Mechanical
Vibrations
Prof. Dr. Kenan Y. Şanlıtürk
sanliturk@itu.edu.tr
Content
1. Introduction to Vibration and Free response
2. Response to Harmonic Excitation
3. General Forced Response
4. Multi-Degree-of-Freedom systems
5. Design for Vibration Suppression
Page 1
1. Introduction to Vibration and Free Response
• Viscous Damping
• Mass-Spring-Damper system
• Equation of motion, solution
• Critical Damping
• Overdamped Motion
• Underdamped Motion
• Sample problems
• Logarithmic decrement
Viscous damping
Called: dashpot or damper
c: Viscous damping coefficient.
Unit: [N/m/s]
f c cx(t )
oil
Page 2
Mass-Spring-Damper System
Equation of Motion:
mx(t ) f k f c
kx (t ) cx (t )
Frictionless surface
mx(t ) cx(t ) kx(t ) 0
x(0) x0 , x(0) v0
Solution
x(t ) Cet
Frictionless surface (m 2 c k )Cet 0
mx(t ) cx(t ) kx(t ) 0 (m 2 c k ) x(t ) 0
x(0) x0 , x(0) v0
m 2 c k 0
Characteristic equation
c k
2 0
m m
Page 3
m 2 c k 0
Solution
c k
2 0
m m
The roots of the characteristic equation:
Frictionless surface
c c 2 4mk
mx(t ) cx(t ) kx(t ) 0 1,2
2m
x(0) x0 , x(0) v0
2
c c k
1,2
2m 2m m
Solution 2
c c k
1,2
2m 2m m
2
c k
Frictionless 0 or c 2 4mk 0
surface 2m m
mx(t ) cx(t ) kx(t ) 0
x(0) x0 , x(0) v0 ccr 2 km 2m k / m 2mn
c c c
Viscous damping ratio:
ccr 2 km 2mn
Page 4
Solution
mx(t ) cx(t ) kx(t ) 0
c k
x(t ) x(t ) x(t ) 0
m m
x(t ) 2n x(t ) n2 x(t ) 0
Frictionless surface
c c k
2 2 2n n2 0
1,2
2m 2m m
c
c
c 1,2 in terms of and n
ccr 2 km 2mn
c
2n 1,2 n n 2 1
m
1) Overdamped Motion(>1)
x(t ) C1e1t C2e2t
1,2 n n 2 1
2 distinct real roots 1 , 2
x(t ) ent (C1ent 2 1
C2ent 2 1
)
mx(t ) cx(t ) kx(t ) 0
x(0) x0 , x(0) v0 v0 ( 2 1)n x0
C1
2n 2 1
Imposing initial conditions
v0 ( 2 1)n x0
C2
2n 2 1
Page 5
The Response of Overdamped Systems (No Vibration!)
2) Critically damped system (1)
1,2 n n 2 1
1 2 n
Frictionless surface
x(t ) C1e1t C2te 2t
mx(t ) cx(t ) kx(t ) 0
x(0) x0 , x(0) v0 x(t ) C1e nt C2te nt
Imposing initial conditions: x(t ) [ x0 (v0 n x0 )t ]ent
Page 6
2) Critically damped motion (1) (No Vibration!)
No oscillatory motion
Used for door closing systems, dials of analogue gauges etc.
nt
x(t ) [ x0 (v0 n x0 )t ]e
3) Underdamped Motion(<1)
1,2 n n 2 1
1,2 n jn 1 2
Two complex conjugate roots
1 n jn 1 2
2 n jn 1 2
1 n jd
d n 1 2
2 n jd
d : Damped natural frequency
Page 7
3) Underdamped Motion(<1)
x(t ) e nt (C1e jnt 1 2
C2e jnt 1 2
)
d n 1 2
x(t ) e nt (C1e jd t C2e jd t )
Note: If C1 and C2 are complex conjugates,
one gets real A1 and A2. A2=C1+C2, A1=(C1-C2)j
x(t ) e nt ( A1 sin(d t ) A2 cos(d t ))
mx(t ) cx(t ) kx(t ) 0
x(0) x0 , x(0) v0 Impose initial conditions:
Note: A2 xo
e jd t cos(d t ) j sin(d t ) vo n xo
A1
d
jd t
e cos(d t ) j sin(d t )
3) Underdamped Motion(<1)
x(t ) e nt (C1e jnt 1 2
C2e jnt 1 2
)
d n 1 2
x(t ) e nt (C1e jd t C2e jd t )
Ae nt sin(d t )
1
A (v0 n x0 ) 2 ( x0d ) 2
d
mx(t ) cx(t ) kx(t ) 0
x(0) x0 , x(0) v0 x0d
tan 1
v0 n x0
Page 8
x(t ) e nt ( A1 sin(d t ) A2 cos(d t )) x(t ) Ae nt sin(d t )
A2 xo A A12 A22
vo n xo
A1 tan 1 (
A2
)
d A1
1
A (v0 n x0 ) 2 ( x0d ) 2
d
Underdamped Motion(<1)
Many mechanical systems are in this category.
Vibration amplitudes decay exponentially.
The damped natural frequency is lower than
undamped natural frequency.
d n 1 2
Page 9
time
Higher damping results
in faster decay. m
k c1 + c2
d n 1 2
The response of underdamped system
x(t ) Aent sin(d t )
Page 10
Sample Problem
A 30 cm long spring with a spring constant of k = 857.8 N/m is fixed to a
rigid wall (ground) and a rigid block with 49.2 x 10-3 kg mass is attached
to the other end of the spring. Viscous damping coefficient is given as
c = 0.11 kg/s. Determine the viscous damping ratio for this system.
m 49.2 103 kg, k 857.8 N/m
ccr 2 km 2 49.2 103 857.8
12.993 kg/s
c 0.11 kg/s
= 0.0085 This system is underdamped.
ccr 12.993 kg/s It vibrates if disturbed.
Sample Problem (Exercise)
The natural frequency of the system below without the damper
(dashpot) is known to be 20 Hz. It is also known that when the
damper is attached to the system, the viscous damping ratio of the
system becomes = 0.224. Calculate the response of the mass to an
initial velocity of v0 = 0.6 m/s and zero initial displacement. What is
the maximum acceleration if there is no damping?
20 cycle 2 rad
n 125.66 rad/s
1 s cycle
d 125.66 1 ( 0.224 ) 122.467 rad/s
2
Page 11
vo n xo vo
A , d 122.66, v0 0.6, x0 0
d d
0.6
A =0.0049m, =0
d
x(t ) 0.0049e nt (sin d t ) 0.0049e 28.148t sin(122.467t )
If no damping:
0.6
max ( x ) n2 A n2 ( 0.6 ) (125.66 m/s ) 75.4 m/s
2 2
n
1g
Maximum Acceleration 75.40 m/s 2 7.68 g
9.81 m/s 2
Sample Problem
The general response of the underdamped system can also be
written as:
x(t ) ent ( A1 sin d t A2 cos d t )
Determine the constants A1 and A2 using the initial conditions.
sin(a b) sin a cos b cos a sin b
A sin(d t ) A sin(d t ) cos A cos(d t ) sin
A sin(d t ) A1 sin(d t ) A2 cos(d t )
x(t ) Ae nt sin(d t ) e nt ( A1 sin d t A2 cos d t )
x(0) x0 e0 ( A1 sin(0) A2 cos(0)) A2 x0
Page 12
Sample Problem
x n e nt ( A1 sin d t A2 cos d t )
d e nt ( A1 cos d t A2 sin d t )
v0 n ( A1 sin 0 x0 cos 0) d ( A1 cos 0 x0 sin 0)
v0 n x0
A1
d
v n x0
x(t ) e nt 0 sin d t x0 cos d t
d
Damping Identification by Using Transient Measurement
x(t ) Aent sin(d t )
Logarithmic decrement: d
Definition, derivation
Page 13
The response of underdamped system
Logarithmic decrement: d
x(t ) Aent sin(d t )
Xi
d ln
X i 1
Logarithmic decrement: d Xi
d ln
Deplasman, [mm]
X i 1
Xi
X i 1 T X i (ti ) Ae nti
X i 1 (ti T ) Ae n (ti T )
ti
Zaman, [s] Xi
enT
X i 1
Xi
d ln nT
X i 1
Xi
If damping is small d ln nT 2
X i 1
1 Xi d
d ln
n X in 2
Page 14
Logarithmic decrement: d
Xi
enT
X i 1
Xi
d ln nT
X i 1
2 2
If damping is NOT small T
d n 1 2
Xi 2
d ln nT n
X i 1 n 1 2
Xi 2 d
d ln
X i 1 1 2
(2 ) 2 d 2
Page 15