1.
3 Separable Ordinary Differential Equations, Modelling
Generally, it is difficult to solve first-order ordinary differential equations y   f ( x, y ) in the sense
that no formulae exist for obtaining its solution in all cases. However, there are certain standard types
of first-order differential equations of the first degree for which routine methods of solution are
available. In this chapter, we shall discuss a few of these types.
Separable Differential Equation:
Differential equations of the form
         g ( y ) dy  f ( x) dx                                                                         (1)
are called equations with separated variables, the solutions of which are obtained
by direct integration.
Thus, its solution is given by
           g ( y)dy   f ( x)dx  c .                                                                 (2)
If f and g are continuous functions, the integrals in Eq. (2) exist, and by evaluating them we obtain a
general solution of Eq. (1). This method of solving ODEs is called the method of separating
variables, and Eq. (1) is called a separable equation.
Example: 1       Solve y  1  y 2 .
Solution: The given equation can be written as
                                                            dy
                                                                  dx .
                                                          1  y2
Integrating both the sides, we have
                            tan 1 y  x  c
or                          y  tan( x  c) .
                         dy
Example: 2       Solve       e 2 x  y  x 3e  y .
                         dx
Solution: The given equation can be written as
                                                       dy
                                                           (e 2 x  x 3 )e  y
                                                       dx
Separating the variables, we have
                                                   e y dy  (e2 x  x3 )dx
Integrating both the sides
                                                              e2 x x 4
                                                       ey            c.
                                                               2    4
                                                                  1
                              HOMOGENEOUS DIFFERENTIAL EQUATIONS
A function �(�, �) of two variables is said to be homogeneous of degree n if
� ��, �� = �� � �, �                                                                               (3)
for every t>0 such that (tx, ty) is in the domain of �.
Example: Let f  x, y   2 x 4  x 2 y 2  5 xy 3
Now
 f tx,ty   2tx 4  tx 2 ty 2  5tx ty 3
                
           t 4 2 x 4  x 2 y 2  5 xy 3   
            t 4 f  x, y 
Therefore, f is homogeneous of degree 4.
Example:
                   x
 f ( x, y )  sin  
                    y
                     tx       x
 f (tx, ty )  sin    sin    t 0 f ( x, y )
                     ty        y
                        x
Thus f ( x, y )  sin     is a homogeneous function of degree 0.
                         y
Homogeneous Differential Equation
A homogeneous differential equation is a differential equation which can be written in the form:
P x, y dx  Q x, y dy  0                                                                      (4)
where P and Q are homogeneous functions of the same degree.
Example: The differential equation ( x 2  xy )dx  y 2dy  0 is a homogeneous differential
equation because ( x 2  xy ) and y 2 are homogeneous functions of degree 2.
Note:
                                                               y
   1. A first order differential equation y  f ( x, y )  g   is known as homogeneous equation
                                                              x
                                y
       in which f ( x, y )  g   is a homogeneous function of degree 0.
                               x
    2. Homogeneous differential equation does not involve constant terms.
Reduction to Separable form:
Type-I: If the given homogeneous differential equation of 1st order can be written
         f ( x, y )
as y              then the solution of this type equation can be determined as follows:
         g ( x, y )
Procedure:
    I.         Put y  ux
                          dy         du
    II.        Calculate     ux
                          dx         dx
    III.                         
               Substitute y and y in the given ODE. The given ODE reduces to a separable differential
               equation.
                                                        2
    IV.      Separate the variables and integrate both sides to get the general solution.
                         y
    V.       Replace u     and find the general solution of the given ODE.
                         x
Example: Solve the ODE 2 xyy  y 2  x 2 .
Solution: Given ODE is
                     y 2  x2
                 
                y                                                                          (5)
                       2 xy
                             du
Let y  ux,  y  u  x
                             dx
                    
Substituting y and y in the given ODE (5) we find
      du x 2 (u 2  1) u 2  1
ux                     
      dx        2ux 2         2u
              2
     du u  1             u  1  2u 2  (1  u 2 )
                            2
x                 u               
     dx       2u               2u          2u
This is a separable differential equation.
Separating variables and integrating we get
             2u            dx
          1  u 2 du    x
           ln 1  u 2   ln x  ln C
                     C
           1  u2 
                     x
                     y
          Putting u  we obtain
                     x
                   2
                 y    x2  y 2 C
           1 2             
                 x      x2      x
        x 2  y 2  Cx , This is the required general solution of the given ODE.
Type-II: An equation of the form
               y  f (ax  by  c)
Can be reduced to a separable equation by substituting ax  by  c  v.
Example: Solve y  ( y  4 x) 2
Solution: Given ODE is
                  y  ( y  4 x ) 2                                                        (6)
Let y  4 x  v
Differentiating both sides w.r.to x we get
                  dv                 dv
         y  4  ,  y               4
                  dx                 dx
The given ODE (6) becomes
         dv                          dv
              4  v2 ,                 v2  4
         dx                          dx
This is a separable differential equation.
Separating variables and integrating both sides we get
                                                    3
                dv
                        dx
               v2  4
             1        v
          tan 1   x  C1
             2        2
                   v
          tan 1   2 x  2C1  2 x  C
                   2
          v  2 tan( 2 x  C )
Putting y  4 x  v we find
          y  4 x  2 tan( 2 x  C )
This is the required solution of the given ODE.
Example: Solve the ODE y  cos( x  y  1)
Solution: Let x  y  1  v
Differentiating w.r.to x we get
               dv
         y       1
               dx
The given ODE becomes
         dv
              1  cos v  2 cos 2 (v / 2) , This is a separable differential equation.
         dx
Separating variables and integrating both sides we find
         1
            sec 2 (v / 2)dv   dx
         2
          tan(v / 2)  x  C
                 x  y 1
          tan                xC
                       2    
This is the general solution of the given differential equation.
Type-III: Nonhomogeneous ODEs Reducible to Homogeneous Form
If the differential equation is of the form
                      a x  b1 y  c1
                 y  1                                                                       (7)
                      a2 x  b2 y  c2
          a1 b1  a           b1
Suppose      or 1                0
          a2 b2  a2          b2
Equation (7) can be solved as follows:
     a    b
Let 1  1  k (constant ),  a1  a2k and b1  b2k
     a2 b2
Equation (7) becomes
              k (a2 x  b2 y )  c1
         y                                                                                   (8)
                a2 x  b2 y  c2
Putting a2 x  b2 y  u , the differential equation (8) reduces to a separable equation in terms
of u and x .
                         x y4
Example: Solve y 
                         x y6
Solution: Given differential equation is
                                                    4
                     x y4
                     y                                                                        (9)
                     x y6
                      a    b
In the equation (9), 1  1  1
                     a2 b2
                             du
Putting x  y  u and y         1 in equation (9) we find
                             dx
 du       u4          du u  4           2(u  1)
    1        ,                  1            , This is a separable equation in terms
 dx       u6           dx u  6           u6
of u and x .
Separating variables and integrating both sides we find
          u6                             5 
         u  1 du   2dx,   1  u  1 du   2dx
         u  5 ln u  1  2 x  C
            x  y  5 ln x  y  1  2 x  C
            y  x  5 ln x  y  1  C.
Solve the following ODEs.
   1. (2� − 4� + 5)�' + � − 2� + 3 = 0
   2. (2� + � + 1)�� + (4� + 2� − 1)�� = 0
   3. (2� − 3� + 2)�� + 3(4� − 6� − 1)�� = 0
                                           Problems Set 1.3
Question: Find a general solution. Show the steps of derivation. Check your answer by substitution
                              y
Q1: xy '  y  2 x 3 sin 2     
                              x
                        y
Answer: Let u               y  ux
                        x
Differentiating we get y '  u  xu '
Now we can substitute y and y ' in the equation:
x(u  xu ' )  ux  2 x 3 sin 2 u
 xu  x 2 u '  ux  2 x 3 sin 2 u
 x 2 u '  2 x 3 sin 2 u
      u'           x3
             2
    sin 2 u        x2
      u'
              2x
    sin 2 u
Integrating both the sides we get
        du
      sin 2 u 
              2 x dx
                                                   5
               x2
  cot u  2     c
               2
  cot u  x 2  c
  cot u  x 2  c
 cot u  c  x 2
 u  cot 1 (c  x 2 )
                                     y
Using back substitution method u        , we get
                                     x
y
   cot 1 (c  x 2 )
x                                                          Ans.
              1            2
 y  x cot (c  x )
                        2
Q2: y '  ( y  4 x)
Answer: Let v  y  4 x  y  v  4 x
Differentiating we get y '  v '4
Now we can substitute y and y ' in the given equation:
v '4  (v  4 x  4 x) 2
 v ' v2  4
 dv
    v2  4
 dx
   dv
 2      dx
 v 4
Integrating both the sides we get
      dv
    v 4 
       2
             dx
  1         v         c
 tan 1 ( )  x 
  2         2         2
          v
 tan 1 ( )  2 x  c
          2
  v
  tan( 2 x  c)
  2
 v  2 tan( 2 x  c)
Using back substitution method, we get v  y  4 x
 y  4 x  2 tan( 2 x  c)
                                                         Ans.
 y  2 tan( 2 x  c)  4 x
            2
Q3. xy '  y  y
                                                    6
                    y
Answer: Let u              y  ux
                    x
Differentiating we get y '  u  xu '
Now we can substitute y and y ' in the equation:
x(u  xu ' )  (ux ) 2  ux
 xu  x 2 u '  (ux ) 2  ux
 u ' u2
 du
    u2
 dx
 du
 2  dx
 u
Integrating both the sides we get
   du
   u2 
       dx  c
   1
  xc
   u
 1
 cx
 u
      1
u 
     cx
                                         y
Using back substitution method u            , we get
                                         x
y   1
  
x cx
                                                            Ans.
     x
y
    cx
                      2
Q4. y '  ( x  y  2) ,      y(0)  2
Answer: Let v  x  y  2  y  v  x  2
Differentiating we get y '  v '1
Now we can substitute y and y ' in the given equation:
v '1  (v) 2
 v ' v2 1
 dv
    v2 1
 dx
  dv
 2     dx
 v 1
Integrating both the sides we get
                                                        7
      dv
    v 1 
       2
              dx
 tan 1 (v)  x  c
 v  tan( x  c)
Using back substitution method, we get v  x  y  2
 x  y  2  tan( x  c)
 y  tan( x  c)  x  2
All we need to do is to determine c from IVP
Given y (0)  2 i.e. when x  0 then y  2
2  tan(0  c)  0  2
 tan c  0
c0
Hence the particular solution is: y  tan x  x  2         Ans.
                             y
Q5. xy '  y  3 x 4 cos 2    ,       y (1)  0
                             x
                       y
Answer: Let u              y  ux
                       x
Differentiating we get y '  u  xu '
Now we can substitute y and y ' in the equation:
x(u  xu ' )  ux  3 x 4 cos 2 u
 xu  x 2u '  ux  3 x 4 cos 2 u
 x 2u '  3 x 4 cos 2 u
     u'          x4
           3
   cos 2 u       x2
     u'
            3x 2
       2
   cos u
Integrating both the sides we get
      du
    cos 2 u 
            3 x 2 dx
           x3
 tan u  3  c
             3
           3
 tan u  x  c
 u  tan 1 ( x 3  c)
                                        y
Using back substitution method u            , we get
                                        x
y
   tan 1 ( x3  c)
x
 y  x tan 1 ( x3  c).
All we need to do is to determine c from IVP
                                                        8
Given y (1)  0 i.e. when x  1 then y  0
0  1. tan 1 (1  c)
 (c  1)  tan 0
 c 1  0
 c  1
                                           1 3
Hence the particular solution is: y  x tan ( x  1)       Ans.
************************************END**********************************