2015 Baza
2015 Baza
MATEMATIKA (INFORMATIKA BILAN) 11. Agar uch xonali sondan 6 ni ayirsak, ayirma
7 ga bo‘linadi, 7 ni ayirsak, ayirma 8 ga
1. aa va bb ikki xonali sonlar bo‘lib, bo‘linadi, 8 ni ayirsak, ayirma 9 ga bo‘linadi.
(aa)2 + (bb)2 = 2057 va a + b = 5 bo‘lsa, a · b ni Bu sonni toping.
toping. A) 503 B) 167 C) 143 D) 936
A) 6 B) 4 C) 8 D) 15
12. Koordinata boshidan o‘tuvchi tekislik
2. Ishchi birinchi kuni o‘ziga topshirilgan butun bir tenglamasini toping.
ishning yarmini, ikkinchi kuni qolgan ishning
A) 2x − 2y + 5z = 0 B) x + y − 1 = 0
yarmini, uchinchi kuni qolgan ishning yarmini
C) x + 3y + 9z − 1 = 0 D) x + y + 1 = 0
bajardi. U ishni tugatishi uchun to‘rtinchi kuni
butun ishning qancha qismini bajarishi kerak?
13. Balandligi asosining diametriga teng silindrning
1 1 1 1 yon sirti 16π ga teng. Silindr asosining
A) B) C) D)
2 4 8 16 diametrini toping.
A) 2 B) 1 C) 4 D) 8
3. Agar a ∈ N bo‘lsa, quyidagilardan qaysi biri
albatta juft son bo‘ladi?
14. Yon sirti 60π ga, balandligi 2 ga teng silindr
A) a3 + 2a B) a4 · (a + 1) C) a2 + 4 asosining diametrini toping.
a−1
D) A) 15 B) 10 C) 30 D) 20
5
!
π 1 1 1
4. Quyidagi tenglamalar sistemasini yeching. 15. tg − arctg − arctg − arctg ni
4 3 4 5
(
EKU B(x; y) = 45
x
= 11 hisoblang.
y 7
1 1 1 1
A) x = 220, y = 140 B) x = 143, y = 91 A) B) C) D)
47 60 45 80
C) x = 275, y = 175 D) x = 495, y = 315
74. To‘g‘ri burchakli trapetsiyaning kichik diagonali 80. Qirralari 6 ga teng bo‘lgan kubga ichki chizilgan
15 sm ga teng bo‘lib, yon tomoniga sharning hajmini toping.
perpendikular, kichik yon tomoni 12 sm bo‘lsa, A) 72π B) 36π C) 27π D) 108π
uning yuzini (sm2 ) toping.
A) 204 B) 244 C) 200 D) 196 81. Muntazam o‘nburchakka tashqi chizilgan aylana
2
radiusi ga teng bo‘lsa, uning tomonini
sin18◦
75. m dan katta bo‘lmagan juft natural sonlarning toping.
yig‘indisi x, m dan katta bo‘lmagan, lekin A) 3 B) 4 C) 6 D) 2
10 dan katta bo‘lgan juft sonlarning yig‘indisi y
hamda x + y = 810 bo‘lsa, m ning barcha
82. Beshburchakning ichki burchaklari yig‘indisi
qiymatlari yig‘indisini toping.
nechaga teng.
A) 81 B) 210 C) 83 D) 420
A) 540◦ B) 560◦ C) 720◦ D) 580◦
6 Matematika (informatika bilan)
83. Agar x ∈ [−1; 2] bo‘lsa, y = 5x funksiya qaysi 93. Barcha ikki xonali sonlar ko‘paytmasidan
oraliqda yotadi? tashkil topgan ko‘paytmada 7 sonining eng
A) (0; ∞) B) [0, 2; 25] C) [1; 5] katta darajasini aniqlang.
D) (0; 25] A) 15 B) 16 C) 14 D) 13
√ √ √
84. 3−x = x tenglamaning eng kichik butun 94. y = x2 − 6x + 9 + x2 + 8x + 16
yechimini toping. funksiyaning qiymatlar sohasi topilsin.
A) 0 B) 1 C) 2 D) ∅ A) [7; ∞) B) [1; ∞) C) [0; ∞)
D) (−∞; ∞)
85. Rombning tomoni 4 ga, o‘tkir burchagi 30◦ ga !x
teng bo‘lsa, unga ichki chizilgan aylananing 1 x 8x
95. ·4 − = 0 tenglama ildizlarining o‘rta
uzunligini toping. 8 16
π arifmetigini toping.
A) 4π B) 2π C) π D)
2 A) 1,5 B) 3 C) 2,5 D) 2
102. Agar tengyonli trapetsiyaning perimetri 72 ga 111. To‘rtburchakli muntazam prizmaga ichki
hamda yon tomoni o‘rta chizig‘ining yarmiga chizilgan silindr yon sirtining prizma yon sirtiga
teng bo‘lsa, shu trapetsiyaning yon tomonini nisbatini toping.
toping. π π
A) B) C) 4 D) 2
A) 12 B) 16 C) 10 D) 9 4 2
√
103. y = 16 − x2 funksiyaning grafigi bo‘lgan egri 112. Balandligi 12 ga, asosining radiusi 5 ga teng
chiziq uzunligini toping. bo‘lgan konusga ichki chizilgan oltiburchakli
A) 4π B) 8π C) 6π D) aniqlab bo‘lmaydi muntazam piramidaning katta diagonal kesimi
yuzini hisoblang.
√ A) 60 B) 50 C) 72 D) 38
104. y = 25 − x2 funksiyaning grafigi bo‘lgan egri
chiziq va y = 0 to‘g‘ri chiziq bilan 113. Silindrga shar ichki chizilgan. Silindr o‘q
chegaralangan shakl yuzini toping. kesimining diagonali l ga teng bo‘lsa, shar
A) 12, 5π B) 25π C) 5π sirtining yuzini hisoblang.
D) aniqlab bo‘lmaydi π π π
A) · l2 B) π · l2 C) · l2 D) · l2
2 3 4
105. Aylananing uzunligi shu aylananing 40◦ li yoyi
uzunligidan necha foiz ko‘p?
114. Teng yonli uchburchakning uchidagi tashqi
A) 800 B) 900 C) 600 D) 700 burchagi ichki burchagi bilan 7:5 nisbatda
bo‘lsa, asosidagi tashqi burchagini toping.
106. Markazlari bir nuqtada bo‘lgan ikki doiradan
kattasining radiusi kichigining radiusidan 20% A) 127,5◦ B) 127◦ C) 120◦ D) 120,5◦
ga katta. Ularning orasidagi halqaning yuzi
katta doira yuzidan necha marta kam? 115. Agar ABC o‘tkirburchakli uchburchakda
3 3 4 4 AB=0,7; BC=0,9; sinB=0,8 bo‘lsa, uchinchi
A) 3 B) 2 C) 3 D) 2 tomonning kvadratini toping.
11 7 9 7
A) 0,544 B) 0,543 C) 0,541 D) 0,519
107. A nuqta ikki yoqli to‘g‘ri burchakning
yoqlaridan 6 va 8 ga teng uzoqlikda yotsa, shu 116. y = ln ||x| + 1| funksiyaning aniqlanish sohasini
nuqtadan ikki yoqli burchakning qirrasigacha toping.
bo‘lgan masofani toping. A) (−∞; ∞)
A) 10 B) 8 C) 9 D) 12 B) (0; ∞)
108. Uzunligi 17 ga teng bo‘lgan kesmaning uchlari C) (−∞; 0)
tekislikdan 4 va 12 ga teng uzoqlikda yotishi D) (1; ∞)
ma’lum bo‘lsa, kesmaning tekislikdagi
proyeksiyasi uzunligini toping. (
x−y =2
A) 15 B) 12 C) 16 D) 10 117. tenglamalar sistemasini yeching.
xy = 15
109. Tekislikdan h uzoqlikda joylashgan nuqtadan A) (5; 3); (−3; −5) B) (5; 3); (−5; −3)
tekislikka o‘tkazilgan va tekislik bilan 30◦ li C) (−5; −3); (3; −5) D) (−5; 3); (3; −5)
burchak hosil qiladigan og‘maning uzunligini
toping. 118. Agar to‘g‘ri to‘rtburchakda BK = KA bo‘lib,
√ √ AB = 6, AD = 4 bo‘lsa, SKCD =?
A) 2h B) 2h C) 1, 5h D) 3h
Br rC
110. Tekislikdan a uzoqlikda joylashgan nuqtadan
tekislik bilan 30◦ li burchak hosil qiluvchi ikkita
og‘ma o‘tkazilgan. Ularning tekislikdagi Kr r
154. Muntazam ko‘pburchakning tomoni a ga, unga 162. 3; 5; 9; 17; 33; 65; . . . ketma-ketlikning
tashqi chizilgan aylana radiusi esa R ga teng dastlabki n ta hadining yig‘indisini toping.
bo‘lsa, ichki chizilgan aylana radiusini toping. A) 2n+1 + n − 2 B) 2n C) 2n + n − 2
v
D) (2 + 2n−1 ) · n
a2
u
u
A) tR2 −
4 163. Cheksiz kamayuvchi ishorasi almashinuvchi
v geometrik progressiyada ketma-ket kelgan uchta
2
a
u
u hadning yig‘indisi -21 ga, ko‘paytmasi 729 ga
B) tR2 +
4 teng bo‘lsa, shu sonlarni toping.
2aR A) 27; -9; 3 B) -28; 14; -7 C) -3; 9; -27
C) √ D) -27; 9; -3
4R2 − a2
2aR 2x − 1
D) √ 164. y = √ funksiyaning aniqlanish
4R2 + a2 x2 − 5x + 6
sohasini toping.
155. 5200 sonini 24 ga bo‘lganda qoladigan qoldiqni A) (−∞; 3)
aniqlang. B) (−2; 3)
A) 15 B) 23 C) 1 D) 3 C) (0; 2)
2010 D) (−∞; 2) ∪ (3; ∞)
156. 20122011 sonining oxirgi raqamini toping.
A) 6 B) 2 C) 4 D) 8 3x + 1
165. y = funksiyaning qiymatlar to‘plamini
x2 − 5x − 6 x+2
157. 2 ≤ 0 tengsizlikni yeching. toping.
x − 4x + 10
A) (−∞; 3) ∪ (3; ∞)
A) (0; 3)
B) (−∞; − 2)
B) [0; 5]
1
C) (−∞; − )
!
1 3
C) ; 6
2
1
D) [−1; 6] D) [−2; − ]
3
x+3
2
< 2, 166. 2x −16 ≤ 1 tengsizlikni yeching.
3−x A) [0; 4) B) (−2; 2) C) [−4; 4]
158. tengsizliklar sistemasini yeching.
x3 < 16x,
D) (0; 2)
4 ≥ x2
( √ √
A) [2; 3] B) (3; 5) C) (4; 6] D) (0; 1) 3 x+ y = 273 ,
167. √ tenglamalar sistemasini
√ √ lg xy = 1 + lg 2
159. x2 + 11 − x2 − 9 = 2 tenglamani yeching. yeching.
(x ∈ R) A) (0; 9) B) (16; 25), (25; 16)
A) 3 B) 5; 3 C) -3 D) -5; 5 C) (4; 9), (9; 4) D) (0; 1)
√ 1 1
x2 − 3x + 2 168. 8 , 8 , . . . arifmetik progressiyaning birinchi
160. ≥0 2 3
4x − x2 − 3 manfiy hadini toping.
A) [0; 2) B) [2; 3) C) (0; 1) D) (0; ∞) 1 1 1 1
A) − B) − C) − D) −
6 4 5 3
161. Ishorasi almashinuvchi geometrik
7 11
progressiyaning birinchi hadi −2 ga, uchinchi 0, 725 + 0, 6 + +
hadi −8 ga teng bo‘lsa, shu progressiyaning 169. 40 20 · 0, 25 ni hisoblang.
1 3
dastlabki 6 ta hadi yig‘indisini toping. 0, 128 · 6 − 0, 0345 :
4 25
A) 36 B) 42 C) −36 D) −42 A) 2 B) 1/2 C) 1 D) 4
Matematika (informatika bilan) 11
!
1 1 2c 176. Konusning balandligi va uning yasovchisi mos
+ − (a + b + 2c)
a b ab ravishda 4 sm va 5 sm ga teng. Asosi konus
170. ifodani
1 1 2 4c2 asosida yotgan ichki chizilgan yarimsharning
+ + − hajmini (sm3 ) toping.
a2 b2 ab a2 b2
soddalashtiring va uning son qiymatini toping. 1152 125 156
5 A) π B) π C) π D) 8π
a=7,4; b = . 125 1152 137
37
4 1 16
A) 0 B) C) D) 1 177. x2 + x2
+ (x − x4 ) − 28 = 0 tenglamaning
5 2 ildizlari yig‘indisini toping.
! A) -1 B) 1 C) 4 D) 0
3x − 1 x+1
171. f = bo‘lsa, f (x) ni toping.
x+2 x−1
178. x3 − x + 3 = 0 bo‘lsa, (x3 − x + 1) · (x3 + 3) ning
x+4 x+1 2x + 1
A) B) C) qiymatini toping.
3x − 2 x−1 3−x
A) -2x B) -4x C) 0 D) 2x
3x − 1
D)
x+2
179. To‘g‘ri burchakli trapetsiyaga radiusi 5 ga teng
q aylana ichki chizilgan. Agar trapetsiyaning
172. y = log0,2 x+2
x−1
− 1 funksiyaning aniqlanish
katta asosi 17 ga teng bo‘lsa, aylana
sohasini toping.
" ! markazidan trapetsiyaning o‘tkir burchagigacha
11 bo‘lgan masofani toping.
A) − ; −2
4 A) 13 B) 7 C) 9 D) 12
B) (−∞; −2]
C) ∅ 180. Diagonali 8 ga teng, a va b tomonlari
a2 b2
D) [−2; 1) + = 10 shartni qanoatlantiruvchi
a−b b−a
to‘g‘ri to‘rtburchakning yuzini toping.
173. |log2013 x − 2| + |log2013 x − 4| < 4 tengsizlikni A) 18 B) 20 C) 16 D) 24
yeching.
A) (2013; 20135 ) 181. Anvar aka bozorga tuxum olib keldi va u
B) ∅ birinchi xaridorga tuxumlarning yarmini va
yana bitta, ikkinchi xaridorga qolganining
C) {2013; 20135 } yarmini va yana bitta, uchinchi xaridorga
D) {2013} qolgan tuxumlarning yarmini va yana bitta
tuxum sotdi. Shundan so‘ng o‘zida 14 ta tuxum
174. To‘g‘ri burchakli uchburchakning katetlaridan qoldi. Anvar aka bozorga hammasi bo‘lib,
biri 15 sm ga, ikkinchi katetning gipotenuzadagi nechta tuxum olib keldi?
proyeksiyasi esa 16 sm ga teng. Bu A) 126 ta B) 100 ta C) 96 ta D) 50 ta
uchburchakka ichki chizilgan aylananing
radiusini (sm) toping. 182. Xo‘jayin bir kishini bir yilga yollab, unga
A) 3 B) 4 C) 5 D) 6 12 so‘m pul va bir chakmon bermoqchi bo‘libdi,
lekin ishchi 7 oy ishlagandan keyin xo‘jayin
175. Teng yonli uchburchakning yon tomoni 10 sm, unga 5 so‘m pul va bir chakmon beribdi.
asosi 12 sm ga teng. Uchburchakka ichki Chakmon necha so‘m bo‘lgan.
chizilgan aylanaga o‘tkazilgan urinmalar A) 4,8 B) 5 C) 5,2 D) 5,5
uchburchakning asosiga tushirilgan balandligiga
parallel va berilgan uchburchakdan ikkita to‘g‘ri
183. ABC uchburchakda AB = 3AC.
burchakli uchburchak ajratadi. Ushbu
Uchburchakning C va B uchlaridan o‘tkazilgan
uchburchakning tomonlarini (sm) toping.
balandliklarining nisbati qanday?
A) 2; 2; 3 B) 2; 3; 4 C) 3; 4; 5 D) 3; 3; 5
A) 1:3 B) 3:1 C) 2:3 D) 1:4
12 Matematika (informatika bilan)
2x 1
184. M va N nuqtalar ABC uchburchakning AB va 191. 4tg + 2 cos2 x − 80 = 0 tenglamani yeching.
AC tomonlari o‘rtasida yotadi. AN M
π
uchburchakning perimetri 21 sm bo‘lsa, ABC A) ± + πk, k ∈ Z
3
uchburchakning perimetrini (sm) toping.
A) 42 B) 84 C) 50 D) 63 π
B) + πk, k ∈ Z
4
185. To‘g‘ri burchakli uchburchakning katetlari C) πk, k ∈ Z
yig‘indisi gipotenuzadan 8 sm ortiq. Agar D) π(k + 1), k ∈ Z
uchburchakning perimetri 48 sm bo‘lsa, uning
yuzini (sm2 ) toping.
A) 96 B) 148 C) 52 D) 60 192. arccos(1 + x) + 2arcsinx = 0 tenglamani
yeching.
◦
186. To‘g‘ri burchakli ABC uchburchakda 6 A = 30 1 1
bo‘lib, AB=6 sm li gipotenuzasini diametri A) 0 B) −1 C) − D)
2 3
qilib, doira chizildi. Hosil bo‘lgan eng kichik
segmentning yuzini toping. 2
√ √ 193. √ √ √ √ kasrning maxrajini
6π − 9 3 12π − 9 3 10 + 15 + 14 + 21
A) B) C) 36π
4 4 irratsionallikdan qutqaring.
D) 18π √ √ √ √
A) 10 − 15 + 21 − 14
√ √ √ √ √
187. log2 3 + 2 log4 x =
log3 x
xlog9 16 tenglamani B) 10 + 15 + 14 − 21
√ √ √ √
yeching. C) 10 − 15 + 14 − 21
16 √ √ √ √
A) B) 16 C) log3 4 D) 12 D) 10 − 15 + 21 + 14
3
√ √ !
188. logx−1 (x + 1) > 2 tengsizlikni yeching. q m3 1 m
194. m(1 − m) + √ : √ + :
A) (2; 3) 1−m 1+ m 1−m
q
B) (0; 1) ∪ (2; 3) m(1 − m) ifodani soddalashtiring.
C) (2; 3) ∪ (3; ∞) (m ∈ (0; 1))
D) (−∞; 0) ∪ (3; ∞) 1
A) 1 + m B) 1 − m C) 1 D)
m
189. Umumiy bahosi 225 dinor bo‘lgan ikki xil √ √
3 3
! !
qimmatbaho mo‘ynali teri xalqaro bozorda 40% 195. √a + b + √a − b − 2 : √ 1 −√
1
3 3 3 3
foydasi bilan sotildi. Agar birinchi xil teridan a−b a+b a−b a+b
25%, ikkinchisidan 50% foyda qilingan bo‘lsa, ifodani soddalashtiring. (a > b > 0)
har bir terining bahosi necha dinor bo‘lgan? √ √
A) 3 a − b − 3 a + b
A) 90; 135 B) 100; 125 C) 80; 145 √
3
√
3
D) 200; 25 B) a + b − a−b
( x−y
C) 1
y−x
2 2 + 2 2 = 2, 5 D) 0
190.
lg(2x − y) + 1 = lg(y + 2x) + lg 6
tenglamalar sistemasini yeching. √
3
8 − n n 2
A) (4; 2) 196. √ : 2 + √ −
! ! 2+ 3n 2+ 3n
1 1 1 1 √ ! √
B) ;− va ;− √ 23n
3
4 − n2
2 2 4 4 − 3
n+ √ · √ √ ifodani
3
! ! 3
n−2 n 2+2 3 n
2 2 4 4
C) ;− va ;− soddalashtiring. (n 6= ±8)
3 3 3 3
1
D) (1; −1) va (1; 0) A) 1 B) 2 C) 0 D)
n
Matematika (informatika bilan) 13
1
x2 + 1 1 sin(x − y) = 2 sin x sin y,
: 1,5 ifodani soddalashtiring.
197. 1 204. π sistemani yeching.
x + x2 + 1 x − 1 x+y =
2
A) 1 B) x + 1 C) x − 1 D) 1 − x !
π πk 5π πk
ax − b bx + a a2 + b 2 A) − + ; − , k∈Z
198. + = 2 tenglamani yeching 8 2 8 2
a+b a−b a − b2 !
6 |b|).
(|a| = π 5π
B) − + πk; − πk , k ∈ Z
8 8
A) x = 1 B) x = 0 C) x = −1 D) x = a !
π πk 5π πk
C) + ; + , k∈Z
8 2 8 2
199. (x − a − b)ab + (x − b − c)bc + (x − c − a)ac = 3abc !
tenglamani yeching. π 5π
D) + πk; + πk , k ∈ Z
A) a + b B) a − b + c C) a + b + c 8 8
D) b + c − a
A) 2 + B) 3 + C) 2 + 2 2
3 3 A) cosx + 4 B) 2cos2x + 4 C) cos2x + 4x
√
5 D) −cos2x + 4
D) 3 +
2
1 0
221. f (x) = sin2x + x, f (x)−?
213. Radiuslari 2 va 3 ga teng bo‘lgan aylanalar 2
bir-biriga tashqi ravishda urinadi. Ularning 1
ikkalasi uchinchi aylanaga ichki ravishda urinsa A) cos2x B) cos2x + 1 C) cosx + 1
2
va markazlari bitta to‘g‘ri chiziqda yotsa, tashqi D) 2cos2x + 1
aylananing ichki aylanalardan bo‘sh qolgan
sohasi yuzini toping. √ 0
222. f (x) = 2sinx − 2x, f (x)−?
A) 12π B) 9π C) 6π D) 4π √
A) −cosx − 2 B)√− 2cos2 x − 2
C) cosx + 2 D) 2cosx − 2
214. XOY uchburchakda 6 XOY = 90◦ . M va N
nuqtalar mos ravishda OX va OY tomonlarning
R2
o‘rtalari. Agar XN =19 va Y M =22 bo‘lsa, XY 223. (x2 − 1) dx ni hisoblang.
−1
ni toping.
A) 2 B) 1 C) −2 D) 0
A) 26 B) 28 C) 13 D) 14
224. f (x) = 8x3 − 6x2 + 7 funksiyaning M (1; 0)
215. ABCDEF GH muntazam sakkizburchakning
yuzi 1 ga teng bo‘lsa, ABEF to‘g‘ri nuqtadan o‘tuvchi boshlang‘ich funksiyasini
to‘rtburchakning yuzini toping. toping.
√ √ A) 4x4 − 2x3 + 7x − 7 B) 4x4 − 2x3 + 7x − 6
1 1+ 2 2 3
A) B) C) D) C) 4x4 − 2x3 + 7x − 9 D) 2x4 − 2x3 + 7x − 7
2 4 4 2
√ 6 √
274. 5x − 1 + √ = 5x + 15 tenglamaning r
5x − 1
katta ildizi m va ildizlarining soni n bo‘lsa,
x
◦
30 r
m + n ni toping.
A) 4 B) 6 C) 3 D) 8
A) 120◦ B) 80◦ C) 135◦ D) 105◦
a3 − 2a2 + 5a + 26 √
275. kasrni qisqartiring. 282. x2 + 2x + 1 − |x − 4| = 2 tenglamaning [1; 3]
a3 − 5a2 + 17a − 13
1−a a+2 a+2 a−2 kesmadagi ildizini toping.
A) B) C) D) A) 2,5 B) 2,(3) C) 1,5
a+2 a−1 a−2 a+2
D) bu oraliqda yechimi yo‘q
(z + 4)2 − 12
!
z−2 1
276. 2 + 3 − : 283. (x − 1)2 (x2 − 2x) = 12 tenglamaning haqiqiy
6z + (z − 2) z −8 z−2 ildizlari yig‘indisini toping.
z 3 + 2z 2 + 2z + 4
ni soddalashtiring. A) 2 B) 3 C) 4 D) 0
z 3 − 2z 2 + 2z − 4
1 1 284. a > 2 da ||x + 1| − 2| = a tenglama nechta
A) z − 2 B) C) D) z + 2
z−2 z+2 yechimga ega?
A) 2 B) 3 C) 4 D) ildizga ega emas
277. Cheksiz kamayuvchi geometrik progressiyaning
√
ikkinchi hadi beshinchi hadidan 8 marta katta. 23a+0,5 + 2 a+0,5
√
Agar bu geometrik progressiya hadlari yig‘indisi 285. 4a − 2a + 1 · (2 − 2) − 22a+1 ni hisoblang.
6 ga teng bo‘lsa, uning birinchi hadini toping. √
A) 2cos7π B) −2a C) 4a 2 D) 2
A) 3 B) 6 C) 4 D) 2
286. 112 soni shunday 3 bo‘lakka bo‘linganki,
Rπ
278. 8 cos2 x · sin 2xdx integralni hisoblang. 2-bo‘lak 1-bo‘lakning 10% ini, 3-bo‘lak 2-sining
π
4 20% ini tashkil etadi. O‘rta bo‘lakni toping.
A) 3 B) 2 C) -3 D) 1 A) 10 B) 112/13 C) 20 D) 5
18 Matematika (informatika bilan)
287. 3ax − 6x2 − 8 + x3 ko‘phad to‘la kub bo‘ladigan 294. f (x + 5) = x · f (x) + 4 bo‘lsa, f (10) ni toping.
barcha a larni toping. A) 24 B) 23 C) 30 D) 25
A) 4 B) 2 C) -2 D) -4
a4 + a3 + a2 + 9
√ √ 295. Agar a3 + a − 2 = 0 bo‘lsa,
7+ 3 a5 + a2 + a + 6
288. Agar a = bo‘lsa, ifodaning qiymatini toping.
3 q
q √ √ 4 12
a − 2 a − 1 + a + 2 a − 1 ifodaning A) B) 1 C) -2 D)
qiymatini toping. 3 11
√ √
√ 7+ 3 √ ! ! ! !
A) 2 B) 2 C) D) 5 + 21 1 1 1 1
3 296. a = 1 + 1+ 1+ ... 1 + ,
2! 3! 4! 2011 !
289. a, b, c - noldan farqli raqamlar uchun a > b > c
1 1 1 1
b= 1− 1− 1− ... 1 −
munosabat o‘rinli. Agar abc + bca + cab = 999 2 3 4 2012
tenglik bajarilsa, a ning eng katta qiymati berilgan, a · b ko‘paytmani toping.
nechaga teng bo‘lishi mumkin? 1
A) B) 2 C) 3 D) 1
A) 6 B) 7 C) 5 D) 4 2
v
u v v
297. Geometrik progressiyada b9 · b19 = 9 ga teng,
b1 · b27 + 1 ni toping.
u u
u a2 u 2
ua
u 2
ua
290. t +t +t + . . . = 4 tenglikni
u
3 3 3 A) 10 B) 4 C) 2 D) 5
qanoatlantiruvchi a musbat sonni toping. 298. y = |x − 1| + |x − 2| + |x − 3| + ... + |x − 9|
A) 6 B) 4 C) 2 D) 8 funksiyaning eng kichik qiymatini toping.
A) 20 B) 21 C) 10 D) 12
f (8)
291. Quyidagi chizmaga asoslanib ning
g(8) 299. ABCD parallelogrammning A va B
qiymatini toping. burchaklaridan chiquvchi bissektrisalar
y 6 orasidagi burchakni toping.
A) 90◦ B) 40◦ C) 120◦ D) 150◦
y = f (x)
y = g(x) 300. ABCD parallelogrammning B o‘tmas
5 r burchagidan chiquvchi BL va BK balandliklar
(5; 5)
orasidagi burchak o‘tmas burchakdan 3 marta
kichik. 6 ABC ni toping.
A) 135◦ B) 120◦ C) 150◦ D) 110◦
(4; 0)
r r - 301. ABC uchburchakning AM medianasi BK
4 5 x bissektrisasiga perpendikular. Agar BC=12 sm
bo‘lsa, AB tomon uzunligini (sm) toping.
A) 6 B) 9 C) 4 D) 5
322. To‘g‘ri burchakli trapetsiyaga radiusi 3 ga teng 329. Avtomashina Toshkentdan Samarqandga tomon
bo‘lgan aylana ichki chizilgan. Agar 2
yo‘lga chiqdi. Yo‘lning qismini rejadagi
trapetsiyaning katta asosi 7 ga teng bo‘lsa, 5
aylana markazidan trapetsiya uchlarigacha tezlikda o‘tgach, tezligini 20% ga oshirdi va
bo‘lgan masofalarning eng kattasini toping. Samarqandga mo‘ljaldagidan yarim soat oldin
25 21 9 keldi. Avtomashina ikki shahar orasidagi
A) 5 B) C) D) masofani necha soatda o‘tgan?
4 4 4
A) 4 B) 3 C) 4,5 D) 2,5
323. Muntazam sakkizburchakka tashqi chizilgan
q √
aylana radiusi 2 + 2 ga teng bo‘lsa, uning (2p − q)2 + 2q 2 − 3pq 4p2 − 3pq
tomonini toping. 330. : ifodani
2p−1 + q 2 2 + pq 2
√ soddalashtiring va uning son qiymatini toping.
A) 2
q √ p=0,78, q=7/25
B) 2 − 2 A) 1 B) 0,25 C) -1 D) 0,5
C) 1
q √ 1
2+ 2 331. f (x) = + 1, 5 funksiyaning eng
D) x2 + 2x + 1 + 2
2
katta qiymatini toping.
A) 2 B) 1,5 C) 2,5 D) 0,5
324. Muntazam o‘nikkiburchakka tashqi chizilgan
q √
aylana radiusi 2 + 3 ga teng bo‘lsa, uning
332. Hosila uchun qaysi munosabatlar o‘rinli?
tomonini toping. 0
q √ √ 1) (ln sin x)
!0
= ctgx;
A) 1 B) 2 + 3 C) 2 D) 3 1 1 1
2) cos = − 2 sin ;
x x x
325. To‘rtburchakning diagonallari 10 va 12 ga teng 1
bo‘lsa, uning tomonlari o‘rtasini tutashtiruvchi 3) (log4 5x)0 = ;
√
5x ln 4
to‘rtburchakning perimetrini toping. √ 0 2 x ln 2
A) 22 B) 11 C) 20 D) 18 4) 2 x = √
2 x
A) 1, 4 B) 1, 2 C) 3, 4 D) 1, 3
326. Silindrga muntazam uchburchakli prizma ichki
chizilgan, prizmaga esa silindr ichki chizilgan
bo‘lsa, katta silindr hajmi kichik silindr 333. Muntazam o‘nburchakning har bir ichki
hajmidan necha marta katta bo‘ladi? burchagi necha gradusga teng?
A) 4 B) 3 C) 6 D) 2 A) 146◦ B) 150◦ C) 135◦ D) 144◦
327. Uchta butun son tashkil etgan arifmetik 334. Muntazam o‘nikkiburchakning bitta ichki
progressiyada birinchi hadi 1 ga teng. Agar burchagini hisoblang.
ikkinchi hadga 3 qo‘shilsa, uchinchisi kvadratga A) 135◦ B) 150◦ C) 140◦ D) 145◦
ko‘tarilsa, geometrik progressiya hosil bo‘ladi.
Uchinchi sonni toping.
335. To‘g‘ri burchakli trapetsiyaning diagonali uning
A) 8 B) 7 C) 9 D) 6 yon tomoniga teng. Agar bu trapetsiyaning
balandligi 2 ga, yon tomoni esa 4 ga teng bo‘lsa,
4 uning o‘rta chizig‘i uzunligini toping.
328. Yig‘indisi ga, hadlar kvadratlarining yig‘indisi √ √ √ √
3 A) 5 3 B) 3 2 C) 3 3 D) 6 2
16
ga teng bo‘lgan cheksiz kamayuvchi
27
geometrik progressiya hadlari kublarining 336. x2 + y 2 + 8x − 2y − 8 = 0 aylana va x + y = 4
yig‘indisini toping. to‘g‘ri chiziqning kesishish nuqtalarini toping.
8 64 64 56 A) (0; 4), (−1; 5) B) (3; 2), (5; −1)
A) B) C) D)
27 81 189 189 C) (2; 1), (−2; 1) D) (4; 9), (−5; 1)
Matematika (informatika bilan) 21
337. Doiraga tashqi chizilgan teng yonli 347. ABC uchurchakda A uchidan tushirilgan
2
trapetsiyaning yuzi 8 sm ga teng. Agar bissektrisa BC tomonni x va 6 ga teng
trapetsiyaning asosidagi burchak 30◦ li bo‘lsa, kesmalarga ajratadi. AB=6, AC = 2x + 1
uning yon tomonini (sm) aniqlang. bo‘lsa, x ni toping.
A) 4 B) 8 C) 12 D) 16 A) 4 B) 3 C) 2 D) 5
338. Shar sirtining unga ichki chizilgan kub sirtiga 348. Talaba besh yilda 31 ta imtihon topshirdi. U
nisbatini toping. har keyingi yilda oldingi yildagiga qaraganda
3π π π π ko‘p imtihon topshirgan. Beshinchi kursda
A) B) C) D) birinchi kursdagidan 3 marta ko‘p imtihon
2 2 4 6
topshirgan bo‘lsa, to‘rtinchi kursda nechta
m imtihon topshirgan?
339. Natural m va n sonlar uchun + n = 8 bo‘lsa, A) 8 B) 7 C) 6 D) 9
4
m qabul qilishi mumkin bo‘lgan qiymatlar
349. ABCD qavariq to‘rtburchakda AB = 9,
ichida eng kattasini toping.
CD = 12. AC va BD diagonallar E nuqtada
A) 28 B) 20 C) 24 D) 16
kesishadi. Agar AC = 14 hamda AED va BEC
!−0,5 1 uchburchaklar yuzalari teng bo‘lsa, AE ni
2
3 1 π toping.
340. · 3 2 log3 6 + 1 · sin ni hisoblang.
2 3 9 21 17
A) 6 B) C) D)
A) 1,5 B) 3/4 C) -1,5 D) -0,75 2 4 3
10
2 1 8 1 5 3 2 1 350. = 5 tenglamaning ildizlari
341. (2+ − )·6+( + − )·21+( − + )·14 ni x+2
3 2 21 3 7 14 7 2 3+
hisoblang. x − 11
2+
2
A) 19 B) 20 C) 18 D) 15 yig‘indisini toping.
2 A) 2 B) 3 C) 1 D) 4
342. 1 − ifoda x ning nechta qiymatida
4 12
5− 351. = 3 tenglamaning ildizlari
6 x+7
5− 3+
x x+3
ma’noga ega emas? 8+
5
A) 3 B) 4 C) 1 D) 2 yig‘indisini toping.
A) −3 B) 7 C) 2 D) 4
sin1◦ · sin2◦ · . . . · sin45◦
343. ni hisoblang.
cos46◦ · cos47◦ · . . . · cos89◦ 352. Protsessorlardan ma’lumotlarni baytlarda olib,
√ √
2 3 1 qurilmalarga bitlarda uzatadigan port turini
A) B) 1 C) D) aniqlang.
2 2 2
A) parallel B) ketma-ket C) slot
2−3lnx 2+3lnx D) shina
344. 2 +2 = 8 tenglamani yeching.
A) 1 B) 2 C) 0 D) e
353. Yunonlar foydalangan hisoblash vositasi nomini
aniqlang.
3x + 9x + 18x 24
345. Agar x = bo‘lsa, x ni toping. A) Abak B) Serobyan C) Suan-pan
2 + 6x + 12x 81
D) Cho‘t
A) -3 B) -5 C) -2 D) -4
354. Dastur asosida boshqariladigan birinchi
346. To‘g‘ri burchakli trapetsiyaga radiusi 3 ga teng hisoblash mashinasini kim va qachon ixtiro
aylana ichki chizilgan. Aylana markazidan qilgan?
trapetsiyaning to‘g‘ri burchagigacha bo‘lgan
A) 1930 yil, V.Bush B) 1941 yil, K.Suze
masofani toping.
√ √ √ C) 1944 yil, G.Eyken D) 1907 yil, Li de Fores
A) 3 2 B) 3 C) 3 3 D) 3,5
22 Matematika (informatika bilan)
355. “Mantiq insonga shunday bir qoida beradiki, bu 365. Tashkil etish texnologiyasiga ko‘ra web-sahifalar
qoida yordamida xulosa chiqarishda xatolardan necha va qanday turga bo‘linadi?
saqlanadi”. Ushbu fikr kimga tegishli? A) 2 turga: statik, dinamik
A) Abu Nasr Farobiy B) Alisher Navoiy
B) 3 turga: statik, dinamik, interaktiv
C) Kamoliddin Behzod D) Abu Ali Ibn Sino
C) 4 turga: statik, dinamik, interaktiv, input
type
356. Kompyuter uchun yangi dasturlar tayyorlash va D) 2 turga: input type va interaktiv
tahrirlashni yengillashtiruvchi dasturlar qanday
nomlanadi?
A) Sistema dasturlari B) Amaliy dasturlar 366. Random (x) funksiyasining vazifasini aniqlang.
C) Uskunaviy dasturlar D) Utilitalar
A) Parametrli takrorlash funksiyasi
357. Tasvirli fayllarning kengaytmasi keltirilgan B) [0, x) oraliqdagi tasodifiy sonni
qatorni aniqlang. aniqlash funksiyasi
A) .bmp, .gif B) .com, .exe C) .bas, .pas C) [0, 1) oraliqdagi tasodifiy sonni aniqlash
funksiyasi
D) .xls, .doc
D) Tasodifiy harflar generatori
358. MS Excelning A5:C12 katakchalar blokida
nechta katakcha bor?
A) 22 ta B) 18 ta C) 21 ta D) 24 ta 367. Ma’lumotlar ombori undagi axborot shakliga
ko‘ra qanday turlarga ajratiladi?
359. MS Excel 2003 da berilgan shartni A) hujjatli va faktografik
qanoatlantiruvchi satrlarni ajratib olish amali B) relyatsion va to‘rli C) matnli va grafik
qanday ataladi? D) raqamli va analog
A) filtrlash B) tartiblash C) avtofiltr
D) hisobga olish
368. MS Word 2003 dasturida uskunalar panelini
360. Sakkizlik sanoq sistemasidan ikkilik sanoq sozlash bo‘limi qaysi menyuda joylashgan?
sistemasiga o‘tkazishni bajaring: 5678 → x2 A) Файл(Fayl) B) Правка(Tahrir)
A) 101101012 B) 1011101112 C) 11111012 C) Вид(Ko‘rinish) D) Формат(Format)
D) 111011102
361. Kodlashning Morze usuli qanday usulga misol 369. Kompyuter ekranida aks etgan holatni rasmga
bo‘ladi? olish uchun qaysi klavishlardan foydalaniladi?
A) Notekis kodlash usulu A) Shift + Delete B) Ctrl + Alt + Delete
C) Print Screen / Sys Rq D) Ctrl + F12
B) Tekis kodlash usuli
C) Tartib raqamlari yordamida kodlash usuli
370. Agar kitobdagi axborot hajmi 7 Kbayt bo‘lsa,
D) Alifboni surish usuli
uni nechta “Axborot” so‘zi bilan almashtirish
mumkin?
362. Hisoblang va o‘tkazishni bajaring: A) 1024 B) 2048 C) 2000 D) 14336
2710 + 1112 → x2
A) 1000102 B) 1000112 C) 1001102
D) 1001112 371. Tashkil etuvchi barcha sodda mulohazalar rost
bo‘lganda quyidagilardan qaysi birining natijasi
363. 3 terabayt axborotni baytlarda ifodalang. rost bo‘ladi?
A) 340 bayt B) 3 · 240 bayt C) 640 bayt A) (A ∨ ¬B) ∧ ¬ (C ∨ D)
D) 240 bayt B) A ∧ ¬B ∨ C ∧ ¬D
364. 63 kilobayt axborotda nechta belgi bor? C) A ∨ B ∧ ¬C ∨ ¬D
A) 516096 ta B) 516098 ta C) 64512 ta D) ¬A ∨ (B ∨ C) ∧ ¬D
D) 64500 ta
Matematika (informatika bilan) 23
372. Agar A=rost, B=yolg‘on, C=5, D=6 bo‘lsa, 380. Paskalda quyidagi ifoda a=5, b=15, c=2 bo‘lsa
quyidagilardan qaysi birining natijasi yolg‘on qanday natija beradi?
bo‘ladi? (a+b div c ∗ 4) mod 5 div 3
A) A ∨ B ∧ (C = D) A) 4 B) 1 C) 3 D) 2
B) A ∧ B ∨ (C > D)
C) ¬A ∨ B ∨ (C < D) 381. Dastur lavhasida X qaysi qiymatni qabul qiladi?
D) A ∧ ¬B ∨ (C < D) VAR i,j,X: intejer;
BEGIN FOR i:=1 TO 2 DO;
FOR j:=2 DOWNTO 1 DO X:=i+j; END.
373. Nomi S harfidan boshlanuvchi va faqat to‘rtta A) 3 B) 7 C) 4 D) 10
belgidan iborat ixtiyoriy kengaytmali fayllar
qanday belgilanadi?
382. MS Excel 2003 da A1 dan A10 gacha bo‘lgan
A) S∗ ∗ ∗.∗ B) S???.? C) S???.∗ D) S∗.∗
katakchalardagi qiymatlarni yig‘indisini
hisoblash formulasini aniqlang.
374. Faylning xususiy nomi nechta belgidan iborat A) СУММ(А1:А10) B) =summa(A1:A10)
bo‘lishi mumkin? C) A1+A10 D) =СУММ(А1:А10)
A) 1 tadan 8 tagacha
B) 1 tadan 64 tagacha 383. Amal va o‘tkazish natijasini aniqlang.
C) operatsion sistema va dasturga bog‘liq 638 + 218 → x2
D) 1 tadan 255 tagacha A) 10001002 B) 10101002 C) 10110002
D) 10110012
377. Paskal dasturi lavhasidagi S ning qiymati 385. MS Excel 2003 da katakchadagi
nimaga teng? “=СУММ(А1:А10;B1;C5)” formula nechta
begin S:=0; for I:=1 to 3 do S:=S+2∗i; katakchadagi sonni qo‘shadi?
writeln(S); end. A) 12 ta B) 15 ta C) 10 ta D) 20 ta
A) 24 B) 48 C) 96 D) 12
386. MS Excel 2003 da AA21 katakchadagi
378. Paskal dasturi lavhasidagi natijani aniqlang. “=КОРЕНЬ(СТЕПЕНЬ(625;2))” formula
begin X:=2; p:=1; 1:P:=P∗(2∗x-2); X:=X+3; if natijasini aniqlang.
X<=6 then goto 1; writeln(P); end. A) 625 B) 390625 C) 25 D) 5
A) 16 B) 20 C) 2 D) 24
2 −5x+5)
390. Axborot uzatish jarayonida quyidagi 397. (x − 2)log1/2 (x < (x − 2)log1/2 (x−3)
qismlardan qaysi biri bo‘lishi shart? tengsizlik x ning qanday qiymatlarida o‘rinli?
1) Axborot qabul qiluvchi 2) Axborot manbai A) (−∞;√2) ∪ (4; ∞) B) (2; 4)
3) Axborot uzatish vositasi 5+ 5
A) 1, 2, 3 B) 1 C) 1, 2 D) 1, 3 C) ( ; 4) D) (4; ∞)
2
~ = |AC|
417. Agar |AB| ~ = |AB
~ + AC|
~ = 4 bo‘lsa, 427. Uchburchakli piramidaning asosi tomonlari 4; 4
~ ning qiymatini toping.
|CB| va 2 ga teng bo‘lgan uchburchakdan iborat.
√ √ √ Piramidaning barcha yon yoqlari asos tekisligi
A) 4 2 B) 4 3 C) 2 3 D) 4, 5
bilan 60◦ li burchak tashki etadi. Piramidaning
418. logx2 (3 − 2x) > 1 tengsizlikning butun hajmini toping.
√ √
yechimiga qarama-qarshi sonni toping. A) 3 B) 2 3 C) 3 D) 6
1
A) −4 B) C) 2 D) −2
2 428. Kubga ichki chizilgan silindrning hajmi 16π ga
teng. Shu kubga tashqi chizilgan sferaning
419. Kesik konusning yon sirti 10π ga, to‘la sirti 18π
yuzini toping.
ga teng. Konusning to‘la sirti unga ichki
chizilgan shar sirtidan qanchaga ortiq? A) 64π B) 32π C) 48π D) 24π
A) 14π B) 16π C) 15π D) 10π
32
π 429. Kubga tashqi chizilgan sharning hajmi π ga
420. sin = 1 tenglamaning [0,05; 0,1] oraliqda 3
x teng. Kubning diagonaliga tegishli bo‘lmagan
nechta ildizi bor? uchlaridan diagonalgacha bo‘lgan masofani
A) 5 B) 6 C) 2 D) 3 toping.
√
421. Uchburchakli piramidaning yon yoqlari asos 4 2
A) √
tekisligi bilan 60◦ li burchak tashkil etadi. Agar 3
piramida asosining yuzi 40 ga teng bo‘lsa, √
3 2
piramidaning to‘la sirtini toping. B)
4
A) 120 B) 80 C) 72 D) 128 √
4 2
C)
x z 9
422. Agar 3 ≤ x ≤ y ≤ z ≤ t ≤ 27 bo‘lsa, + √
y t 3 3
ifodaning eng kichik qiymatini toping. D)
2 9 3 1 8
A) B) C) D)
3 10 2 5
430. To‘g‘ri burchakli uchburchakning katetlari 3 va
x z 5 ga teng bo‘lib, bu uchburchakka u bilan
423. Agar 25 ≤ x ≤ y ≤ z ≤ t ≤ 64 bo‘lsa, +
y t umumiy to‘g‘ri burchakka ega bo‘lgan kvadrat
ifodaning eng kichik qiymatini toping. ichki chizilgan. Kvadratning yuzini toping.
25 7 15 225 225
A) 1, 25 B) 1, 6 C) D) 0, 2 A) B) C) D)
32 8 8 64 128
424. x : 2, 06(6) = 0, (27) : 0, 4(09) tenglamani
yeching. 431. k, m va n ning qanday qiymatida
A) 1, 3 B) 1, 37 C) 1, (37) D) 1, 3(7) cos2π k m n
2 = + 2 +
(x + 1) (x + 2) x + 1 (x + 1) x+2
425. 2; b2 va b3 sonlari o‘suvchi geometrik tenglik ayniyat bo‘ladi?
progressiyaning dastlabki uchta hadidan iborat. 1
A) −1; 1; 1 B) 0; 1; 2 C) 1; − 1;
Agar bu progressiyaning ikkinchi hadiga 25 2
qo‘shilsa, hosil bo‘lgan sonlar arifmetik 1
D) 2; − 2;
progressiyaning dastlabki uchta hadini tashkil 2
etadi. b2 toping.
A) 8 B) 12 C) 6 D) 10 x
432. y = 2cos2 − tgx · ctgx funksiyaning qiymatlari
2
426. Trapetsiya asoslarining uzunliklari 28 va 10 ga to‘plamini toping.
teng. Trapetsiya diagonallari o‘rtalarini
A) [1; 3] B) [0; 3] C) (1; 2) ∪ (2; 3)
tutashtiruvchi kesmaning uzunligini aniqlang.
D) (−1; 0) ∪ (0; 1)
A) 8 B) 10 C) 7 D) 9
Matematika (informatika bilan) 27
√ √
433. (x3 + 4x2 + 4x) · 25 − x2 ≥ 0 tengsizlikning 2x + 3
442. h(x) = |x|, g(x) = , f (x) = x + 1
butun sonlardan iborat yechimlari yig‘indisini 3x − 1
toping. bo‘lsa, quyidagilardan qaysi biri to‘g‘ri?
q
A) 6 B) 10 C) 8 D) 12 A) h(f (x)) = |x + 1|
√
y 2 − 0, 25y + 1 15 5x + 4
434. 0, 25 < < tengsizlikning tub B) f (g(x)) = √
1+y 2
16 3x − 1
sonlardan iborat yechimlari nechta? 2 |x| + 3
C) g(h(x)) =
A) 5 B) 2 C) 3 D) 4 3 |x| + 1
q
435. Sferaga balandligi asosining diametriga teng D) f (h(x)) = |x| + 1
bo‘lgan konus ichki chizilgan. Agar sfera
sirtining yuzi 125 ga teng bo‘lsa, konus
asosining yuzini toping.
A) 10 B) 5π C) 15 D) 20