750-342 Hawk 4000
750-342 Hawk 4000
Boiler Control
Operation Manual
750-342
06/2018
TO: Owners, Operators and/or Maintenance Personnel
This operating manual presents information that will help to properly operate and care for the equipment. Study its con-
tents carefully. The unit will provide good service and continued operation if proper operating and maintenance instruc-
tions are followed. No attempt should be made to operate the unit until the principles of operation and all of the
components are thoroughly understood.
It is the responsibility of the owner to train and advise not only his or her personnel, but the contractors' personnel who
are servicing, repairing, or operating the equipment, in all safety aspects.
Cleaver-Brooks equipment is designed and engineered to give long life and excellent service on the job. The electrical
and mechanical devices supplied as part of the unit were chosen because of their known ability to perform; however,
proper operating techniques and maintenance procedures must be followed at all times.
Any ‘automatic’ features included in the design do not relieve attendants of their responsibilities. Such features merely
eliminate certain repetitive chores, allowing more time for the proper upkeep of the equipment.
It is solely the operator’s responsibility to properly operate and maintain the equipment. No amount of written instructions
can replace intelligent thinking and reasoning and this manual is not intended to relieve the operating personnel of the
responsibility for proper operation. On the other hand, a thorough understanding of this manual is required before at-
tempting to operate, maintain, service, or repair this equipment.
Operating controls will normally function for long periods of time and we have found that some operators become lax in
their daily or monthly testing, assuming that normal operation will continue indefinitely. Malfunctions of controls lead to
uneconomical operation and damage and, in most cases, these conditions can be traced directly to carelessness and
deficiencies in testing and maintenance.
The operation of this equipment by the owner and his operating personnel must comply with all requirements or regula-
tions of the insurance company and/or other authority having jurisdiction. In the event of any conflict or inconsistency
between such requirements and the warnings or instructions contained herein, please contact Cleaver-Brooks before pro-
ceeding.
Cleaver-Brooks
HAWK 4000
Boiler Control
Operation Manual
Please direct purchase orders for replacement manuals to your local Cleaver-Brooks authorized representative
Printed in U.S.A.
CONTENTS
Section 1
General
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Hawk 4000 System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Safety Provisions and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Section 2
System Components
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
PLC Rack Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Human-Machine Interface (HMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Sensor Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Section 3
Hardware Setup
Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Modbus Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Section 4
System Configuration
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Boiler Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Configuration Screen #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Configuration Screen #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Configuration Screen #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16
Configuration Screen #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20
Configuration Screen #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Auxiliary Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
VFD Ethernet Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Email Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
PanelView Plus Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-34
Remote Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
Section 5
Commissioning
Commissioning the Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Combustion Control Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Firing Rate Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Tuning and Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Alarms and Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14
Revert to Pilot (CB120E only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
VFD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
PLC Ethernet Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21
Two Boiler Lead Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Thermal Shock Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Section 6
Diagnostics and Troubleshooting
System Monitoring and Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Fault List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9
Section 7
Parts
www.cleaverbrooks.com
Section 1 — General Hawk 4000
1.1 Introduction
The Cleaver-Brooks HAWK 4000 is an exclusive Boiler Management and Control system specifically designed
to integrate the functions of a Programmable Boiler Controller and Burner Management Controller, as well as
other boiler operating and ancillary controls. The HAWK 4000 system incorporates a user-friendly, graphical
Human Machine Interface (HMI) that displays boiler parameters, fault annunciation and alarm history, as well
as providing access to boiler configuration and control functions.
CB780E
CB120E
Slot 0 Slot 1 Power Slot 2 - Digital Inputs Slot 3 - Digital Outputs Slot 4 - Analog Inputs
Processor Modbus Card Supply
Address Name Address Name Address Name
I2/0 Blower Terminal O3/0 Recycle Limit (RLR) I4/0 Steam Pressure (Supply Water
Temp HW)
I2/1 Purge O3/1 External Start Interlock I4/1 Water Level (ST)
I2/2 O2 Analyzer Status O3/2 Non-Recycle Limit I4/2 O2
(Yokogawa) (NRLR)
I2/3 VFD Status O3/3 Prove Low Fire I4/3 Remote Mod/SP or 2 BLL
Press (Water Temp)
I2/4 VFD Bypass O3/4 Start Slave Blr (2 Blr L-L)
or Revert to Pilot *
I2/5 Ready To Start/ O3/5 Prove High Fire
Limits Closed
I2/6 Ext. Device Start O3/6 Alarm Output
Interlock (FAD)
I2/7 ALFCO or Boiler Start O3/7 Boiler Ready (L-L) or
(L-L) Revert to Pilot *
I2/8 Pilot Terminal
I2/9 Main Fuel Terminal
I2/10 Fuel 1 Selected
I2/11 Fuel 2 Selected
I2/12 FSG Alarm Terminal
I2/13 LWCO Shutdown
I2/14 Rem. Mod/SP, DSP,
or Avail. (L-L)
I2/15 Burner Switch
*With 2 boiler lead lag master boiler or if no lead lag selected, revert to pilot output is O3/7. With 2 boiler lead lag slave boiler or master panel, revert to pilot
output is O3/4.
Slot 5 - Analog Outputs Slot 6 - Analog Input Module Slot 7 - Digital Inputs Slot 8 - Analog Inputs
www.cleaverbrooks.com
Section 2 — System Components Hawk 4000
2.1 Overview
The principal components of the HAWK 4000 Boiler Control System are the Programmable Logic Controller
(PLC) and its associated input/output modules, the touch screen Human Machine Interface (HMI), and the
Flame Safety Control. The system also includes power supplies and various relays and circuit breakers.
The HAWK 4000 Boiler Controller is factory pre-programmed to work with most Cleaver-Brooks firetube and
watertube boilers, yet allows easy configuration for specific boiler applications. The Boiler Controller program
logic is password secured, ensuring tamper- proof controller operation. The Touch Screen HMI provides user-
friendly access to firing rate control functions, boiler diagnostics and alarm history, as well as connected
operating parameters. Burner management is handled by the proven CB780E or optional CB120E Flame
Safety Control.
Slot Module
1
0 Processor 1769-L33ER
2 1 Modbus Card 1769-SM2
3 - Power Supply 1769-PA2
4 2 Digital Inputs 1769-IA16
5 3 Digital Outputs 1769-OW8I
6 4 Analog Inputs 1769-IF4
7 5 Analog Outputs 1769-OF4
8 6 Analog Inputs 1769-IF8
9 7 Digital Inputs [optional] 1769-IA16
10 8 Analog Inputs [optional] 1769-IF8
11 9 Analog Outputs [optional] 1769-OF4
A Right End Cap Terminator is required to complete the modular communication bus. It attaches to the right
side of the last module in the rack.
Optional modules can be added to the PLC to provide additional functionality.
NOTE: The PLC program expects each device to be in a specific slot location. The HAWK 4000 controls
will not function unless all devices are properly installed and configured.
120VAC power
USB
EtherNet
2.4 Communications
2.4.1 Modbus
Modbus is an open serial protocol used by the HAWK 4000 system for sending
and receiving control commands, position data, and diagnostic data between the
PLC and attached devices. Modbus communications are managed by the SM2
module located to the right of the processor in slot 1.
HAWK 4000 devices that communicate using Modbus include the burner flame
safety control and the fuel, air, and FGR actuators. The Modbus communication
network allows burner control system status and fault information to be transmitted to
the PLC and displayed on the HMI screen, and in addition is used for actuator control,
feedback, and fault information.
2.4.2 Ethernet
The HAWK 4000 uses Ethernet for several communication functions:
• Communication between the PLC and HMI. The Ethernet cable connecting the PLC
and HMI can be either a straight through or a crossover type.
• Connection of the boiler control system to an existing infrastructure, i.e. plant Local
Area Network (LAN) Figure 2-4. SM2
• Integration with a Building/Plant Automation System (BAS) Modbus Module
• Remote monitoring of boiler control system via the customer's Wide Area Network (WAN) or via the Internet
• Connection of a laptop for diagnostics
• Email or texting of boiler alarms to plant or service personnel
Ethernet/IP can also be used for control functions:
• Networking multiple boiler controllers with a single BAS interface
• Writing remote setpoint or remote start/stop of boiler
• Writing remote firing rate of boiler
• Networking two boiler controllers with Cleaver Brooks two boiler lead lag
• Networking multiple boiler controllers with a Cleaver-Brooks Master Panel
2.4.3 USB
USB communications are used to connect a laptop computer to the PLC for diagnostic purposes. The HMI
has 2 USB ports that may be used for file transfer.
The HMI USB ports also support keyboard and mouse input.
BOTTOM OF CONTROLLER
PORT 1
PORT 2
USB
ETHERNET
a 1/2” NPT coupling at the right-hand side center-line of the boiler shell. If this location is not available, an
unused feedwater connection may be used.
Water Level sensor is OPTIONAL on steam boilers.
For optional 2 or 3-element feedwater control, Steam Flow and Feedwater Flow can be used in conjunction
with water level.
Steam Header Pressure sensor is optional on steam boilers configured as two boiler Lead Lag master.
www.cleaverbrooks.com
Section 3 — Hardware Setup Hawk 4000
! Important
The PLC and rack modules do not support removal and insertion under power. While the PLC system is under
power, any break in the connection between the power supply and the PLC rack (i.e. removing the power supply,
PLC, or an expansion module) will clear processor memory including the user program. Ensure that the electrical
power is OFF before removing or inserting any PLC device.
3.1.1 DIN Rail Latch and Expansion I/O Module Locking Levers
Before powering up the control system for the first time, check that all the DIN rail latches and expansion
module locking levers are in place (see Figure 3-1 and Figure 3-2).
DIP switch
settings: Top L,
Bottom R
The CB120E has built-in Modbus capability; for proper communications the ModBus baud rate and node
address need to be correctly set. To check the settings, the CB120E must be powered.
Press the <BACK> or <NEXT> key on the CB120E display until the screen displays PROGRAM SETUP>.
Press the <MODE> then the <NEXT> key until the screen displays BAUD RATE.
Press <MDFY> and use the <BACK> or <NEXT> key to change to 4800. Press <MDFY> to save.
Press the <NEXT> key until UNIT ADDRESS # is displayed. To change the unit address, use the <BACK>
or <NEXT> key to change to 5. Press <MDFY> to save.
Press <MODE> to exit the menu.
RUN/REM/PROG
3.1.6 PLC Switch switch
Verify that the PLC switch is in the RUN position.
SD card
The boiler will not operate if the switch is in the PROG slot
position.
The boiler will immediately stop if the switch is
moved to the PROG position.
The switch must be in the PROG position and the
Burner switch set to OFF before the PLC program can
be copied to a blank S D card in “Logix folder” format.
The switch can be in either PROG or RUN position
when copying a PLC program from a SD card
containing a Logix folder. No other files should be present on the SD card. The Logix folder must be located
at the root directory of the SD card (see Appendix B for program loading procedure).
It is recommended that the actuator drive shaft remain decoupled from the valve
shaft (or damper level) until the actuator Modbus address is properly set, the wiring
is proven, and the direction of rotation to open the valve/ damper is determined.
R R W
BL
BRN BRN
BRN BRN
ORG ORG
ORG ORG
BLK BLK
BLK BLK
RED RED
RED RED
G
There are open / close pushbuttons on the H M I actuator calibration screen. These pushbuttons should
be used when calibrating the actuators.
Clockwise or counter-clockwise actuator shaft rotation is as seen from the viewing perspective shown below.
Counterclockwise (CCW)
Clockwise (CW)
www.cleaverbrooks.com
Section 4 — System Configuration Hawk 4000
4.1 Introduction
The Hawk 4000 is equipped with a 7” (optional 10”) color touch screen Human Machine Interface (HMI).
The HMI along with the Burner Control display are the points of interface for the operator to monitor and
control the boiler, and for the technician to configure and set up the system.
This section describes the HMI screens and their functions.
For information on the Burner Control (Flame Safeguard), refer to one of the following CB publications:
CB120E Burner Control 750-264
CB780E Burner Control 750-234
4.1.1 Logging in
Certain actions on the HMI require a password before allowing user input. The Hawk 4000 employs three
levels of security: Operator, Service, and Factory. When a password is required, the login entry window is
displayed.
Pressing <User Name> or <Password> will bring up an alphanumeric keypad. Use this to enter your user
name and password. A USB keyboard may also be used.
Press Enter after typing User Name and after typing Password. When both are entered, press <Login>.
Configuration Screen 2:
• Flame Safeguard Selection (CB780E / CB120E)
• Revert to Pilot (CB120E Only)
• Revert to Pilot Signal Select (CB120E Only)
• VFD Model / Min.% / Bypass / Ethernet communications
• Remote Modulation/Setpoint Signal Selection
• O2 Analyzer
• O2 Trim
• Low O2 Shutdown Option
• Mix O2
Configuration Screen 3:
• Combustion Air Temp Option Selection
• Level Master Option selection (Steam Boiler)
• Expanded diagnostics (Slot 7) selection
• Aux Analog Inputs (Slot 8) selection
• 2-Stage Economizer configuration (Steam Boiler)
• Draft Control select
• Feedwater level control selection and type - 1, 2, or 3-element (Steam Boiler)
• Outdoor Temperature (HW)
• Return Temperature (HW)
Configuration Screen 4:
• 2 Boiler Lead Lag / Master Panel Lead Lag select
• Remote Modulation Source select (Analog Input / Communications)
• Hot Standby
• Remote Setpoint source select (Analog Input / Communications)
• Dual Set Point
• Outdoor Temp Reset (HW)
Configuration Screen 5:
• Enter customer name, boiler ID and serial number, Alarm Input #1-2 name if enabled.
Pressing <Next> from Configuration Screen #5 will show the Configuration Summary screen. Configured
values will be shown for all parameters.
If the <Confirm Options (Required)> pushbutton is visible, it must be pressed to accept the new system
configuration
Note - if a configuration setting is marked with an asterisk and the setting is changed, the
Combustion Curves will be erased.
! Caution
If System Configuration is entered with the boiler running, a safety
shutdown will occur. Repeated shutdowns or nuisance shutdowns
can cause premature equipment failure.
! Caution
The following screens should only be accessed by qualified
personnel. Selections should never be made while the boiler is in
operation.
Note: The boiler will not start while a “System Config” screen is displayed.
Note: The firing rate will be put into manual mode upon entering the “System Config” screen.
The user must be logged in at the appropriate password level to change configuration data. If the user tries to
change configuration data without having proper access rights, a pop-up window will appear and a password
will be requested.
Boiler Type
The Boiler Type will display the proper Boiler graphic on the Boiler overview screen. The three choices for
Boiler Type are: Firetube, Flextube and M4/M5
Boiler Type is also used to set limits on the maximum entry allowed for Safety Valve Setpoint (steam) or Max
Rated Temperature (hot water).
! Warning
The safety valve setting is critical to the proper operation of the
boiler. An incorrect setting could lead to unsafe operation.
A hot water boiler is configured similarly. The max rated temperature of the boiler should be entered. This
number should not exceed the maximum design temperature of the boiler. Default for hot water boilers
is 250º F. Contact your local Cleaver-Brooks representative if you do not know the maximum temperature
rating of your boiler.
Steam Transmitter Span - The span settings for the steam transmitter is adjustable. The Steam Transmitter
Span value cannot be set lower than the Safety Valve Setpoint and cannot be set higher than 1000. Initially
the Steam Transmitter Span is populated with a default value:
In hot water systems the supply temperature transmitter is not scalable. The transmitters used must be rated
to accommodate the required range:
If the Max Rated Temperature > 250 Deg F the Supply Temp Transmitter is set to 50-300 Deg F.
If the Max Rated Temperature = 250.1 Deg F or greater the Supply Temp Transmitter is set to 50-500 Deg F.
NOx Level (PPM) - Enter the NOx Level for this specific job.
NOx Level can range from 5-150 PPM and is initialized with a value of 60.0 PPM.
Note: Remote Setpoint and Dual Setpoint options are NOT available for low emission steam boilers (NOx level
less than 60.0 PPM).
Control Method - Select the type of combustion control method for this application.
Acceptable entries are Parallel Positioning or Single Point Positioning.
Fuel Type - Select the Fuel type for each fuel for this application.
When pressing the Fuel Type push button a selector is displayed:
Use the up/down arrows to select the correct fuel. Press the enter key to accept the selection. Press
<Close> to return to Configuration Screen #1.
Turndown - Enter the Turndown for each fuel for this specific application.
The turndown entry affects the boiler efficiency calculations - it has no impact on the burner's actual
turndown. Turndown ratio is established during burner commissioning by a qualified burner technician.
Revert to Pilot - Revert to Pilot is selected if “Yes” is displayed on the <Revert to Pilot> push button.
If Revert to Pilot is selected there are two ways to initiate the Revert to Pilot sequence - either by Process
Variable (Steam Pressure/Water Supply Temperature) or by Digital Input.
If Process Variable is selected the setpoint for Revert to Pilot must be entered from the Revert to Pilot setpoint
screen.
If Digital Input is selected, when discrete input I2/7 ALFCO is turned off, Revert to Pilot will be initiated (as
long as the boiler is not currently in hot standby or warmup mode).
! Caution
Revert to Pilot modes are to be determined in the field after
careful analysis of the load conditions that necessitate the use
of this feature.
Care should be taken to avoid unnecessary recycling and damage
to the boiler equipment.
VFD Ethernet - Select “Yes” if using Ethernet for VFD communications. If using Ethernet communications and
<PowerFlex> is selected as the drive model, you are required to specify the VFD type - PowerFlex 400,
PowerFlex 70, PowerFlex 700, or PowerFlex 753 drive.
All drive types use 4-20mA command and feedback.
4.6.3 Options
Oxygen Analyzer - The Oxygen (O2) Analyzer is available for monitoring stack flue gas oxygen concentration.
The O2 Analyzer transmits an analog signal to the controller. The O2 signal is used for Low O2 alarms, Low O2
Shutdown and in calculating boiler efficiency. O2 concentration is displayed on the Boiler Overview and Firing
Rate screens.
To view O2 trends or to adjust the O2 Trim PID tuning, press <Tuning & Trend>.
Mix O2 - This feature is for use with CB NTI burners in Ultra Low NOx applications. Mix O2 trim uses a probe
mounted in the boiler front head to monitor O2 levels in the combustion air in order to maintain optimum FGR
rate.
If Mix O2 is selected in System Configuration, a Mix O2 control screen similar to Figure 4-16 will become
available, with sensor calibration, manual/auto control, and setpoint/actual value displays.
Combustion Air Temperature - The Combustion Air Temp Sensor transmits a 4-20mA signal to the controller.
The Combustion Air Temp signal is used in the boiler efficiency calculation, and is displayed on the Boiler
Overview screen.
Level Master - Select <Yes> if using a CB Level Master for water level control (steam boilers).
Feedwater Temperature - When selected, displays boiler feedwater temperature on Boiler Overview screen
(not available if Economizer 1 Stage is selected).
Expanded Diagnostics - Used for alarm annunciation. Digital input module (Slot 7) required (feature is
automatically enabled if Auxiliary Analog Inputs or Economizer 2 Stage selected).
Auxiliary Analog Inputs - Select if optional analog inputs are required. Slot 8 analog input module required
(feature is automatically enabled if Economizer 2 Stage is selected).
Draft Control - Select <Yes> to make Draft Control setup and control screens accessible from the Main Menu.
If using Hawk draft control refer to manual 750-221.
Surface Thermocouple - Used on Hawk retrofits where a temperature probe is not available for shell water
temperature input.
Surface T/C Temp Offset - Select <Yes> to allow for a Surface Thermocouple Temperature offset entry on the
Alarms and Limits Screen. This offset value is added to the actual shell water temperature reading.
One-element control - A control signal from the water level sensor is used as
1-element level control
the process variable. This value is compared to the setpoint, and based on PID
settings a control output is calculated and sent to modulate the feedwater
valve. LT
I4/1
Operator
setpoint SP PV
PID
CONTROL
CV
O5/3
To feedwater valve
STEAM PID
FLOW FF CONTROL
I8/3
CV
O5/3
To feedwater valve
CV CV
O5/3
To feedwater valve
Figure 4-22. 3-Element Control
Feedwater Valve% of Full Travel - Used to limit the control output to the valve.
Steam Flow% required for 2/3 Element Control - Although 2 or 3 element Feedwater Level Control is
selected, the Active Control will be 1 element until the Steam Flow% becomes greater than the Steam Flow%
Required for 2/3 Element Control. Once the steam flow exceeds this value 2 or 3 element Feedwater Control
(whichever is selected) will become active.
Steam Flow must be in units of Lb/Hr. These units are automatically configured for analog input I8/3.
Feedwater Flow may be in units of Lb/Hr, GPM, or GPH. If a unit other than Lb/Hr is selected for Feedwater
Flow a calculated value in Lb/Hr will be displayed on the HMI.
CB 2 Boiler Lead Lag - For 2 Boiler Lead Lag select Master or Slave. If the boiler controller being configured
has the header transmitter connected to it, this boiler will be the “Master” - if not, it will be the “Slave”
(“Master” as used here should not be confused with the CB Master Lead Lag option below).
If Master is selected, the 2 Boiler Lead Lag Setup and Control screens will now be available from the Main
Menu.
CB 2 Boiler Lead Lag is available Hardwired or by Communications beginning with PLC program revision 10,
program number 98500553_000_10.
CB Master Lead Lag - If the boiler will be utilized in a CB Master Panel control system, select <CB Master
Lead Lag>. The boiler controller will need the proper wiring connections with the master controller to function
properly. See the CB Master Panel manual (#750-375) for further information on Master Lead/Lag
configuration and operation.
Remote Modulation by Analog Input Signal Selection - The user can select between HMI or digital input to
enable Remote Modulation.
Select <Digital In> if another control system will enable Remote Modulation by isolated contact input signal
(120 VAC) on digital input I2/14. When that input is de-energized, the Boiler Controller will revert back to
local firing rate control. If Remote Modulation operation will be enabled manually, select <HMI Input>.
Remote Modulation can then be enabled, by selecting the <Remote> button on the Firing Rate Screen.
If the PLC detects a bad analog signal, an alarm “Remote Modulation Signal Failure” is activated and the Firing
Rate reverts to the LOCAL setting on the HMI.
Remote Set Point by Analog Input Signal Selection - The user can select between HMI or digital input to
enable Remote Set Point.
Select <Digital In> if another control system will enable Remote Set Point by isolated contact input signal
(120 VAC) on digital input I2/14. When that input is de-energized, the Boiler Controller will revert back to
local setpoint control. If Remote Set point operation will be enabled manually, select <HMI Input>.
Remote Setpoint can t h e n be enabled, by selecting the <Remote> button on the Firing Rate Screen.
If the PLC detects a bad analog signal, an alarm “Remote Setpoint Signal Failure” is activated and the Set
point reverts to the LOCAL setting.
! Warning
Remote Set Point control should not be used on certain Low
Emission boiler systems. Low Emission boilers can be sensitive to
changing operating set points. Contact your Cleaver-Brooks
representative to determine if Remote Set Point control is allowed on
your boiler. Failure to follow these precautions may result in
damage to equipment, serious personal injury, or death.
! Warning
Dual Set Point control should not be used on certain Low Emission
boiler systems. Low Emission boilers can be sensitive to changing
operating set points. Contact your Cleaver-Brooks representative to
determine if Dual Set Point control is allowed on your boiler. Failure
to follow these precautions may result in damage to equipment,
serious personal injury, or death.
If the Boiler control is configured as two boiler lead lag master, outdoor temperature reset is applied to the two
boiler lead lag setpoint and not to the local setpoint.
Auxiliary Alarm 1-2 - If the system has auxiliary alarms the text that is displayed when the auxiliary alarm is
triggered can be entered. To enter this information, press the text display button beneath the description. An
alphanumeric keypad pop-up window appears.
Once all the information is entered, press the carriage return button. The auxiliary alarms are each limited to
20 characters, including spaces.
Auxiliary alarm 1 must be wired to Slot 7 Input 14
Auxiliary alarm 2 must be wired to Slot 7 Input 15
For example: If Auxiliary Alarm 1 is entered as Water Pressure Low and Discrete Input I7/14 is “On” the alarm
displayed on the HMI for Auxiliary Alarm 1 will read “Aux 1 - Water Pressure Low”.
To complete system configuration, press the <Confirm Options> pushbutton on the System Configuration
Summary Screen.
The Configuration selections may be changed after the HAWK 4000 is installed. However, for many of the
options, additional hardware is required to make the function work. Please refer to the parts section for the
required hardware.
Inputs can be monitored and trend screens accessed from <Analog Inputs [1 or 2]>.
Analog Input I:8.7 is configured to display in hundredths. Should an analog input require accuracy to the
hundredths place, use I:8.7
3.Press
Once configured, the drive status can be monitored on the Blower VFD Data screen. The left-hand side of the
screen will display the drive status word as well as indicate if a drive fault or alarm is active. If a fault exists,
it can be cleared by pressing the Clear Drive Fault button or access the Blower VFD Faults screen to view the
fault and recommended corrective actions.
The right-hand side of the screen provides visualization of the drive output.
The Output Amps gage will automatically scale based on either the motor current rating or the drive rated
amps.
The Output Power (in kilowatts) scale is preset for the PowerFlex 400, and scalable based upon the PowerFlex
70/700/753 rated kilowatts.
Fan Speed is displayed on a fixed scale of 0-4000 rpm and is based upon drive output frequency.
The Blower VFD Faults screen will display the current drive fault (if present). Also displayed is a description
of the fault and recommended corrective actions. Press and hold the Last Drive Fault button to see the previous
fault.
Press the Year, Month, and Day buttons to change the values. Press <OK> when done.
To change the time, Select Terminal Settings>Time/Date/Regional Settings>Time. values.Press the Hour,
Minute, and Seconds buttons to change the values. Press <OK> when done.
To change the time zone, select Terminal Settings>Time/Date/Regional Settings>Time Zone.
Figure 4-45.
Press the Daylight Savings button to enable or disable daylight savings for the selected time zone. Daylight
Savings is set to Yes for all time zones except for Japanese, which does not support daylight savings.
Daylight savings changes are not permanently applied until you close the Time Zone screen.
Press the <Use Daylight Savings> button to select Yes or No. Click OK when done, then <OK> again to
return to Terminal Settings.
Figure 4-46.
1.Copy the Rockwell Software folder to an appropriate memory device. There should be nothing else on the
card but this folder. If you have a zip file, the file must be unzipped.
2.The file structure where the runtime file resides must be exactly as follows.
Rockwell Software
RSViewME
Runtime
3.At this point if there is an Ethernet switch in the electrical control cabinet be sure that there are only 2
Ethernet cables plugged into the Ethernet switch. One cable from the PLC and one cable from the PV+.
4.Power up the PV+ and insert SD card or USB device into slot provided.
5.From the PV+ Configuration Mode (FactoryTalk ME Station), touch Terminal Settings [F4].
Figure 4-47.
6.From Terminal Settings, select File Management. Press the Enter arrow.
Figure 4-48.
Figure 4-49.
15.A message appears asking “Do you want to replace the terminal's current communication configuration
with the application's communication configuration?”
IMPORTANT: Press Yes [F7] if this is the first time loading the application and communication has yet to be
established, otherwise press NO [F8].
16.You should be back on the FactoryTalk View ME Station screen. The application Filename.mer should
appear in the Current application window. Press Terminal Settings [F4].
20.From The Network Adaptors screen, with Built-in Ethernet Controller highlighted, press IP Address [F2].
Figure 4-50.
21.From the IP Address screen select press the Use DHCP [F4] until the green bullet is in the No position and
the IP Address [F1] button is enabled.
Figure 4-51.
22.Press IP Address [F1] and enter the IP address with the pop-up keypad provided. The Standard IP
addresses for the PV+ are as follows:
NOTE: If the unit must be on a custom network, Ethernet parameters must be obtained from the user’s IT
department.
192.168.1.121 for Boiler 1
192.168.1.122 for Boiler 2
192.168.1.123 for Boiler 3
192.168.1.124 for Boiler 4
192.168.1.125 for Boiler 5
Figure 4-52.
NOTE: IT IS VERY IMPORTANT THAT THE ETHERNET IP ADDRESS SET IN THE PLC MATCHES THE PLC
IP ADDRESS ENTERED ON THIS SCREEN.
34.Press Enter
35.Press OK [F7]
36.From the RSLinx Enterprise Configuration.
37.If the Ethernet IP address for the PV+ in this RSLinx Network needs to be revised arrow to highlight the
Ethernet IP address for the PV+.
Example: PV Plus, 192.168.1.121 (should be highlighted)
Press Edit Device [F1].
38.Press Device Address [F1].
39.Press the Backspace key and enter in the correct IP address for this PV+
192.168.1.121 for Boiler 1
192.168.1.122 for Boiler 2
192.168.1.123 for Boiler 3
192.168.1.124 for Boiler 4
192.168.1.125 for Boiler 5
192.168.1.126 for Boiler 6
192.168.1.127 for Boiler 7
192.168.1.128 for Boiler 8
40.Press OK [F7]
41.Press Close [F8]
42.From Networks and Communications Press Close [F8]
43.From Terminal Settings Menu, Select Startup Options.Press the Enter arrow.
44.Select FactoryTalk View ME Station Startup. Press the Enter arrow.
45.Using the On Startup [F1] button, put the green bullet to Run Current Application.
46.Press Run Options [F3]
47.Press Replace RSLinx Enterprise Communication [F1] until the green dot is on NO
a. Press Delete Log Files [F2] on every power cycle until green dot is on NO
48.From Run Options Press OK [F7]
49.Press OK [F7]
50.You should now be on the Terminal Settings screen. Press Close [F8].
51.Press Reset [F7]
52.Do you want to reset the terminal? ….Yes [F7]. This takes a moment!
53.Terminal should reboot and run the application
54.Once application is running and communicating properly remove the SD card from the PanelView Plus
terminal. When all devices on the network are configured with a unique IP address the interconnecting
Ethernet cables between the configured devices may be plugged into the Ethernet switch and communications
verified.
55.END OF PROCEDURE
www.cleaverbrooks.com
Section 5 — Commissioning Hawk 4000
Main Screen
Warning
Note: If a VFD is present, the VFD purge value must be set above 80%.
will sequence through pilot trial and main flame and the burner will ignite. The actuators can now be
positioned for the first point.
• 10 points minimum must be stored for a valid curve (20 maximum allowed)
• Points can not be skipped
• Values for Air and Fuel Actuator 1 must be greater than previous values for a valid point to be stored.
• Pressing <New Profile> at any time will erase the current curve.
• When the combustion curve is complete (10 valid points are stored) the <Setup Complete> button will
appear; pressing this will go to the Combustion Control screen.
• Pressing <Pt Adv Enable> will allow stepping through the combustion curve using <Next Point> and
<Prev Point>. With Points Advance disabled, the actuators will not move when <Next Point> or <Prev
Point> is pushed.
• At any point in the combustion curve if Point Advance is disabled, the user must move back to that point
+/- 1 point, in order to enable Point Advance. Storing a new point on the combustion curve or restoring an
existing point on the combustion curve will also allow the user to enable Point Advance from the recently
stored point.
In the event of a bad remote signal, an alarm message will appear on the
screen and the control will revert to Local/Auto mode.
A help screens is available for Remote Modulation / Remote Setpoint
functions.
Alarms with configurable parameters and firing rate/setpoint limits can be edited from these screens. The
second Alarms and Limits screen is only available if the O2 analyzer, Mix O2, or FGR options have been
configured.Configurable items include the following:
Firing Rate Limit - This value can be used to limit the maximum control output from the HAWK 4000. A value
of zero will not allow the boiler to go above low fire.
Set Point Limiting - The minimum and maximum allowable setpoint values can be set here. The high and low
limit points affect the Set Point and the On and Off points on the setpoint screen.
Remote Set Point Scaling - The HAWK 4000 allows a remote 4-20 mA input signal to vary the setpoint. The
remote setpoint scaling enables the operator to zero and span the signal. The zero value will correspond to a
remote signal of 4 mA. The span value will correspond to a remote signal of 20 mA. Remote setpoint may be
enabled by a remote digital input signal or from the HMI Firing Rate screen.
Low Steam Pressure - Select Low Steam Pressure setpoint and Audible Yes/No. Alarm horn or bell must be
available for audible alarms.
Modulation rate limiting - increases/decreases the rate of change of firing rate output. The value entered is
the number of seconds the control output will take to go between 0-100%
Remote Shutdown by Communications - allows for remote start/stop of the boiler. If this feature is enabled,
the <On Comms Failure...> setting determines what the boiler will do upon a failure of remote
communications (shut down or remain in its last state).
Extended Pre-Purge Time - Extends pre-purge by up to 180 seconds.
Release from Lightoff Delay Time - delays the transition from lightoff to low fire by up to 180 seconds. Used
for combustion stabilization.
External Device Timer - allows the Start External Device (FAD) Output to remain energized for a period of time
(3-60 minutes) after a boiler shutdown.
Surface Thermocouple Offset - This offset value is added to the actual shell water temperature reading. This
offset is used when the surface thermocouple does not accurately represent the actual shell water temperature
due to its mounting location on the boiler.
VFD Overspeed Limit is available when O2 trim with VFD is enabled. Valid entries are 0-10%. Any entry less
than 10% will limit the VFD from reaching 66Hz which is the maximum frequency of the VFD with the O2
Trim control output at 100%. An entry of 5% will only allow the VFD to reach 63Hz.
Remote Modulation Limiting - If selected <Yes> and any mode of remote modulation is active, the Hawk
4000 control has the ability to limit the Remote Modulation signal as the local Steam Pressure/Hot Water
Temperature approaches the boiler operating limit.
This feature prevents the boiler from exceeding the hardwired boiler operating limit when the firing rate is
being commanded remotely. Remote Modulation Limiting is used primarily in hot water systems.
With this feature selected, a Remote Modulation Limiting screen is accessible from the main screen.
5.8 Setpoints
<Set Points> allows adjustment of Setpoint 1 (and Setpoint 2 if Dual Setpoint is configured).
5.8.1 Operating Setpoint
205
200
195
190 Setpoint
185
180
Outdoor 175
Temperature
-60 -40 -20 0 20 40 60 80
5.10 O2 Trim
If O2 Trim was selected and an analyzer specified during system configuration, the <Flue Gas O2 Control>
button will appear on the Main screen.
The CB O2 analyzer requires calibration on power up, if one week has elapsed since the last calibration, or if
initiated manually from the HMI. If using the Yokogawa analyzer, the PLC will expect a “Sensor OK” input from
the analyzer at input I2/2.
Once the O2 sensor is calibrated or “Sensor OK” input is on, the O2 setpoint is captured when setting
combustion curves.
PID control of O2 Trim is provided. Values can be adjusted by pressing <Tuning & Trend>. Defaults are P=3,
I=5, and D=0.
5.11 Mix O2
The Mix O2 feature is designed to improve combustion control for Ultra Low NOx (<9 ppm) systems. Requires
an 8 channel analog input module in Slot 8. If Mix O2 is selected during configuration, Input I8/2 will be
automatically configured with C-B default settings.
Using an O2 probe mounted in the boiler head, the FGR valve is modulated (more FGR for lower Mix O2 levels
and less FGR for higher Mix O2) to maintain optimum O2 levels throughout the firing range. A Mix O2 control
screen provides features similar to standard O2 Trim control:
In order to configure the Ethernet port, the PLC switch must be in REM and the RUN LED must be GREEN.
If 2 Boiler Lead Lag Master is enabled in the Configuration section, two additional screens (for Lead Lag Setup
and Lead Lag Control) will be available.
Select Modulation - Select Lead Lag (steam boilers only) or Unison modulation.
Select Lead Lag - Select Master boiler as Lead and Slave boiler as Lag, or Master as Lag and Slave as Lead.
If two boiler lead lag master is enabled and is via communications an additional screen will be available to
set the IP address of the slave boiler. The IP address of the slave boiler must be entered from the 2 Boiler
Slave IP Setup Screen.
The Lead Lag control screen has Auto/Manual controls and graphic displays showing operational data for each
boiler and for the Lead Lag System.
Note: In order for either boiler to be part of the lead lag sequence, <Remote> must be selected under
“Control Mode” on the boiler’s firing rate screen.
Lead Lag Modulation - The lag boiler starts when the lead boiler’s firing rate signal reaches the Start Point
(and the Start Delay has expired). The lag boiler starts modulating after the lead boiler reaches the configured
Modulation Start point. The lag boiler is commanded to stop when the lead boiler’s firing rate signal reaches
the Stop Point (and the Stop Delay has expired).
In the event of a header sensor failure, master and slave boilers will revert to local firing rate control.
Unison Modulation - Firing rates for both boilers are equal. Hot Water systems must use unison modulation.
www.cleaverbrooks.com
Section 6 — Diagnostics and Troubleshooting Hawk 4000
CB780E CB120E
Figure 6-2. Burner Control screen
The status of the Flame Safety control is shown as well as the status of the inputs that allow the boiler to start.
The following flame safety status and boiler inputs are shown on the Burner Control screen:
Burner Switch - Indicates position of the burner switch.
Load Demand - When starting the boiler, there is a load demand if the system pressure (steam) or temperature
(hot water) is below the “On Point”. When system Pressure/Temperature exceeds the OFF point, “No Demand”
is indicated. When the system Pressure/Temperature drops below the “On Point”, load demand will again be
displayed.
Limits -This is an indication of the status of the running interlocks on the boiler.
External Interlock - Feedback input from external interlock. When there is a load demand, and the burner
switch and limits are closed, the HAWK 4000 has isolated contacts (2.5A @ 125VAC) for output to an
external interlock device (e.g. fresh air damper, circulating pump). The boiler will start once the external
interlock is proven.
Note: The external interlock must be jumped if not used
ALFCO - Assured Low Fire Cut-Off. An external isolated start-stop contact can be provided to shut down the
boiler. This contact will drive the boiler to low fire prior to shut down.
Note: The ALFCO must be jumped if not used.
6.2 Alarms
If an alarm is active the alarm bell will be visible on all screens:
Press the alarm bell or <Alarms> from the Main Screen to access the Alarm screen.
This screen can be toggled between <Active Alarms> and <Alarm History>. The Alarm History will store up
to 200 alarms. The history can be cleared (password required) by pressing <Clear Alarm History>.
<Alarm Silence> will turn the alarm bell off until another alarm becomes active.
NS (Ethernet Net- Off The port is not initialized; it does not have an IP address and is operating in BOOTP or DHCP
work Status0 mode.
Green The port has an IP address and CIP connections are established.
Flashing green The port has an IP address, but no CIP connections are established.
Red The port has detected that the assigned IP address is already in use.
Flashing red The SD card does not have a valid file system.
Remote Modulation Signal Fail- Remote Mod Signal Failed With remote mod by analog, CB 1. Check analog input wiring.
ure Master LLag, or 2 Boiler LLag 2. View analog input Raw value on the HMI PLC I/O
Slave option selected, Analog status screen.
input I:4/3 is outside of range. 3. Measure analog input.
Range > 3.3 mA 4. Verify System Configuration settings on HMI
Range < 20.5 mA
With 2 Boiler LLag Slave by Verify that the 2 Boiler Lead Lag Master Header Trans-
comms selected main Header mitter analog input I:4.3 is OK.
loss is via communication
Remote Set Point Signal Failure Remote Set point Signal Failed With remote set point by analog 1. Check analog input wiring.
option selected, Analog input 2. View analog input Raw value on the HMI PLC I/O
I:4/3 is outside of range. status screen.
Range > 3.3 mA 3. Measure analog input.
Range < 20.5 mA 4. Verify System Configuration settings on HMI
Header Sensor Failure Header Sensor Signal Failed With 2 Boiler Lead Lag Master 1. Check analog input wiring.
option selected, Analog input 2. Measure analog input.
I:4/3 is outside of range. 3. View analog input Raw value on the HMI PLC I/O
Range > 3.3 mA status screen.
Range < 20.5 mA 4. Verify System Configuration settings on HMI
Low Oxygen in Flue Gas Low Oxygen level in flue gas O2 level below alarm set point 1. Check combustion.
or below 0.5% 2. From system config screen check if correct O2 ana-
lyzer is selected.
3. Check analyzer wiring.
4. Verify O2 Calibration voltage if CB analyzer is
selected
Air/xxx Actuator Feedback Low Actuator position feedback is Actuator feedback signal is 1. Check actuated device for binding.
low lower than -2.0% 2. Check alignment.
3. Check wiring connections.
4. Re-commission actuator (Fuel curve will be lost).
5. Replace actuator
Air/xxx Actuator Feedback High Actuator position feedback is Actuator feedback signal is 1. Check actuated device for binding.
High greater than 102.0% 2. Check alignment.
3. Check wiring connections.
4. Re-commission actuator (Fuel curve will be lost).
5. Replace actuator.
Air/xxx Actuator Modbus Comm Communication failure Check Modbus cable to the actuators.
Error Check connections on the actuator.
Check Node address of the actuator.
Air/xxx Actuator Manual PB Manual PB on actuator pressed Don’t press manual PB while fuel valve is on.
Pressed while fuel valve is open. Check for stuck manual button on actuator.
Air/xxx Actuator Fault [X] Actuator Hardware Fault Modbus comms reports a fault Verify 24VDC on actuator.
on the actuator. Cycle Power on Control/Actuator.
NOTE: THE ABOVE 6 FAULTS AND TROUBLESHOOTING METHODS APPLY TO ALL ACTUATORS – XXX = Actuator
Stack Temperature Sensor Fail- Sensor analog signal is either Analog input I:6.0 is outside of 1. Check sensor.
ure too low or too high. range. 2. Check wiring.
Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O sta-
tus screen.
Water Shell Temperature Sen- Sensor analog signal is either Analog input I:6.2 is outside of 1. Check sensor.
sor Failure (Steam Boiler) too low or too high. range. 2. Check wiring.
Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
status screen.
Master PIDe Instruction Fault PIDe instruction fault. Call Cleaver-Brooks Technical Services
(this fault should never occur)
Outdoor Temperature Sensor Sensor analog signal is either Analog input I:6.2 is outside of 1. Check sensor.
Failure (Hot Water Boiler) too low or too high. range. 2. Check wiring.
Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
status screen.
Return Temperature Sensor Fail- Sensor analog signal is either Analog input I:6.4 is outside of 1. Check sensor.
ure too low or too high. range. 2. Check wiring.
Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
status screen.
Combustion Air Temperature Sensor analog signal is either Analog input I:6.1 is outside of 1. Check sensor.
Sensor Failure too low or too high. range. 2. Check wiring.
Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
status screen.
O2 Sensor Failure Only applicable to Yokogowa input I:2/2) must On 1. Check sensor.
analyzer 2. Check wiring.
Air Actuator Not At Purge Air actuator did not reach 1. Check air actuator for binding.
purge position. 2. Check alignment.
3. Check wiring connections.
4. Re-commission actuator (Fuel curve will be lost).
5. Replace actuator
VFD Not At Purge VFD did not reach purge posi- 1. Check motor for binding.
tion. 2. Check wiring connections.
3. Re-commission (Fuel curve will be lost).
4. Replace drive
XXX Actuator Not At Lightoff XXX actuator did not reach 1. Check actuator for binding.
Lightoff position. 2. Check alignment.
3. Check wiring connections.
4. Re-commission actuator (Fuel curve will be lost).
5. Replace actuator
Economizer Inlet Temperature Sensor analog signal is either Analog input I:6.5 is outside of 1. Check sensor.
Sensor Failure too low or too high. range. 2. Check wiring.
Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
status screen.
I:8.0 Sensor Failure (user Sensor analog signal is either Analog input I:8.0 is outside of 1. Check sensor.
defined analog input) too low or too high. range. 2. Check wiring.
NOTE: All channels on slot 8, if Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
user defined, will have this Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
alarm for the specific channel. status screen.
5. Disable Alarms for the channel
I:8.0 Low Alarm (user defined . I:8/0 Scaled Value is below low 1. Check wiring.
analog input) alarm setting. 2. Adjust Alarm Limit for Analog Input
NOTE: All channels on slot 8, if 3. Measure analog signal 4-20mA is valid.
user defined, will have this 4. View analog input Raw value on the HMI PLC I/O
alarm for the specific channel. status screen.
5. Disable Alarms for the channel
I:8.0 High Alarm (user defined . I:8/0 Scaled Value is above 1. Check wiring.
analog input) high alarm setting. 2. Adjust Alarm Limit for Analog Input
NOTE: All channels on slot 8, if 3. Measure analog signal 4-20mA is valid.
user defined, will have this 4. View analog input Raw value on the HMI PLC I/O
alarm for the specific channel. status screen.
5. Disable Alarms for the channel
Mix O2 Sensor Calibration Mix O2 analyzer calibration Mix O2 signal (input I:8/2) 1. Check wiring.
Failed failed. must be between 4 and 6.5 2. Repeat Calibration.
VDC during calibration
Stack Pressure Transmitter With Draft Control enabled Analog input I:6.7 is outside of 1. Check Draft Signal.
Failed Sensor analog signal is either range. 2. Check wiring.
too low or too high. Range > 3.5 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA
Stack Pressure High With Draft Control enabled, With draft control 1. Check alarm set point.
Pressure exceeds alarm set- enabled, stack pressure I:6.7 2. Check draft control.
point. (draft) is higher 3. Check outlet damper
than high alarm set point
Stack Damper Not Open With Draft Control enabled With draft control 1. Make sure draft control is in "Auto" Mode
Stack damper failed to enabled, stack 2. Check wiring.
Open to Full Open Limit damper Input I:7.0 must be 3. Check Damper Open Limit Switch
Switch proven
open before burner can start
Econ 2nd Stage Outlet Water With 2 Stage Econ selected, Analog input I:8.1 is outside of 1. Check sensor.
Temp Sensor Failure sensor analog signal is either range. 2. Check wiring.
too low or too high. Range > 3.3 mA 3. Measure analog signal 4-20mA is valid.
Range < 20.5 mA 4. View analog input Raw value on the HMI PLC I/O
status screen.
HMI
Electrical
www.cleaverbrooks.com
Section 7 — Parts Hawk 4000
Ethernet
Steam Transmitters
Temperature Transmitters
Flame Safeguard
Stack Light
O2 Trim
O2 Kit CB 880-02124-000
1 ECM controller with NTK Wide Band Sensor and Cable Harness 880-01847-000
1 Combustion Air Temperature Sensor 832-02091-000
1 O2 Sampling Probe Housing Assembly 040-00735-000
Outdoor Reset
AB[6].2 2nd Stage CEC Economizer Selected BI 99 DI 99 10099 Boolean nvo2StCECEcS_XXX SNVT_switch
AB[6].3 Fuel3 Actuator Out Of Pos Alm BI 100 DI 100 10100 Boolean nvoFl3AcPsAl_XXX SNVT_switch
AB[6].4 Fuel3 Actuator Feedback Fail Lo Alm BI 101 DI 101 10101 Boolean nvoFl3AFdLoA_XXX SNVT_switch
AB[6].5 Fuel3 Actuator Feedback Fail Hi Alm BI 102 DI 102 10102 Boolean nvoFl3AFdHiA_XXX SNVT_switch
AB[6].6 Stack Pressure Input Fail BI 103 DI 103 10103 Boolean nvoStkPrInFl_XXX SNVT_switch
AB[6].7 Hi Stack Pressure Alm BI 104 DI 104 10104 Boolean nvoHiStkPrAl_XXX SNVT_switch
AB[6].8 Stack Damper Not Open Alm BI 105 DI 105 10105 Boolean nvoStDpNtOAl_XXX SNVT_switch
AB[6].9 O2 Calibration Failed BI 106 DI 106 10106 Boolean nvoO2ClRtFld_XXX SNVT_switch
AB[6].10 Lo Steam Pressure/Water Temp Alm BI 107 DI 107 10107 Boolean nvoLoStPWTAl_XXX SNVT_switch
AB[6].11 Processor Test Fail Alm BI 108 DI 108 10108 Boolean nvoPrTstFlAl_XXX SNVT_switch
AB[6].12 O2 Trim Internal Alm BI 109 DI 109 10109 Boolean nvoO2TrmInAl_XXX SNVT_switch
AB[6].13 Firetube or Flextube 1 = Flextube BI 110 DI 110 10110 Boolean nvoFir_FlxTb_XXX SNVT_switch
AB[6].14 Reserved for Cleaver Brooks BI 111 DI 111 10111 Boolean nvoAB_6_14_XXX SNVT_switch
AB[6].15 VSD Limits Internal Alm BI 112 DI 112 10112 Boolean nvoVSDLmInAl_XXX SNVT_switch
AB[7].0 Gas Actuator 2 Out Of Pos Alm BI 113 DI 113 10113 Boolean nvoGsAc2PsAl_XXX SNVT_switch
AB[7].1 Gas Actuator 2 Feedback Fail Lo Alm BI 114 DI 114 10114 Boolean nvoGsAc2LoAl_XXX SNVT_switch
AB[7].2 Gas Actuator 2 Feedback Fail Hi Alm BI 115 DI 115 10115 Boolean nvoGsAc2HiAl_XXX SNVT_switch
AB[7].3 Actuator Modbus Communication Error BI 116 DI 116 10116 Boolean nvoAcModCmEr_XXX SNVT_switch
AB[7].4 Air Actuator Modbus Comm Error Node 1 BI 117 DI 117 10117 Boolean nvoAAcMdCEr1_XXX SNVT_switch
AB[7].5 Gas Actuator Modbus Comm Error Node 2 BI 118 DI 118 10118 Boolean nvoGsAMdCEr2_XXX SNVT_switch
AB[7].6 Gas Act 2 Modbus Comm Error Node 3 BI 119 DI 119 10119 Boolean nvoGsA2MdCE3_XXX SNVT_switch
AB[7].7 Oil Actuator Modbus Comm Error Node 5 BI 120 DI 120 10120 Boolean nvoOAcMdCEr5_XXX SNVT_switch
AB[7].8 FGR Actuator Modbus Comm Error Node 7 BI 121 DI 121 10121 Boolean nvoFGRAMdCE7_XXX SNVT_switch
AB[7].9 Reserved BI 122 DI 122 10122 Boolean nvoAB_7_9_XXX SNVT_switch
AB[7].10 Reserved BI 123 DI 123 10123 Boolean nvoAB_7_10_XXX SNVT_switch
AB[7].11 2nd Stage Outlet Wtr Temp Sensor Fail BI 124 DI 124 10124 Boolean nvo2SOtWTSnF_XXX SNVT_switch
AB[7].12 Water Temp Second Stage Out Hi BI 125 DI 125 10125 Boolean nvoWtTp2SOtH_XXX SNVT_switch
AB[7].13 Air Actuator Man Override Btn Press BI 126 DI 126 10126 Boolean nvoAAcMnOBPr_XXX SNVT_switch
AB[7].14 Gas Actuator 1 Man Override Btn Press BI 127 DI 127 10127 Boolean nvoGAc1MOBPr_XXX SNVT_switch
AB[7].15 Gas Actuator 2 Man Override Btn Press BI 128 DI 128 10128 Boolean nvoGAc2MOBPr_XXX SNVT_switch
AB[8].0 Oil Actuator Man Override Btn Press BI 129 DI 129 10129 Boolean nvoOAcMnOBPr_XXX SNVT_switch
AB[8].1 FGR Actuator Man Override Btn Press BI 130 DI 130 10130 Boolean nvoFGRAMnOBP_XXX SNVT_switch
AB[8].2 Fuel 3 Act 1 Man Override Btn Press BI 131 DI 131 10131 Boolean nvoFl3A1MOBP_XXX SNVT_switch
AB[8].3 Fuel 3 Act 2 Man Override Btn Press BI 132 DI 132 10132 Boolean nvoFl3A2MOBP_XXX SNVT_switch
AB[8].4 Communication from BMS Failed BI 133 DI 133 10133 Boolean nvoComBMSFld_XXX SNVT_switch
AB[8].5 CAP High BI 134 DI 134 10134 Boolean nvoCAPHi_XXX SNVT_switch
AB[8].6 Water Flow Low BI 135 DI 135 10135 Boolean nvoWtrFlLo_XXX SNVT_switch
AB[8].7 Water Level Signal Failed BI 136 DI 136 10136 Boolean nvoWtrLvSgFl_XXX SNVT_switch
AB[8].8 Remote Setpoint Signal Failed BI 137 DI 137 10137 Boolean nvoRmSPSigFl_XXX SNVT_switch
AB[8].9 Low O2 Shutdown BI 138 DI 138 10138 Boolean nvoLoO2Shdn_XXX SNVT_switch
AB[8].10 Air Actuator Fault BI 139 DI 139 10139 Boolean nvoAirActFlt_XXX SNVT_switch
AB[8].11 Fuel 1 Actuator 1 Fault BI 140 DI 140 10140 Boolean nvoF1Act1Flt_XXX SNVT_switch
AB[8].12 Fuel 1 Actuator 2 Fault BI 141 DI 141 10141 Boolean nvoF1Act2Flt_XXX SNVT_switch
AB[8].13 Fuel 2 Actuator 1 Fault BI 142 DI 142 10142 Boolean nvoF2Act1Flt_XXX SNVT_switch
AB[8].14 Fuel 2 Actuator 2 Fault BI 143 DI 143 10143 Boolean nvoF2Act2Flt_XXX SNVT_switch
AB[8].15 FGR Actuator Fault BI 144 DI 144 10144 Boolean nvoFGRActFlt_XXX SNVT_switch
AB[9].0 Fuel 2 Actuator 2 Position Deviation BI 145 DI 145 10145 Boolean nvoF2Ac2PsDv_XXX SNVT_switch
AB[9].1 Fuel 2 Actuator 2 Feedback Low BI 146 DI 146 10146 Boolean nvoF2Ac2FBLo_XXX SNVT_switch
AB[9].2 Fuel 2 Actuator 2 Feedback High BI 147 DI 147 10147 Boolean nvoF2Ac2FBHi_XXX SNVT_switch
AB[9].3 Fuel 2 Actuator 2 Manual PB Pressed BI 148 DI 148 10148 Boolean nvoF2A2MnPBP_XXX SNVT_switch
AB[9].4 VFD Feedback Low BI 149 DI 149 10149 Boolean nvoVFDFBLo_XXX SNVT_switch
AB[9].5 VFD Feedback High BI 150 DI 150 10150 Boolean nvoVFDFBHi_XXX SNVT_switch
AB[9].6 Master PIDE Instruction Fault BI 151 DI 151 10151 Boolean nvoMstPIDFlt_XXX SNVT_switch
AB[9].7 FGEN Fault BI 152 DI 152 10152 Boolean nvoFGENFlt_XXX SNVT_switch
AB[9].8 Outdoor Temp Sensor Failed BI 153 DI 153 10153 Boolean nvoOutTpSnFl_XXX SNVT_switch
AB[9].9 Combustion Air Temp Sensor Failed BI 154 DI 154 10154 Boolean nvoCmArTpSFl_XXX SNVT_switch
AB[9].10 Yokogawa O2 Sensor Fault BI 155 DI 155 10155 Boolean nvoYokO2SnFl_XXX SNVT_switch
AB[9].11 Mix O2 Sensor Calibration Fail BI 156 DI 156 10156 Boolean nvoMxO2SnClF_XXX SNVT_switch
AB[9].12 Mix O2 Enable BI 157 DI 157 10157 Boolean nvoMxO2Enbl_XXX SNVT_switch
AB[9].13 Air Actuator Not at Purge BI 158 DI 158 10158 Boolean nvoArAcNoPrg_XXX SNVT_switch
AB[9].14 VFD Not at Purge BI 159 DI 159 10159 Boolean nvoVFDNotPrg_XXX SNVT_switch
AB[9].15 Hawk 1000 system BI 160 DI 160 10160 Boolean nvoH1000Sys_XXX SNVT_switch
AB[10].0 Hawk 4000 Next Gen BI 161 DI 161 10161 Boolean nvoH4000NxGn_XXX SNVT_switch
AB[10].1 Stack Temp Econ Out Sensor Failed BI 162 DI 162 10162 Boolean nvoStTpEcOSF_XXX SNVT_switch
AB[10].2 Econ In Water Temp Sensor Failed BI 163 DI 163 10163 Boolean nvoEcInWtTSF_XXX SNVT_switch
AB[10].3 Fuel 3 Actuator 1 Fault BI 164 DI 164 10164 Boolean nvoF3Act1Flt_XXX SNVT_switch
AB[10].4 Fuel 3 Actuator 2 Position Deviation BI 165 DI 165 10165 Boolean nvoF3Ac2PsDv_XXX SNVT_switch
AB[10].5 Fuel 3 Actuator 2 Feedback Low BI 166 DI 166 10166 Boolean nvoF3Ac2FBLo_XXX SNVT_switch
AB[10].6 Fuel 3 Actuator 2 Feedback High BI 167 DI 167 10167 Boolean nvoF3Ac2FBHi_XXX SNVT_switch
AB[10].7 Fuel 3 Actuator 2 Fault BI 168 DI 168 10168 Boolean nvoF3Act2Flt_XXX SNVT_switch
AB[10].8 Fuel 3 Actuator 1 Modbus Comm Error BI 169 DI 169 10169 Boolean nvoF3A1MdCmE_XXX SNVT_switch
AB[10].9 Fuel 3 Actuator 2 Modbus Comm Error BI 170 DI 170 10170 Boolean nvoF3A2MdCmE_XXX SNVT_switch
AB[10].10 Fuel 2 Actuator 2 Modbus Comm Error BI 171 DI 171 10171 Boolean nvoF2A2MdCmE_XXX SNVT_switch
AB[10].11 Return Temp Sensor Failed BI 172 DI 172 10172 Boolean nvoRtTmpSnFl_XXX SNVT_switch
AB[10].12 Water Shell Temp Sensor Failed BI 173 DI 173 10173 Boolean nvoWtShTpSFl_XXX SNVT_switch
AB[10].13 Feedwater/Econ Out Temp Sensor Failed BI 174 DI 174 10174 Boolean nvoFWEcOtTSF_XXX SNVT_switch
AB[10].14 Feedwater Level Control Option Selected BI 175 DI 175 10175 Boolean nvoFWLvCOSel_XXX SNVT_switch
AB[10].15 FGR Not at Purge BI 176 DI 176 10176 Boolean nvoAB_10_15_XXX SNVT_switch
AB[11].0 Slot8 Ch0 Bad Quality BI 177 DI 177 10177 Boolean nvoS8Ch0BdQu_XXX SNVT_switch
AB[11].1 Slot8 Ch0 Low Alarm BI 178 DI 178 10178 Boolean nvoS8Ch0LoAl_XXX SNVT_switch
AB[11].2 Slot8 Ch0 High Alarm BI 179 DI 179 10179 Boolean nvoS8Ch0HiAl_XXX SNVT_switch
AB[11].3 Slot8 Ch1 Bad Quality BI 180 DI 180 10180 Boolean nvoS8Ch1BdQu_XXX SNVT_switch
AB[11].4 Slot8 Ch1 Low Alarm BI 181 DI 181 10181 Boolean nvoS8Ch1LoAl_XXX SNVT_switch
AB[11].5 Slot8 Ch1 High Alarm BI 182 DI 182 10182 Boolean nvoS8Ch1HiAl_XXX SNVT_switch
AB[11].6 Slot8 Ch2 Bad Quality/Mix O2 Signal Fail BI 183 DI 183 10183 Boolean nvoS8Ch2BdQu_XXX SNVT_switch
AB[11].7 Slot8 Ch2 Low Alarm BI 184 DI 184 10184 Boolean nvoS8Ch2LoAl_XXX SNVT_switch
AB[11].8 Slot8 Ch2 High Alarm BI 185 DI 185 10185 Boolean nvoS8Ch2HiAl_XXX SNVT_switch
AB[11].9 Slot8 Ch3 Bad Quality BI 186 DI 186 10186 Boolean nvoS8Ch3BdQu_XXX SNVT_switch
AB[11].10 Slot8 Ch3 Low Alarm BI 187 DI 187 10187 Boolean nvoS8Ch3LoAl_XXX SNVT_switch
AB[11].11 Slot8 Ch3 High Alarm BI 188 DI 188 10188 Boolean nvoS8Ch3HiAl_XXX SNVT_switch
AB[11].12 Slot8 Ch4 Bad Quality BI 189 DI 189 10189 Boolean nvoS8Ch4BdQu_XXX SNVT_switch
AB[11].13 Slot8 Ch4 Low Alarm BI 190 DI 190 10190 Boolean nvoS8Ch4LoAl_XXX SNVT_switch
AB[11].14 Slot8 Ch4 High Alarm BI 191 DI 191 10191 Boolean nvoS8Ch4HiAl_XXX SNVT_switch
AB[11].15 Isolation Valve Selected BI 192 DI 192 10192 Boolean nvoAB_11_15_XXX SNVT_switch
AB[12].0 Slot8 Ch5 Bad Quality BI 193 DI 193 10193 Boolean nvoS8Ch5BdQu_XXX SNVT_switch
AB[12].1 Slot8 Ch5 Low Alarm BI 194 DI 194 10194 Boolean nvoS8Ch5LoAl_XXX SNVT_switch
AB[12].2 Slot8 Ch5 High Alarm BI 195 DI 195 10195 Boolean nvoS8Ch5HiAl_XXX SNVT_switch
AB[12].3 Slot8 Ch6 Bad Quality BI 196 DI 196 10196 Boolean nvoS8Ch6BdQu_XXX SNVT_switch
AB[12].4 Slot8 Ch6 Low Alarm BI 197 DI 197 10197 Boolean nvoS8Ch6LoAl_XXX SNVT_switch
AB[12].5 Slot8 Ch6 High Alarm BI 198 DI 198 10198 Boolean nvoS8Ch6HiAl_XXX SNVT_switch
AB[12].6 Slot8 Ch7 Bad Quality BI 199 DI 199 10199 Boolean nvoS8Ch7BdQu_XXX SNVT_switch
AB[12].7 Slot8 Ch7 Low Alarm BI 200 DI 200 10200 Boolean nvoS8Ch7LoAl_XXX SNVT_switch
AB[12].8 Slot8 Ch7 High Alarm BI 201 DI 201 10201 Boolean nvoS8Ch7HiAl_XXX SNVT_switch
AB[12].9 VFD EtherNet Comm Error BI 202 DI 202 10202 Boolean nvoVFDEtCmEr_XXX SNVT_switch
AB[12].10 Slot 8 Ch 4 Analog Input Selected BI 203 DI 203 10203 Boolean nvoS8Ch4AISl_XXX SNVT_switch
AB[12].11 Slot 8 Ch 5 Analog Input Selected BI 204 DI 204 10204 Boolean nvoS8Ch5AISl_XXX SNVT_switch
AB[12].12 Slot 8 Ch 6 Analog Input Selected BI 205 DI 205 10205 Boolean nvoS8Ch6AISl_XXX SNVT_switch
AB[12].13 Slot 8 Ch 7 Analog Input Selected BI 206 DI 206 10206 Boolean nvoS8Ch7AISl_XXX SNVT_switch
AB[12].14 Isolation Valve Out of Position BI 207 DI 207 10207 Boolean nvoAB_12_14_XXX SNVT_switch
AB[12].15 AB[12]15 BI 208 DI 208 10208 Boolean nvoAB_12_15_XXX SNVT_switch
AB[13].0 Air Actuator 2 Position Deviation BI 209 DI 209 10209 Boolean nvoArAc2PsDv_XXX SNVT_switch
AB[13].1 Air Actuator 2 Feedback Low BI 210 DI 210 10210 Boolean nvoArAc2FBLo_XXX SNVT_switch
AB[13].2 Air Actuator 2 Feedback High BI 211 DI 211 10211 Boolean nvoArAc2FBHi_XXX SNVT_switch
AB[13].3 Air Actuator 2 Modbus Comm Error (Node 4) BI 212 DI 212 10212 Boolean nvoArA2MdCmE_XXX SNVT_switch
AB[13].4 Air Actuator 2 Manual PB Pressed BI 213 DI 213 10213 Boolean nvoArA2MnPBP_XXX SNVT_switch
AB[13].5 Air Actuator 2 Fault BI 214 DI 214 10214 Boolean nvoAirAct2Fl_XXX SNVT_switch
AB[13].6 Air Actuator 2 Not At Purge BI 215 DI 215 10215 Boolean nvoArAc2NoPr_XXX SNVT_switch
AB[13].7 Air Actuator 2 Not At Lightoff BI 216 DI 216 10216 Boolean nvoArAc2NoLt_XXX SNVT_switch
AB[13].8 Air Actuator Not At Lightoff BI 217 DI 217 10217 Boolean nvoArAcNotLt_XXX SNVT_switch
AB[13].9 Fuel Actuator 1 Not At Lightoff BI 218 DI 218 10218 Boolean nvoFlA1NoLt_XXX SNVT_switch
AB[13].10 Fuel Actuator 2 Not At Lightoff BI 219 DI 219 10219 Boolean nvoFlA2NoLt_XXX SNVT_switch
AB[13].11 FGR Actuator Not At Lightoff BI 220 DI 220 10220 Boolean nvoFGRAcNoLt_XXX SNVT_switch
AB[13].12 VFD Not At Lightoff BI 221 DI 221 10221 Boolean nvoVFDNoLt_XXX SNVT_switch
AB[13].13 AB[13]13 BI 222 DI 222 10222 Boolean nvoAB_13_13_XXX SNVT_switch
AB[13].14 AB[13]14 BI 223 DI 223 10223 Boolean nvoAB_13_14_XXX SNVT_switch
AB[13].15 AB[13]15 BI 224 DI 224 10224 Boolean nvoAB_13_15_XXX SNVT_switch
AB[14].0 Nox Analyzer Present BI 225 DI 225 10225 Boolean nvoAB_14_0_XXX SNVT_switch
AB[14].1 NOx Trim Enabled BI 226 DI 226 10226 Boolean nvoAB_14_1_XXX SNVT_switch
AB[14].2 NOx Calibration Alarm BI 227 DI 227 10227 Boolean nvoAB_14_2_XXX SNVT_switch
AB[14].3 Nox Sensor Comms Alarm BI 228 DI 228 10228 Boolean nvoAB_14_3_XXX SNVT_switch
AB[14].4 M4/M5 Boiler Selected BI 229 DI 229 10229 Boolean nvoAB_14_4_XXX SNVT_switch
AB[14].5 2 Brl L-L Slave Boiler IP Not Set BI 230 DI 230 10230 Boolean nvoAB_14_5_XXX SNVT_switch
AB[14].6 2 Brl L-L Slave Boiler Comm Error BI 231 DI 231 10231 Boolean nvoAB_14_6_XXX SNVT_switch
AB[14].7 2 Brl L-L Slave Boiler Not Capable of Comm Control BI 232 DI 232 10232 Boolean nvoAB_14_7_XXX SNVT_switch
AB[14].8 2-Boiler L-L Master By Comms BI 233 DI 233 10233 Boolean nvoAB_14_8_XXX SNVT_switch
AB[14].9 2-Boiler L-L Slave By Comms BI 234 DI 234 10234 Boolean nvoAB_14_9_XXX SNVT_switch
AB[14].10 Boiler Ready To Modulate BI 235 DI 235 10235 Boolean nvoAB_14_10_XXX SNVT_switch
AB[14].11 FW Level Low Water Level BI 236 DI 236 10236 Boolean nvoAB_14_11_XXX SNVT_switch
AB[14].12 FW Level High Water Level BI 237 DI 237 10237 Boolean nvoAB_14_12_XXX SNVT_switch
AB[14].13 Master panel Control Via Comms Boiler Ready BI 238 DI 238 10238 Boolean nvoAB_14_13_XXX SNVT_switch
AB[14].14 Master panel Control Via Comms Heartbeat BI 239 DI 239 10239 Boolean nvoAB_14_14_XXX SNVT_switch
AB[14].15 Master panel Control Via Comms Selected BI 240 DI 240 10240 Boolean nvoAB_14_15_XXX SNVT_switch
AR[0] Flame Strength Honeywell AI 1 AI 1 30001 Real nvoFlmStrHny_XXX SNVT_count_f
AR[1] Combustion Air Fan Speed AI 2 AI 2 30003 Real nvoCmArFnSpd_XXX SNVT_count_f
AR[2] Motor KW AI 3 AI 3 30005 Real nvoAR_2__XXX SNVT_count_f
AR[3] Boiler Efficiency AI 4 AI 4 30007 Real nvoBlrEff_XXX SNVT_lev_percent
AR[4] Firing Rate AI 5 AI 5 30009 Real nvoFirRat_XXX SNVT_lev_percent
AR[5] O2 Level AI 6 AI 6 30011 Real nvoO2Lvl_XXX SNVT_lev_percent
AR[6] SP Steam Pressure/Water Temp AI 7 AI 7 30013 Real nvoSPStPWtTp_XXX SNVT_count_f
AR[7] Water Level AI 8 AI 8 30015 Real nvoWtrLvl_XXX SNVT_press_f
AR[8] Steam Pressure or Hot Water Temp AI 9 AI 9 30017 Real nvoStPrHWTmp_XXX SNVT_count_f
AR[9] AR[9] AI 10 AI 10 30019 Real nvoAR_9_XXX SNVT_count_f
AR[10] Stack Temp Before Economizer AI 11 AI 11 30021 Real nvoStkTpBfEc_XXX SNVT_temp_p
AR[11] Combustion Air Temp AI 12 AI 12 30023 Real nvoComAirTmp_XXX SNVT_temp_p
AR[12] Water Temp Shell/Outdoor Temp AI 13 AI 13 30025 Real nvoWtTpShl_XXX SNVT_temp_p
AR[13] Feedwater Temp/Econ Water Out Temp AI 14 AI 14 30027 Real nvoFdWtTp_XXX SNVT_temp_p
Write Tags:
AWB[0].0 Heart Beat From BMS BV 1 DO 1 00001 Boolean nvoHtBtFrBMS_XXX SNVT_switch
AWB[0].1 Rem Start From BMS BV 2 DO 2 00002 Boolean nvoRmStFrBMS_XXX SNVT_switch
AWB[0].2 AWB[0]2 BV 3 DO 3 00003 Boolean nvoAWB_0_2_XXX SNVT_switch
AWB[0].3 AWB[0]3 BV 4 DO 4 00004 Boolean nvoAWB_0_3_XXX SNVT_switch
AWB[0].4 AWB[0]4 BV 5 DO 5 00005 Boolean nvoAWB_0_4_XXX SNVT_switch
AWB[0].5 AWB[0]5 BV 6 DO 6 00006 Boolean nvoAWB_0_5_XXX SNVT_switch
AWB[0].6 AWB[0]6 BV 7 DO 7 00007 Boolean nvoAWB_0_6_XXX SNVT_switch
AWB[0].7 AWB[0]7 BV 8 DO 8 00008 Boolean nvoAWB_0_7_XXX SNVT_switch
AWB[0].8 AWB[0]8 BV 9 DO 9 00009 Boolean nvoAWB_0_8_XXX SNVT_switch
AWB[0].9 AWB[0]9 BV 10 DO 10 00010 Boolean nvoAWB_0_9_XXX SNVT_switch
AWB[0].10 AWB[0]10 BV 11 DO 11 00011 Boolean nvoAWB_0_10_XXX SNVT_switch
AWB[0].11 AWB[0]11 BV 12 DO 12 00012 Boolean nvoAWB_0_11_XXX SNVT_switch
AWB[0].12 AWB[0]12 BV 13 DO 13 00013 Boolean nvoAWB_0_12_XXX SNVT_switch
AWB[0].13 AWB[0]13 BV 14 DO 14 00014 Boolean nvoAWB_0_13_XXX SNVT_switch
AWB[0].14 AWB[0]14 BV 15 DO 15 00015 Boolean nvoAWB_0_14_XXX SNVT_switch
AWB[0].15 AWB[0]15 BV 16 DO 16 00016 Boolean nvoAWB_0_15_XXX SNVT_switch
AWB[1].0 AWB[1]0 BV 17 DO 17 00017 Boolean nvoAWB_1_0_XXX SNVT_switch
AWB[1].1 AWB[1]1 BV 18 DO 18 00018 Boolean nvoAWB_1_1_XXX SNVT_switch
AWB[1].2 AWB[1]2 BV 19 DO 19 00019 Boolean nvoAWB_1_2_XXX SNVT_switch
AWB[1].3 AWB[1]3 BV 20 DO 20 00020 Boolean nvoAWB_1_3_XXX SNVT_switch
AWB[1].4 AWB[1]4 BV 21 DO 21 00021 Boolean nvoAWB_1_4_XXX SNVT_switch
AWB[1].5 AWB[1]5 BV 22 DO 22 00022 Boolean nvoAWB_1_5_XXX SNVT_switch
AWB[1].6 AWB[1]6 BV 23 DO 23 00023 Boolean nvoAWB_1_6_XXX SNVT_switch
AWB[1].7 AWB[1]7 BV 24 DO 24 00024 Boolean nvoAWB_1_7_XXX SNVT_switch
AWB[1].8 AWB[1]8 BV 25 DO 25 00025 Boolean nvoAWB_1_8_XXX SNVT_switch
AWB[1].9 AWB[1]9 BV 26 DO 26 00026 Boolean nvoAWB_1_9_XXX SNVT_switch
AWB[1].10 AWB[1]10 BV 27 DO 27 00027 Boolean nvoAWB_1_10_XXX SNVT_switch
AWB[1].11 AWB[1]11 BV 28 DO 28 00028 Boolean nvoAWB_1_11_XXX SNVT_switch
AWB[1].12 AWB[1]12 BV 29 DO 29 00029 Boolean nvoAWB_1_12_XXX SNVT_switch
AWB[1].13 AWB[1]13 BV 30 DO 30 00030 Boolean nvoAWB_1_13_XXX SNVT_switch
AWB[1].14 AWB[1]14 BV 31 DO 31 00031 Boolean nvoAWB_1_14_XXX SNVT_switch
AWB[1].15 AWB[1]15 BV 32 DO 32 00032 Boolean nvoAWB_1_15_XXX SNVT_switch
AWR[0] Rem Op SP Boiler AV 1 AO 1 40001 Real nvoRmOpSPBlr_XXX SNVT_count_f
AWR[1] Rem Firing Rate AV 2 AO 2 40003 Real nvoRemFirRat_XXX SNVT_lev_percent
AWR[2] Rem Op SP 2 boiler Lead/Lag AV 3 AO 3 40005 Real nvoRmOSP2BLL_XXX SNVT_count_f
6.Navigate to the location of the SD card that will be used to transfer the Logix folder to the PLC. Select
Extract.
9.Use the Remove Hardware tool to safely eject the SD card from the computer.
10. Install the SD card into the PLC SD card slot. The PLC switch should be in REM.