0 ratings0% found this document useful (0 votes) 49 views22 pagesMinhaj DL Unit-2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
a
N Te
ietes
Lathan vies: .
Foundations ef Newel N tier ks
Le the biokayat Newton
Ly Neurad Nel Guvies
ly P tan a Ss male Larger
Le mo legen Pore Ram
Ls Traicing reveal netoork
bs Ah bvahion Aonchinns
> Unca,
> Siqmosd
> Tan
=H tanh
—> Soltmos
> Re chifed Linco Cretu)
Loss fun han
> Notctisn, Regrecsron
Man abilute em lou CMAe)
> Mon Sapawed foq Er (mile)
> mean abte kite Per lenfane lass CMapey
» * Kotzan by ype par emetey
4 (tied tess = leavnary yok;
be logtiaic oss > GartsipH ANCUNAS Networks =>
fh Neral netiyorty Xo o typ, & Compaley PP Fran
yhot 2 dened {0 Wor)s
Glee tie fuman brat,
)
Smale Ports CUeel Newrong
ah oO
WE So mode UP ot, mon
» WHICH ape Connected 10 @ thew. breuh Rarvon,
to oth ners, This
, baw the pouvet nbowrk to fawn Brom the dat, ¢
» make fre ArctBp ns
} tp
“She (ane Ctton'y bho nodes thane weal, what,
a the lonnec Bon
me
The most Well toe
Sie Plast fo
cardia fae est
dhe feed word
valent d
thos rpt bye
ene) Adder
Joutn go
ie
   
)
) otermi ng the Strexgt
)
|
ofp Monten,
Oat daywe Ne 3
3
(4) The Rinio pal Neuvon,
Dendrite Axon €rminal
Node of
Ranvier
Cell body
Sg Mp
Sehwann cal
   
Ss Myelin sheath
leus
=> Neurons 2% DL were Lnspived by nauaons En the heenny
tain.
Were ne G@nfral Parte] the rowvon Conte nine) “The rechuny
Denote, ‘| Berend, Like Gbevs extending fom cul body.
Pordrite eevee $°qrabs fem Sorterrinding neuron
  
 
x
3 A Lixo | wed ffbet thet Prams b checto ntheseak
ToPulre Baqeel do other noone, CAL pouve hay
one Axon
Kx loin fe MOVE Sh attedww a> PersleP tyon te XQ malig | Bacle Prpogebon ola
Ss) —s ———
~ eb A pr ceptwn ds one of Ahe Serp lest (ape ey pawveel phous
: aa” By uted fe inany clws|g calion «
=> A pera phon tr a Sraledoy narnal padevorls Cond’siling of
jnged foes, weights ard activation (enter
A> at telres 8n multiph input patios Cate ptt vali
“2 an nig acd Lomi ny Ahem wit Corves Penal
ee
> these * ais dnpals ane Sumered v spard the vesltric
Pored, Howugh the [rctaveion function to Por Prodiste ox Of)
wanking |
@ 1O8s adtivation (eye 1 7 T°
xO \ fertion & to beo
YO"
Ouptyee LCs Tx OO 40)
Sr ak ae 2 ©
NO we Us the Loge ef Av getei-c
ve dave focus wert bho Offic gto
   
%rO vO | »6
San eta
vit yO \~ 50
¥3 90 vl oO
“ betonana 49 AND ©) 29 WOT.
=
ve
if
ee pod :
wl)
VeOO — SS ee EE el,
© tab 0 in Place 0f # Hei ® 2
B1S $0 49 ech re O—> Ack
 & Pat 1 dm pote of x andffzo) tn @
oO
 
 
Slo +) fos -0-5 =
TO put x20 end ye) oD
i Saby Wty s or So
@ pab x=) and Yet fn ey
| = AS the 2.08 = 4
Hs, tf baci futin bx
OST oshich mond tho bo dake oD
@Qs-os ec « t Lo Gotatee o aber
@O s-os uv tLe Stake d
@ Bae oe txo Sottke |
Wofes-
Dusk ng teaiaing, the Perception adiust 25 WE {ne
and las {recporeree Vat influence spur beibiondy “badadt om Tae jpit
ARR ad ty desived Of P
athe pe a> 40 mins mige We Predi chisn erocty foting
Tne wotgnts abd bal wig an Opa aon off thon Li Re"> nol Baye Aap on Ep lion 6 yfudspypn
3% here muthiple lowers “f, nouns ( nods ) ounrarae|
an a feed fonwrd rae
Stwwluve
> An ME P Comists oan input Larger ) One GO more hidolon
,
,
)
’
’
eee ard on oullpid Jorer
’
y
,
,
>
 
 
Wording ropa Sayer ; at
, lanier ser thus ame felrmtith Joyors Soon tne Pe
and octpt ortecss Ipckivesn —pre ton pst Eau nun Ao
Wadden harper ret input rom all nerves on the Pretirg
> Large, applies a wetghtid bam and an achivetin fete
fares the Yerutl +0 dwn reuwrs zn ‘the ast aps
=o titpul fovferd Tease toge proclucos the yoo coll of the weaons
eerie -(a)
“1 OH) war | i
= Se Dobpal
3 Fs)
x i =)
Co 5
,
’
,
,
,
'BM Now Cohuteling we Pb
Ikon log nocls too qere wo olaleho
= WR andwot aan
Ou
; Use wis (#1 tun Gayl
= 2a) # CY lo)
=~ 2 —» Fo Sotakey
 
 
=I
Wry axl Wr4 aare
Ovy =
|Vasey Gel + Wry (x23)
Vue ICD # 4 Ces -5t29 talee)
a ee a =
o Vee Va( wir) yy (owe
tye X1 CD iF
 
 
 
-
= DIE) eo agen Paley |
a, &) Training neural patcoavk 2
= —= —
— Training, rawred relivorle crar|ves teothing a +o
make ocuwedt predtelions (rouauilj vations boy
| ad3us Brg 20 Pours meters ( weighty Gots) bared on
fot date ancl cured output
a lw ace
y Crodiew anck oM dataset. Ths frome
b> Cre protons ar
)
y
)
 
Trudlve tasks Like Cleaning the dota, nav ge ©)
Scaling Feats ancl Splitting tre tock sno frrertning
vali delion ant batseb.
% Soi bak gibin ; :
by ag Dniiolize Phe wtyny @ béader © jhe pew
. polionde :
Ly Feed fie’ tmning examply forererd ~ro.ong b “Hie pabicork
4 Com pufe predic Fors 6D outputs. Tus Rawal ves
mw khip ag The inpul feadiers by dhe weighs and
ot phying attiv ation fen chon ah Rotts y pou
Y Los Gla Hon
by Compare le Prdicted outpuls wrk he attua Jobsb
for the {pFateg training Bok po Calculate thy Lou /enr©) Back prpegadion 2
b Barkproprgelion 2d the Procers Of Prpey path
err boc teumrd ~Hostuala the ator to ufdele toe
wae aids and tka.
Ly Adjuat the Cougs and betes Ln Hae dlnelion
hat vecbcoy tn, As » typiallyusng op
Fieyacbion
7 thm Silce Gradient De sent 6) Sfothase
© validation Cratinak
Tx hry ;
phcivetion Eaten Fonction S:
ty A Activalitow bm functions, Sy ov mothe matt al funilins
ApPhad to tne OSPL ef cach neu» Se ies alien
Lethe AE boli w @ determine the oak pul of New ie
Whey dete seater fie neuron Shoot be edit st
b thy heride whethyy cruvor Boulel be bcbpeled 7
ared on due rapt aL Ye (ove10
ne pM A
Lo =
poueal nolwovlss wold
Vnvav yal ecffons lip an
a
Mucky tre WL
)
oo? without actinction fontion,
| only We able fo toon Stele
= Activatw» > pndyoclute non Hinessily, ablowin
, Rear nefivovlds do Lean Wo lox pattivs
| Predtations nf? pe & make bitter
aman Mn Ga
>) Linson- .
———
At 49 fas; colt “the
who the Aspen duct yornable thas dive
fo Lode firdect vawolals
[othe oatpat & Alrvetly Proper Herat tothe Papal)
tte arty a Unsor actonbionfunstin, the vvelstionshcp bes
fhe input ond patpul just x Steaigah Line, Oh the tpl tncvesses
| Ae oulpul froveadee prportinal by aud vice vers
fly, Propofol
 
 
>
>
)
)
)
)
)
)
)ane
. oat. TEN ith eee ALN
“SESE A ruse poedlipg Aue peony uy Boson
Od yation Leemation allows {he nfs 19 fp x vabs
Gveckty | if, the ie npat ‘fpaliores igo, Sips, lod -)
"ene Predicted Price abo Ga temas
VO Sigmord :
> The t Stgwotd gactivation fesnrition Wed Sonewrel
tha ayes toring rat bf 0G)
by|love hows sbworls 9
J
 
 
 
Lb siq mroicl 2 like cs gate (capey Prat Give tee Veleey
wo Oard)=
LKample se Wars “4 dhe Sigmid frnitinnes 8 Gedba leas pernact
Ane Crbianle Sf a panty. Th qateteespey facies
ushetrey fo het people cin based on Auow> “eo! Hag
aye.
> The geteeeper taltes a Look at each Povson(input)
and OAS nds thom a Coo (nes SOU befiveen O&¢ |
PD Semtort io Super taol” Puy get asturre 0x Fe
and an allored jn. 3 fuarare ns tool, fy gets
Sure Cloe 0 and areturnead oni
US :
pale whe Siqgmaid [artis shen we Wart the neuwah
rativorls do make datiaines cv) predict Probabrlites:
oe 3h we ane To ping do Separate Spams & non {pany
ROBE AIL ie Gite whe. Sigmaid funtiB,
B) Tanh .
' > Thetanh (hyper bo hic tangent) activation fuvihion 419
"Ano thew macthamabtal {inition teal fg nawval nilworls. thet
BS Are input vols bly —lard Jfg awa, ha
5 ween,
a _ 7
> the tanh fvution to Midtaw fe We Ane
{enction bit Sejmmalc awerd 0. Tht
at oJp ave vaeles Sa -ve init
(4
means af bots
if ,
Ave vals for +ve prput
\avc tre Kea tebe |
Le Rejeckann / cue ptt “y os
@ Hard Tanh “- ;
> Sin flav fo fen; howd tarh Srmply ey pdrea
havd SPs 4o the noreralized eg je A thore,
PINT Han | fomrade tnko | and Any tianng faitien
2o mode. ints
Ly Ot B abo a pothsmitial fraction Heol fa rowel
vativorts » Par toler ly in the output Leger boy
Mubhilars classi frtion ae
maging ‘you fave ult ple ovtpul” nev Tr4tho
Eira Aoi of your Nr kath ve presentiog a ill ctos,
> The Gol tmax faction taless fae yaw uh pret has «
rewrors avd CmWev i them Pht Prolechil: M1 Shasising
Aok fisty dam up tod:© Rectyjed tances Crerv s
w5 At As most Commonly wsed AF Dl.
> Stila Simmp\e mocthemotiol fermcition prot jab veda
Non- MProawity grt the Webwork
=i ie ty Sh the FP fo the Switeh tye toe
= Ihehnt a Sw 7 He
- ap ye ib bloules the Camels
   
OF) Loss Con ction:
> Aless keuction Bra martherates fenton taf measures
how well o modell predictions patth the actus! target values.
—? The toss’ Lnclicedes bmw (rr My Tae model's predictions ave
fem the tive vals »
Ae Ao0k during typining io 49 onini onze tn teat function, do
fmprove, the obih fo make axtuunat, rcs lions
se TPS
(E= wolaGon
OD Reavy expen
QD- cst odio»
(- Gnitatews
)
)
)
)
)
)
)
)
,iS
kD Nola trons
= loss funstions one often arated using wrecthearitel
natebion ftovep rdent Ihe ob rjeat ve fumeldon oct measuriy
the do herente bls?» fares
: oT sepenget wala)
DD) Genaral rblatio,
     
oh Me 2): Tis represent the Low funcban Ly
WW tales as input trttongtvales (Yoru) and Pradealed
Vales Orred 4)
: ERD Reger ES TOW
3 On pL for vegreo im tesla, the mean Lqpared Grnlmse)
Ass f ection Is Commo’ ubed-
  
   
 
& (Snr Yea)
I<
Heres (vw Yea) = ALP
shore,
— ne — poumboey of, Som pls
dre < Tr kegel velit fr Ihe i! SarPle
fed = preditted valet for Ihe jf Gomple
     
 
   
 
 
 
    
    
   
 
   
> Qrogine peace trying {0 Pred frowse pres Fest eet
>
worl! ccnp 1 BS
Ofareachbouse js (ook el how fer | t+ Wows ets Sse = cost, Pe
Sout wee ye 2 tesabt, Pate * 23?
suo
Kh “Your pred ction Xs lyri aula} 2. btowe 2 + = ve sakt,Price = THO
 prite.
Gs doue4 ES Ze > SHB Pvc = TIP
© U Sqn these dbiggevences fp malte
(' Saxo pode predicls tre
Bore Thay ereabl te inte wie puede) trae bowses:
 
Loa Pra Ld ri
s Hose .
Orton add upell. these Squors
| Eiiprente whith in dhe (mie)
| fser Lanse (fue? Yord)= 2
(Bax a
whe
ne noarbene] Mudd
 
 
iy wouse 33
Coreg)? . =
ae ee EE
C80 -4g)> Har 4
Smopthe Squared Aierentey Ua ¥ au te]  St measures tne aoa. Dif pemeete
ANd Abslute p L
\
  
Lasse >Ypees) ee £ 32 _ sy |
© Meer Sqyared nero anal
  
   
Wiebe pec man nat veya :
\Lmte i You) * 2 a ee 4 tie (te fu: aa ;
3) it
@) ieee bids Me porte, Adore enero J Joss Lb B
=e aK meohwres
    
 
7
®| Len n, rr
>
Sagi
> Se DL, Classi Cant iffelion dass fertiont « are Ued when lhe
Feats Svalves GAlagosatng i Tnputy. 2b chifjrent Classes oy
Cokegesi 4 °
eset or rrvedure atl a
  
Ow are loss:-
Trove a burch Of dalapornty , a qe wart to
> Qwagind 44 {
draw ae ~ ae them jan so eps, Uke Aopen
patinnen Cot 4 doy 20 Piciew
othe Ringe Loss onesturaa {iow "itch Atese dale por ari on
Ame ant Bide ey Te Hine ( Covverdhy chown’ YB) eure wary
Side ( mis chassffedd-
© Th a data Point Bo wd awed bem The bine § Covveettry Clanifjed
The Das pa bow:
wee VUES Tod dadage’ ©: SI
© Rut S eet =— |
iE 4a dal point 2s on the wmng Bide ol the bn @yfo |
Onn 401, the” Los Cntateades
7g Is Like Tuas Bis
t Kes C3; ty vert on the signe Aide © Th
ive. cand c
 
tapas a Eo ee ge
icaadadiaiiaias But iy avte
JAMS =
dM ave pet & gerd
nm The awry ditde evisotlasd
\
'
and the Los peo tp,
> Dis a5
S trating, the goal Sy fo min?
3 ousting the Line,
OD eteaitgbly 4 pose? ble,
ize tidy overall Loss |
a {
So thal Zt Sepersles the ATeoondh,
4
{
{
{
{
|W
@ Loris be Loss os
2 eee
stoguboss
= Ae 30 a Type og Clots scallion Joss frais udiedl ry
Birory Cousifyatean tastes, wtheve the goo! ib t0 Predeck
whethey an eral belongs 10 on eftwo Classes
C4, Somer) Nit spams, tye GIVE)
Frerrstds Pe _
[a ECR alti) 20-0)
ore
pyc ro Oh Samples
Qe, e tet beable ber iterple
ed = Predechid tobl for 1h Lample
exemple Am OAS ne yoware Oui dig at Yan email Vossifer
Yauwanl Your model to Precicl whethey an incom ing c
En Spars (claw a yao ret Spam (olnssa). :
for cach amsil, spur model makerror predittion, usually.
So Abe foo | « probabil - Leth, Lay fire madot Preeltts
thet thereds ors chante tye email xo spam ( Cla7) anc
220% Chante ab rat Spam (Chet d.cn
SEE ay
. 2 gah yay \s
#1) HMpur 2
* om abby. =
Pew Ss
~P wWL Boo arpub dot, Jo Our mrad Fe Pecrmateg
cee Bet GD tune duds Povamalin dowels. w/o Frain
beter 4 (ester Thre Tunaing Pairamallers ere Called
Reyer Derva rcalers
© Acayning Qates
® Learning vette Shows athe Step Stye at whith the mobl
 Parrnrnctins Cuthanbyane wpelétid chuwing run/jele a
* Tet gn Reavn ng cat mot Quite the model 40 oredhyst
the Optimal Solubiom, while 4o0 Low a Lerwning vate may
eburk Ay Stn.
en
Thy > DP Ke adjusting hoo bf astep yom fake whan
(pouty aretpe. Too big and you enigyt on80 inp rail
AC too tll panck Zk mM tale, Wevor feat 40
the ond. - 7)
)
)
)
)
,
@ sparsity sg
5 Dojperpawamslens Fmplies thot only a foo
WuyperParamdtins hove a Surrpacl on tee model's Perfar mont
hi LE otlres moyhare minimal ermag are afi
? Pdeabihayrng Ahose Cw Heol Aa per paromsturs Con help
20 Fm Provirg the oP tmjrotion Process & Fmprve te
Effjadncy eh model toning
> Spars ity ea
wales Con be Lebentitied Howegh
tecnigps Dath od Sensi trusty anoles where how
gets og Binyy Single hay pox parerntivg on ae modll's
Pex foro are Syslemacdi gly expeluratad-
_
x
THE Ed