0 ratings0% found this document useful (0 votes) 65 views5 pagesFunctions ( )
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
(Oa Ne UE
CoG i Corag Gamay
CALCULUS)
(F
Ora
'UNCTIONS)
qos (Functions) ?
ayer, x0 y AR HC WEES ge TERETE AIT CH,
Ta xe SOS AICAS SY ye TES eS AT Ne
ret y BM XT SAB SATE
aot y = fx), ORICA yn BR xa TCT Boia PrSaAher
eaita Ba (dependent variable) <4 x-ce 8 bat (inde-
nt variable) 311 21
aya $ A OH, x Soy GAA ates Det, y = f(x) = x3 +
oy — dk As AC TA a | TART,
34 3x2 + 2x — 4 BT oe COE SH xt aft
Tt EA y = f(x)-6 Ge ARPS 9 area AA seat BAT
[Raya i432 421 -4=2,x=2 eyed
4 = 20 Fen) | acerca, x aA ve a y GEA BAT!
al aE, OC FANG CH woo Lx Zoo OA St AAT
1
ata Ugyel @ etd 7a (Domain of
finition and Range) ¢
= f(x) Ca area rote aa, Sed xs IAA Bera
oe ARCATA SGT ET
ied Gar y at frSaAe veraiha WA eA TT
Sara 2 HT
coll
g By ues (Even and Odd Functions)?
coereeeas ym acta AA BI, TAF M(x) = fx) BARK
Abeer erceree emt eT, UAH M(—x) = — f(x) BL
Fe care UTE (Explicit and Implicit
tions)
ares uf wa Bet a feria “sera oreM
3
erepe eeeee ET BL GIy = f(x) = 2x? —
errata, seorreee UA aA cera a Roa ores
CHa] ARIS, OLA UI ACATE GUEST TT!
GRR —ax? + Qhxy + by? = 0. GAN y-GE xg ca SUT
ma
1.5 *tffrge wees (Periodic Functions) ¢
mm ge ACT Yee ALT AR fx + m) = £0) BA fhe)
ea ona qTS See ae m-Ce oHiNTS ETerECER AAT (period)
‘at SAI GAR— ssin (x + 2n) = sinx ; ABAR sinx Ge oniaqe
carota a ea HBT PART 21
1.6 BLISTER PHAITASS testa (Parametric form
of A Functions) &
caren crete TAA GAA Bow va aft GE aa ve
weer Ria Sere eH, Old CoH CR FER SEM OR
‘sptatcatt eats (Parametric form) <1
A Wat, TOA va x 6 GAA OF y, Bea Ge Ge vat
GF TORE ; SAE x =H) GR y = (HI GB AHR y = (00)
SOMA HAAS STATA! SE var -Ge sbtatfeore (Param-
eter) i
Lar itera ay to.g
A
(B) 3
(a) -1
2413. oR (=>
“ Ercan] @ Leg eF OO)
{feet Co SL
ay rast: 00) HY?
Ler a?)
1 gg er EEA CH ATH SEN
a 1G) =F
wer
(c) aioe eo wT
worm: + (x)= 087
t(-x)= log = fog(1~x)-log(1+%)
e-fun(ien}-testt=x)) =-lontZ2
(tx) -talt- xd} slong =~ 1981)
ceeelt Feo
Ans. (8)
1 - SE TH my,
(0) 4
veel EO,
ore FCT CF ART
E (00 eee
ia oe! pox
afer r
or ges) Fg OT! (0) 1 sx
2 ret ee mE RST
a
pyar cz errs, 1S * SAM
ae w <2 Ans. (0)
afin) + 1 St. (ARTE
(
feat Om
pea ins = 2m!
=fn+D
,
t
naa aCe Ge A
2osin 3x
y
-+
Ww $s¥s1@) 52»
cava
1S sind SEACH AAS sin 4S
pel W142 2-sin I-42
Ans. (8)
° et MIEN BENE eB
es (8) Sus eee
(Sot
eae (0) cerca ax
= wor i- panty ae
(0
fogs Ree CE
ae ®
e (©) loge (O) log,*
fig) = x2 — bh] SOR A
yas sore
ows 8)
(8) Sa cers
(0) corer ara
i (y) = SS H AUEO) =
wt @+ @2 OF
x
1 opatl
Brent avee s)+4(4) aa aR
(Ay3 (8)2 (cyt (DK)0
f(x)=log(x+ Vx +1) eres xa
(A) Sas eer (B) at Sores
(C) (A) Bear ®) (0) corearta aa
(x)= 222, (2 a fx + 9) + fhe y se
W)2foty) (B)
F f(x) (2)
f2p08 BR eee
footy) (C) Pa (0) xy)
royer(4) BH aR 1G) = 28 TTA
x
Wes Bos OSD
(x)= a, exe Ft(toon]
wo x O~x oO
ie
1
20,
(a) Sos
G4)
sDeceweta fois enews ea
1
) 5 8.
om)
2 Hf 26¢(x)-3. (t}-¥ Or x 60-0, OR (VER ER
x
nw
ws @-j; or Mf
, F(x) =log(x-+ Ve? +1) exe wa
was ey sae
(c) entra (0) ceranta ani
0 may Rg GAS of; wn oftshuree nT TE
ERYD EL ANGE Tak aay CONTR y = firgeen ART aa
x= OR ay HA soere Ba Gh
(y= 2x45 B)y = 348 (C)y=aned Oa eys3
af orca Rngeera gH Tr x OAR er comTUN A Rofo
5A AGT SOE SET STAT
wa-Be (@) A=> oa-Be Mas
20 Rm aie Ganera wARee x Sm Set ATH Set
UR CREE y THAT IM y-ce ak SONS Sort
al
(A) y = 4x? — 80x
(C) y = 4x? + 20
XSGH WSS AAR CY TET f(x) = 3 + 2x — OT RS
oF
ws es
(C) caren qxea a GR (0) corona ani
fx) = log, sR G(x) = x2 RT (4(3) ) 01 aR
we @3 9 (0) caren au
af f(x)= log a, a = + sat wa wet
(A) to) (8) 2%) (©) -2F)_— (0) 3)
. UF fla + b) = fla) + Mb) RCRA fix) eB —
(8) era eres (8) ya sores
(0) sea (0) corcaft =
afi (x)= xed BH, IIT [f(x)] 98 FR
“ 4(x’)31(4) (8) fw) +200
© e(w)or{2) (0) cerca =H(A) 35 3a
23 OF ox OF
3H 604) = wt
rah) = log-sinx seat W(x)" = tog cost
OS 20) ae at
1
We @)0 @-1 oF
7A)
15.8)
,
200) 2340)
14) 248) 3a) aay 5:0) OY
(8) 10(8) 1148) 1246) 1914)
174A) 18(8) 19.(A) 204A) 21.0)
2. Hf y = log, =f)
x=ty)
x=er=f71Q)
fluo =e"
ade *(#+4)-(
gan fx) <=?
8.0)
16:8)
et ve (ar)
-
ble
ae wre)
cae
ail 2)
bar) “ p72 ©
oe
wet extmayeny ABs
pene)
ryex)=toa(-x + 4148?)
Jes VEH +)
& (=x) ==log( THF +x) = =F(x)
ihe) —f00)
TEAR, Fe eS ery ee
16. 342x- x2
=342x-8-141
2341-8 - 2x4)
=4-G-1F
(x=? GR err Cet RT POR A
WR (x — 1) aA AT EA
(x = Daa eRe ST Gx 18)
2 SereraBa qZEN aR = 4-0=4 ‘Ans. (B)
1. 9G)= ;
£{6(3)} =f (9) = tog, 9 = log, 3* =2 log,3=2 ‘Ans. (A)
1
20, = F(x)=xtE
f(w)=” +s
ones, [£00] -(x+4} =x adaaedl x4)
sfx +4) =f e}s3(4) ~ Aw
22. sin(3x + 2a) = sin 3x TET sin 3x8 ates
econ onfareart 2
73, eB 4 cE) = PPE
logsn? x 4, glogcoss
= eles el
intx + cos*x = 1