORCTOR Om OMONG IG! a> eOma oo
OOOl=> 1 Oo =p Og0 © © |
© | OF Om O) a OU© © «eG
Ooli- ogoot1 3 eC} TOmmian
© | oo-= io (too ea © © | oH
© | O lisp Ome Out =e t @ il ot
(One tO aes © ©| | © >pr (© Ao)
© i liq? Ori -—- oom
10 00> | lI ©8o = 0 \omoro:
loOl-> © 1oot uct git aimowontfor Oll0 2 Wrimg Gy
Quer Detinnne $e hamming Code
ponity
ad Ollo
oud
> may
> o> parmel
Q°2 p+5
P=! a2 6 (PH
Pe2 (Ce)
3 G2 Cvabdd)
[P= }> @e,% :
Longi® of Hamm Cods= mp = U49= 4
Com = 2r(1,24,8-)
P,P
 
> position Of Hamm
 
> Hamming Cod,
ees 4 8 Ct
Pie aha te} (Py et (ee)
O-» g) iB p,
o> o Oo oO
oa, ° ° '
<> ° I °
oF ° \ !
a ee ( O + 0
ones, { Oma
oe ! ( OoFor Ps (4, 5,63)
Ser _ chick.
 
   
4564
fm 11.
fox eum
®,=8)
Qu Find hamming Code using Even Ponity sc
e (Ho foo)
m= +
 
 
ormin ge gcocl yaa Oona
> 2P= p+d
if 24> 12
Ve>12_ Cvoltid) —> Pi Pa, Pa, PR
hong tf of Hamming Code= 449 = 11
7 position af Homming Code : 2°(1,2.4,0, W--)
 
>
PLA Py
C0 PL eee,
° ° ° ° °
I fo} ° ° |
2 ° oO ( °
3 Oo ° I i
4 ° | ° °
5 ° | ° 1
6 O l { 0
3 ° I \ |
3 \ Oem ome:
g { oO Oe aa
lo \ ! © o
I { ( © fj
ae for Pee (ays asa)
for check » | 3 5) eet
Sa , ia jagomel for aun> foe BC 8,910"),
To chk:
 
 
==>
a 9
Piet fe fF oo Cl uO
Hamming Cods :- O10 lollool Ay
+ Logic operation :— 2
> Baric logic operation <—> ts
>
ES
Univeral Logic Opevat? gq, ———> NAM
a oe
Apedah bogie Open —> ev_og
FeMag
lo
o |S ee peak
SoP form (Aum of produc) POS fern
Gn SOP form Input conti]. gn j famed of Sum)
oe POS fosm Input Combination
-mation i+ token Covretpand| 0 5
-rq to Lohich outpub.iga] ' taken Comtpending to 4
Which output fs 0
AGliaa
ol ® AlE
Ila ete
\ a
 
 
 
@ Aymbe
iS } F
8 @ Auitching Civuitt
® Butf table aa
Vv ® CG) F
 
© Algebytc Function
r
a
Jn Pos @4A). (848): 48)—————— SS i rs
* OR OPERATION ea Coe 3B
 
© Symbol.
a
8 oy pe
vottehie Chreus:
Brey al
« © Bw table @ ae ik
: A} BLE.
—sTofo 8
a aie | F
ronal Ns
Te ntatar
© Algsbytc_finction
[Fase Teese
Not OPERATION 2— (£C-F404) also Known os * INVERT,
@ Symbo
a——_f>—_ F
© he tel @ Auoitching _Cireult
 
Ale
ay t A
ilo “@y * G
 
 
 
©  Algebrte function
art
* Buffer OPERATION (34 Inoue 32, am
atid of
® Aymb Whilr provide outpud),
s—[>— F
D) Tule tab © Mane fation
Ahe +
gtx NAND OPERATION 2 (c¢- 4400)
(Wand = aNp-rNoT
@ Aymbol
mo
. ——f>»—_-F = i
© uf table
SEEM = ©  Auwitehing cyst
o|o 1
o;t i)
I ° !
Ue ee) Vs GIF
©  Algebyte_fundion
mn
© Aymbol
=>
NoR OPERATION 3— (Lc. 4402)
 
{il
@  Austtehing chrait
vO @)F| SF Speco Logic open ott
*% €X-OR OPERATION, S—
@ Symbol
= Aeb
 
* €X-NoOR OPERATION a.
@_  SymboBooleam _Ederd
 
 
* Dual +Reorem —
@ eal
 
4-0
— OR logic
wb
GI) OR Lage —> AND logic »
2 Demorgans AR rem —
AND Logic
    
Demorgan's See
Ce oe
the Line.
    
  
 
   
 
 
 
UW) AyBFT = ABC
Gd) BE = T4B4T
ae OR. AND.
<> A+0=A  asi=) aiy WEA 1-+AraglRing = |
Aili>  AFREI # A@O=A vy Aoo=A [Aine a |
<> AOA=0 <4V>  A@A=0
“vi ne .
a Rei a> Aol= A
peta  Aon =|
(A+80) +8) (aro)
fom RUS
(+8) ( A40)
= AA+Ac+ BAL BC
= A+AC+ BA+BC
= A(I+ C+8) +86
Be = A.1+BC= A+Qc age Oe
ce > AB+Ke = (ic) (HB
> ACA4B)= A > @A)A40 =AC+Eg
> DERG = FA (AiG) = AH > Ab Re 4Qe « kere
ES
>
oe 7 69 R40) (x)= (MEO
AB+AB= A
> (A+84B) =
A
_  o°°° TTT. _—>(J Boolean algebra
@ K-Map
{-( — Tabulor metfod ( Qume Mack huky mtd)
 
* Boolean algebra - we +Rought dom't con Condition {4
e Aolved boolean algebra | Edamtity 4 to rremomtar,
Expumfon. cam be oniatenttoston, tA only fin SoP fern
© heart mintmixatton 4 no amy Guoanty
 
 
Qurs-  Atmplify following
O Fluxyz)= ge + Dre + Wye + Wyz
>= =(g4 WH +N nyt wy)
> 2 [5+ + (R41) + wy)
4 eas 1B (G+8). Gey) +9)
> 2 (9+ W(xry+wy)
Sz [o+ WX + y(wsis)
Sz [gy +Wi+g)
Sz [7+ 07x44) > Z- (+3) + Wx]
i,
    
() Yason= ( aBcbene
> ABCD + ABTD
>RBD G c4+T)
a oferta! }
> ABD
ae= eae
(ii) AE + aac + AT +057.
ElAra) + A(B4BO
T+ A.(a+B) (4B)
e4 A.C ce)
3) T+ ACtAB
= =F + ac(edd
> T+ At ae i
= (€+a)@e) + AB
T+H +AB
+A 4B)
> T+A
ae
ad (Rj +2) +z +7 + W2=7
 
/
>[(E4D ay) 424ayt wz
“ll zea ZG + 28 eG 44 ny twee
/ ie ies a ary =
/ ZAG +R + thy) + wy +a YG
/ Sz tarry
EL
> RY +242 + WE boty
=tWe +azy
RUM W) 4G 04
va Zany lia) *
7 2+ 704 ( AY = YT RYSeen a Alt oy
Af Se9, ae Ahould be present
fo. exons tim
Faec)= AB+8C
 
 AR=I
So
mm — Canamical —ferm
F(a.8.0 = ABC+O +(A4A) BC
Le
a
ABC + ABE + ABC+ ABC
=)
ABC + ABC + ABC
iy to Oo‘
@ S
| F(@@0= 7MCo.19.0.5) |—[ PS]
SS F(aa0) = (A48) . (840)
in__Canaai cal fern
Q+83.C9) - B+c4 aR)
= GrOE) (0480) Green) (8+)
= +840). (884). (74+e40)
(000 ) (0 od) a 0b)
FAB.0 = Se: \ 4) | —3/Pos
  
aa Bo= &m (2.35.43) yalmn SoP & FOS ¢ 4
 
Que Express edo Camanteal form
& Fogg = G22)
eur) (yszs (mG +2)
orszes). (oye) (aay (0497)
Reages) (marge (yt OF 9)
sd AYAZ Ory,
Stes) (eee) (sury+2) ty 42) (74942) Ow on
> AtyeZ) Gay) a sor)
‘0s o10 100 Of
— (Pos)
 
| Foud=an[o2, 41]
 
Goes 3,5, 64) —(SoP)
(ay2) mC & ail
a
A+ AB+8(
diy YO20 =
A (248) (40) + AB(OHD + GHA) BC
= @B+ ABYC) + awe + AGT + ABC +ARC
FABC + ABC+NOC
+ Re
ABC+ ABT+ ABC +4 ABT
ABC + ABT ABC ABT 4 AGc
gi hie lot loo Del
J
dCA8,0 > Em(4, 6. 5, el Ey)
Y (08,0 = 7MT ota
a@ J= ACAB) ( a4O+d)
= (A¥8B+ C2) CA¥B4 67) (A840) =(A+BVOHB) (A4842)
=) (A404) CAF B4C) (A4B+O CAT) (04040)
= (A+Q+) (A+B 40) @B+10 (44847)
DRCOme Om la) (ey) Se) 4)
“Yo. 3/h) F(A BO= =n MBs, 23]
ae shen ve Em 45563]
Kermouigh Map (k-Map)
+ Systematic muthod to mintmise boolean  expsusicor, for
ann Vantable mp.af Cts one @,
*Adjacnt 1/o +p be Grouped. | SoP , 0 -> fos
€2,34,5 vai abk Expswsion Cam be imimfmfted am k-
mop gray Coda sebrusentediOn % Wed,
f(m@)= 2= 4M
$ (WO, c)= 29= B cath
S(ABoD= 216 els
L(AGGDE) =25 22 ely
2_ Vani able_k- Map
SB. Leag= 2%=4em
eee“il 6
eit |
aii eaalene
ee
ONG nan
oo Pe le
aa
ty fue fu
alee
100 | to!
ofa {ts
dnb:
>~4- Vastiable
Fla nom= 24-16 as
D
As Mceeo ean
i) AC eee |
oe se Ted Go
We] Re I] slig
alae
els L stafjoooo
Oorere
 
 
 
 
 
 
DE
6c 22. 1 ji to
0) Om \ teat imme
b
os {4 5\4/4
"To ] vais |is
10) Se See e
LS
©
De
c
BS\ 00 ot H
oe f 16) 13/19] 1S
Of |Ro] 2 | 23] 22
| ah} 25 [31 [3°
4
jo [24] 25124 | 26
F oe
ag gee 00) ol ola TNO OW Jo) loo
eeece] Colo Tojios | of One| 11000 | wi0e Joyoo foooe
orf Co) {cfc | g [au |av De 16
at Oovol] colo | ool | o loo fOoy \ilet 1olol © lo0o0}
a ae Sy 25a) 25 eae 9
Vile eo ee Oe Ww Tor lool
3 15 Wil \ 2s \) Si aes 19
|| Seatefoetto folio [OTofo | Iolo ite vou 72
y | Jo | 2¢/|) Sous "6dr Rulu for solving k-Mop
© Fivt prrfereme for octal ( group of 3 ab)
Accord prtefertomer flor Gpaxd ( gnoub cof 4 ¢
~~ y y 4 (9)
@ xd preference for poly ( group af 2 wits)
 
 
 
@ Last refeoron ce fer Aing Qe
Ee @ F(A8)= Sm(0,1,3) —> SoP
wg F
Zo ay
A i | 0)
 
 
 
H(g@)= 248
@ F(ABO= Em(0,1.24,5) —» sop
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OS BE ge Hm ae
Gow Lome
Ro ie
etd
F( 0,8, 0804 4 TF naeIGE
F(aecd)= Bt pe 13,15)
ot = 16 als
Pes cm cP fd
& Io
    
ae
  
ABoo
Re of
 
AB 1
68 10 [ iy
 
 
 
 
 
 
faecn)= Fe+D A
2, —
(A,8,C,d) = AB ¥ .
CD) = AB z
y) C+ABTD +ATH +ABCD4+TD
+B
@ebep =<
cD ¢
oan or Ir $2
     
 
ABooGd. FURBO = AMCo;s1,5,54)
\;
a NG? 2G tie
rn o| @\@)| 04
RB il Xo | o-
F(08..) = @+8).E)
2B _kaMop wil dent com 3
* Some — imput Conditions might mot t 4p Aystom
output omd Acme  fmpud Condition might — mass
OCU, t
 
 
 
 
 
 
 
 
 
   
Tere fm put Conditionm asu dan dent case
Condittey Can be Use high/ fos output Conditions
OS per Owl Comvimemce.
Dus FAB)= Em(0,3) +¥d (2)
 
 
 
 
 
 
 
 
Neale al = 1s
Tn) Aso cts x
A! Sea
(Apy= AB Flagi= FG +as
J a
= ACB o ACR
 
Qustiow ¢ |
(YD F(a8c) = Em(0,1,6,3) + Sd (3.5)
© F(aacp= Em(01,64) + Ed (34.5)
OW E(wryz)= Em(.34,nis)~ AG+ RG
a
OD. FawcD= ém(or.3) TEA (94/ )
 
 
 
A
 
 
 
fLCasipe AB+AE
2 Flw.yz) = Sol1.90 19) +d (22,5)
   
 
 
 
 
 
 
 
 
 
ee teaeest 1 | a
HEPES at i of at
Wr oO} for minim’ Aakfon,
Wx if A =
Wx fo a
Fav,gn)= Emla>__ following by K=Map ?-
(OF 80D = EmlO42 5,64 19,n,13,13, 18
= F(naGBE) = Em( 041,3,5.64 3,116 18 19,20, 212
st _mdfod 20,26)
Soh ose ne pe
Be oe oa | L
Bcol
 
 
\>
 
 
 
Bc 1yo)
@ Y= Em(.0,4,484, 10,1624 25.2% 277 »
25, 26527 25,3)
J
@ Ye Em(0,5.6/8, 910 WG 20,9
‘Om Aten mithv cb 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
ee fete Sore 5 asc Maceo
DI
+ ABCD + ABeDe\ BBE RBC
ol Q0° oo} oLL
 
 
 
 
 
 
 
 
roo, (PT
fei | :
|
pe! | @
ve 12 |
 
 
 
 
 
 
a6 oo t &
coat (On
AB NY
AB \o
 
 
 
 
 
 
 
 
 
 
 
Ye RODE+ RoCde+ AB THE + RECT +OD +
DEJ
a= F(aecDe = Em( 0,5-6,%, g,lo,}. 16,20, 2425 26,2,2,
a)
 
 
 
 
 
 
 
 
 
 
Fla i Bebe
(OBpe= BC+ NeEt BEDE 4 ABDE +ABE
+.
abate. A BoM
Lo. B.GDe)= .
>) Zn(%,3,10,0, (3,15, V6, j%, 21,24, 25,26 29
30,31)
   
Are
DE a
O09 Co! ON) __ oJ
 
 
 
 
 
 
 
 
F(A, = +8C =
(A8¢DE= ABE +Re + DAB + ABE
CE+ ABCDE\S
oN GO Ow ira Ce Wee: oe es
fee po| se
Ase)
oe
  
ez |
F(ABGDE= ~M (6, S\M, 13,14, 1420, 25, 2b, 29,30)
=) (att) (oO) Bae)
Loi S Woo,
  
 
 
 
 
 
seam
 
 
£(a,9,0.0,.¢) = (BE) <¢ 8%) % (Be) xaacE )
PEBErAC)
+ (AGED)
_—
-We, Marks
THE Quine — MccJusty mubod { tobulan aed) wy
> HL Shouts 42 Capabitily OF Hamdading  Lengt mba,
a Vooti ables.
~> GE Shoudd emswrs minimised — Exporarston 5 SM should y
Suitable foy  Compiiler Aobdi@n
  
   
 
Ques:
F(a,8.60)= im (OsL2,8, Jo,n, 14.98) Solve by tabula
mel fod
 
O~-> 0000
i= S'o on il 2 | Olt
IFS CIE I> 1110
aa al Orolo) 1s > Wt
7 On,
Von &
  
 
Jo? & 10)
b8 210
 
 
10, 11,14, 5]
12,14 11,15]13% 36, Flo, la, 13)+ 24 (2,3 15
   
   
 
fig
 
 
 
 
 
 
 
 
 
 
 
 
 
Ryza 2,10
 
 
j
5);3,0,6|— \- i
Gyles |p
oma
Olea
-1ol
ak =
mL
aoe
a? 7)
14 ee
Minti | 3 \
wT Az3021 CK a
Dg
wyz< 3.3
 
“i 47,3
ayn 2431] oO
I>,
Boe 5.4199
 
 
 
f(wy~y,2) =
 
 
 
   
 
 
 
 
 
xX
aa
D4 + wytaye +79
a