0% found this document useful (0 votes)
78 views12 pages

Resolução Do Modulo 2

Uploaded by

Alexandre Uate
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
78 views12 pages

Resolução Do Modulo 2

Uploaded by

Alexandre Uate
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 12
Modwlo, 2 licav 4: ‘ . Dodas OS Myint anc Tale oot HS Geflurtes arb, 2rirsi0n at urcyriase a) ax -s <0, ew 2 Arias ene cca) OX Ab Paw & Aza 2 b=-S. ax-3 =O ax sd er(x st]: vet (35 b) 4X-S. = XtA =) 3XAK-SoA SO we 3x-x- 620. 1.8Xe e=o0 (wm AX th =O, iw & a=z2 s b= aX esc 8 &x=6 @ X=4 @KE = — 435 e) S(3- 2%) =-3 Cax-4) ©) 1$-lox =-4xtla =) Hloxt4x-la ae =) x43 =O mm Da-4 Abe > OrxX+3 =O Ex ae eae =3) SC)ay 4 d) 3-3(4- ax) = Ss Stas Peer) errr in B-F-SH tltx 4x =O & ISX ZO BOSH A b=O, ISx =o > [x =D, Sxl ho}. 2) x axxo x4 ax Sx-4 2x +2 aces a Ez bis ) Bw > a & 3xX~ 8X44 = ardor Sy SX ad4-2 =O Dor x 4220) Q=-3 nA b=2. 2 } -Axt2 sO o -2x ara BIX=ET | *® = Bl {3} $) 2x23 Xe axe CBI 3x3 Ux-10 & < ~ ow Oo & cae at ar ce) Ss) 8xX-Ja- 3x43 = oe 6x- 10 <) ix- 6x -dHO =O &) AB -x+1=0 — Az-1 A b=A- HX4) =O €) -x=-N\G) w[xed} KE {aj icay 2! Ohwwa ay Pureivente, 9) x*Faex4es A=b*4ec =) My, = bea b) x74 aaxd 4a b= bee se SD aytgiexg3 =O K= br4ac ©) ~btVa" aa Xy oa b te’ x, - —1S - Nie? = W213 Sean = : too Sac abarxe AcetueG A firnnta , so Las pb £36 3 A=367-4.4.62 o(azicar| Xen -3er { Wa 236 +Vicaw Sep i ale 4 a Ro nee NileaGn ose cg aA —=—e otf CO 6 tW=-4- b= aa “ves jer 6 = ad Hac 4a) ey A= 4B4- 484 <0 =O 8 = ena X= zaa-Vol_ 2a Mw FR beth 1 e ay a A= S"-+a.% & b= x30 x (= Sale? Las 413 2-2Q q a.a poe EXER AT SO SA bak CEG bAsac 2) f=e2 414 @ b= 64- Lb G28) = % a HS4NGS_- 84693 __ hot _osy [_ E tle f= ae 3 Vn = —~—-| a ae Ai = 8- 6,93 =1693 294 | a — 2 a BWP 8x45 =O; A=45 b=-8 5 CHS Babi sac o KaCa4.85 & 4264-10 0 (d=-16) Nay aan Gtmrcad ene jfs © a FOM+R)X b= n 20) 2! en poco le (learn > Eenlo eso pronto ww 0) UWA cetfratnteas Asa) bomw4t3) c= Am-4 Un +Om 9-8 4B =0 s) A=b*-40ac & baa lean te ola 69) Now tr. ~ GARD aor A. 1 © dodo. O Afrotad) X*+3x4K=0 | OKO = x*43x <0 SD X(X43N=0 & X= =Ovx= bd) A=0) bu 4ace | Oe suk = =O S&B -4k =-4\G) HK =4 @& R= Yq | } ; f Blam =t £0 & 6% “Vac 20 =) Cmts) 4 alna-t)=0 ©) r | Pyo &>0 k>o @\ kK SO i aKes k£9 | oF tk elo; $4] # (lee ofS Sea J kyo ° je a A>0 biyacy BL Ako | "4 = 7 4 Vo re 25 A - a ot pO. Pex soe. Xen) eo. 22K" 4 | q ! Ay Lica 3» f tod 2A Ge pe leaps a X= OV KSA Sel [opn} "@-x 44x50 2 XX) EO a xcovextt XEO V -xb=-4 @XEO0VX*=4 o> xX =t35 €) REO N X=-3 1X3. Self 35053} x vp ia Ox rox" = max ey x9 3x pax oie XbXD 3x4¢a) =o X=0 v x* ax ¢a50 6) xs0v xb x- 42 =O i X=0 V X(x-1)- t(%1) 20 &) x=0 V@k-DEx-1) =O -XSOVX-1L=0V x SoC Oa al, AFO S X=OV yn? NX SAN eat ge: wlio fe OP 3x8ra ROL =) 3 Seyot_ Xhe QO Haxttaso ey ttr3stya te -DwaCta <0 ge KE t-4s0 Stal vena. Z vo rsd CKety NEA VX = = = ‘2 XT St, - | 7 =O Ot i trtgase ACH) 0 @ 4:2 204, Xs a [ee ENT Sef {Nt TTA AY Ve} @Ox*-sxF49 20 | sqar yok (xt) -sx8 44 =0 SB IP -K 4450: gy Ke k-~G 44 =0 @) KOE - 4K) =o & (K-95) (Kn) og Qe Re V Ka Ae Se(\-2, eAaNy 2) a 2 Oxo Reo 2 vyou x2 = : Rae QO FEXP- Ne =O ny 424 Gt Vere 24 + 8-16 =O t( 4-3) 48 (t-a) <0 = €+8)(£-a) <0 ©) t42=0 | eiN tn) <0.) we gi ee oy . - | S | f = *%, yo \*" ENTE NTS sal, a = 2 ie aoe wet Ke tld ey xe-Veveem i. =. x ae — See ~ OX-Nk +620 |-se eee x lt | b sWextre oes us z © X(X-S) 44(x- =o A. +4) (xs) 0 OQXMH FO VXS=0 ye BL -a25$ 3-A ge) “4 V xe: 5 gad 6: _| [a2 Ax a _ Se Sx cE ASAT, Fy ns Sl: xe tk aR] / q = . cares 4) x A sx44 0 SB, X>X- 4x49 Co axon cc 4) (x YEON XL 4 =O VY x-{=0 AXA = } x eo A §] Zoo | X=4 - o —_* tf 4 sol cedns al ¢ x-+ = sf = O\ + Pp + |0| - lol ¥¢ ox axon a CV ATHEx= 18 ZO V-X 4x2 FO @ (x-YK)H$0 KEAN XBR, bere: FGA tex a VCx 432-270 | Hele co gy Cx48\(x-2) =o O)X=-BVX=2, yet ey =F = T 7 * -8 | A af +©x-16 + oO = e¢)= foly ext + y%-2 -— S = ol + lole po | O| + jo} - fof oC xeTeaul, vet cow Ft 2x+y =0 a) { “| ay=4 1 é be =-M, ax-3t=-4 Aexbay =A ot" +4 50 ax 4+4=0f ax =-3 Ki 3s = -| o 4=3 423 Mf Si3} IX4+3 =1N @ ax =A -3 x= 2 = 4 ak&k=4) AS e-la @lye3y © Gelf{a3} vo = Abe ax -34Y=-A aa ay 24 +. Sx =2 Sxait v MAX +4) =a SM Jor-Wx oe Jaa-Mt oe sv Jaa-H s ej =r = St . oJ cee mF Bh Beck '3i 5 - ’ \ ax +44 233 °8(A- 33-02) $442 =3 Dv jared 48% =3 V5.2 ay -ardtayya2i=3 & | | RABY tat =a Xa/d-a4-at (Sh -cragie =3 -85-5t =-3 4-Cy-Gayayt3e=3 © ayy be) “(83-34 =-3 TAI-Rad ey-B=-0 495 Bjreataa Ht _ = ataoa + 3(s1a t6}4.3-3) Er RAMI) 6 mbes 30 Ay — say a =a Anal yy "FZ Sah 3 afen d= + 3 3 08 BATE TS 4] ig 3 =Aclate)-C44s)4 3-9 | =rlaria-k e 4= =20 se, vary 3 3 4 agate +3 + | 7 =) 3 3 See) | ie 32g. 3 ' = 203-45) 43(3-9) 4 (4-3) = 12-18-4 © [4g=-10) =30° bs 2-22 Sarer BR ep Ke a= ae 3 i J= Be ae it a -10 sol 35.24 ge —t~Reyeto a “© a Sgro. \— =Sr easy [I 4sy+e=0 as z Beadle E.. po oS aty ee Swi | E 2 Pay ; x? Fa 33 3 = Q4sY=3 =F le 4 ayes poe? — = a - = - ni = - BY Ea +4 => B4434-6e0]/5 lyt+y-rzs0 c te {~——— 7 V-S$4ay—a so ~ ep — JY+2=0V J=4 we Ye-avyca 4 So =e cSt-a |X S=1) SSA =e xXaAth okaa) Bl SE nts (PPL PO8 (aes a = ” 4 2 Xf a a S 7 aes Mjeo j[G-9\9-4 —) : ; 2. lav es \ een i 42.50 ° GAs) ~0 @ Yerv See |set xs obEw jaca X32 SED) oe oan - as sels ay << Ke iy y= a { =. — 88-49 +ay agg 23 = S6- oa 3) ——KENF- CS elxenyp a Gee N cones 2 L Meteng

You might also like