0% found this document useful (0 votes)
65 views5 pages

Functions ( )

Uploaded by

dassdtdg
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
65 views5 pages

Functions ( )

Uploaded by

dassdtdg
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 5
(Oa Ne UE CoG i Corag Gamay CALCULUS) (F Ora 'UNCTIONS) qos (Functions) ? ayer, x0 y AR HC WEES ge TERETE AIT CH, Ta xe SOS AICAS SY ye TES eS AT Ne ret y BM XT SAB SATE aot y = fx), ORICA yn BR xa TCT Boia PrSaAher eaita Ba (dependent variable) <4 x-ce 8 bat (inde- nt variable) 311 21 aya $ A OH, x Soy GAA ates Det, y = f(x) = x3 + oy — dk As AC TA a | TART, 34 3x2 + 2x — 4 BT oe COE SH xt aft Tt EA y = f(x)-6 Ge ARPS 9 area AA seat BAT [Raya i432 421 -4=2,x=2 eyed 4 = 20 Fen) | acerca, x aA ve a y GEA BAT! al aE, OC FANG CH woo Lx Zoo OA St AAT 1 ata Ugyel @ etd 7a (Domain of finition and Range) ¢ = f(x) Ca area rote aa, Sed xs IAA Bera oe ARCATA SGT ET ied Gar y at frSaAe veraiha WA eA TT Sara 2 HT coll g By ues (Even and Odd Functions)? coereeeas ym acta AA BI, TAF M(x) = fx) BARK Abeer erceree emt eT, UAH M(—x) = — f(x) BL Fe care UTE (Explicit and Implicit tions) ares uf wa Bet a feria “sera oreM 3 erepe eeeee ET BL GIy = f(x) = 2x? — errata, seorreee UA aA cera a Roa ores CHa] ARIS, OLA UI ACATE GUEST TT! GRR —ax? + Qhxy + by? = 0. GAN y-GE xg ca SUT ma 1.5 *tffrge wees (Periodic Functions) ¢ mm ge ACT Yee ALT AR fx + m) = £0) BA fhe) ea ona qTS See ae m-Ce oHiNTS ETerECER AAT (period) ‘at SAI GAR— ssin (x + 2n) = sinx ; ABAR sinx Ge oniaqe carota a ea HBT PART 21 1.6 BLISTER PHAITASS testa (Parametric form of A Functions) & caren crete TAA GAA Bow va aft GE aa ve weer Ria Sere eH, Old CoH CR FER SEM OR ‘sptatcatt eats (Parametric form) <1 A Wat, TOA va x 6 GAA OF y, Bea Ge Ge vat GF TORE ; SAE x =H) GR y = (HI GB AHR y = (00) SOMA HAAS STATA! SE var -Ge sbtatfeore (Param- eter) i Lar itera ay to.g A (B) 3 (a) -1 241 3. oR (=> “ Ercan] @ Leg eF OO) {feet Co SL ay rast: 00) HY? Ler a?) 1 gg er EEA CH ATH SEN a 1G) =F wer (c) aioe eo wT worm: + (x)= 087 t(-x)= log = fog(1~x)-log(1+%) e-fun(ien}-testt=x)) =-lontZ2 (tx) -talt- xd} slong =~ 1981) ceeelt Feo Ans. (8) 1 - SE TH my, (0) 4 veel EO, ore FCT CF ART E (00 eee ia oe! pox afer r or ges) Fg OT! (0) 1 sx 2 ret ee mE RST a pyar cz errs, 1S * SAM ae w <2 Ans. (0) afin) + 1 St. (ARTE ( feat Om pea ins = 2m! =fn+D , t naa aCe Ge A 2osin 3x y -+ Ww $s¥s1@) 52 » cava 1S sind SEACH AAS sin 4S pel W142 2-sin I-42 Ans. (8) ° et MIEN BENE eB es (8) Sus eee (Sot eae (0) cerca ax = wor i- panty ae (0 fogs Ree CE ae ® e (©) loge (O) log,* fig) = x2 — bh] SOR A yas sore ows 8) (8) Sa cers (0) corer ara i (y) = SS H AUEO) = wt @+ @2 OF x 1 opatl Brent avee s)+4(4) aa aR (Ay3 (8)2 (cyt (DK)0 f(x)=log(x+ Vx +1) eres xa (A) Sas eer (B) at Sores (C) (A) Bear ®) (0) corearta aa (x)= 222, (2 a fx + 9) + fhe y se W)2foty) (B) F f(x) (2) f2p08 BR eee footy) (C) Pa (0) xy) royer(4) BH aR 1G) = 28 TTA x Wes Bos OSD (x)= a, exe Ft(toon] wo x O~x oO ie 1 20, (a) Sos G4) sDeceweta fois enews ea 1 ) 5 8. om) 2 Hf 26¢(x)-3. (t}-¥ Or x 60-0, OR (VER ER x nw ws @-j; or Mf , F(x) =log(x-+ Ve? +1) exe wa was ey sae (c) entra (0) ceranta ani 0 may Rg GAS of; wn oftshuree nT TE ERYD EL ANGE Tak aay CONTR y = firgeen ART aa x= OR ay HA soere Ba Gh (y= 2x45 B)y = 348 (C)y=aned Oa eys3 af orca Rngeera gH Tr x OAR er comTUN A Rofo 5A AGT SOE SET STAT wa-Be (@) A=> oa-Be Mas 20 Rm aie Ganera wARee x Sm Set ATH Set UR CREE y THAT IM y-ce ak SONS Sort al (A) y = 4x? — 80x (C) y = 4x? + 20 XSGH WSS AAR CY TET f(x) = 3 + 2x — OT RS oF ws es (C) caren qxea a GR (0) corona ani fx) = log, sR G(x) = x2 RT (4(3) ) 01 aR we @3 9 (0) caren au af f(x)= log a, a = + sat wa wet (A) to) (8) 2%) (©) -2F)_— (0) 3) . UF fla + b) = fla) + Mb) RCRA fix) eB — (8) era eres (8) ya sores (0) sea (0) corcaft = afi (x)= xed BH, IIT [f(x)] 98 FR “ 4(x’)31(4) (8) fw) +200 © e(w)or{2) (0) cerca =H (A) 35 3a 23 OF ox OF 3H 604) = wt rah) = log-sinx seat W(x)" = tog cost OS 20) ae at 1 We @)0 @-1 oF 7A) 15.8) , 200) 2340) 14) 248) 3a) aay 5:0) OY (8) 10(8) 1148) 1246) 1914) 174A) 18(8) 19.(A) 204A) 21.0) 2. Hf y = log, =f) x=ty) x=er=f71Q) fluo =e" ade *(#+4)-( gan fx) <=? 8.0) 16:8) et ve (ar) - ble ae wre) cae ail 2) bar) “ p72 © oe wet ext mayeny ABs pene) ryex)=toa(-x + 4148?) Jes VEH +) & (=x) ==log( THF +x) = =F(x) ihe) —f00) TEAR, Fe eS ery ee 16. 342x- x2 =342x-8-141 2341-8 - 2x4) =4-G-1F (x=? GR err Cet RT POR A WR (x — 1) aA AT EA (x = Daa eRe ST Gx 18) 2 SereraBa qZEN aR = 4-0=4 ‘Ans. (B) 1. 9G)= ; £{6(3)} =f (9) = tog, 9 = log, 3* =2 log,3=2 ‘Ans. (A) 1 20, = F(x)=xtE f(w)=” +s ones, [£00] -(x+4} =x adaaedl x4) sfx +4) =f e}s3(4) ~ Aw 22. sin(3x + 2a) = sin 3x TET sin 3x8 ates econ onfareart 2 73, eB 4 cE) = PPE logsn? x 4, glogcoss = eles el intx + cos*x = 1

You might also like