Kingsway High School
Algebraic functions                                                                               Grade 10
Every aspect of our life depends on one or more other aspects.
       Our mass depends on our diet
       Our success depends on our diligence
       Our level of fitness depends on our exercise routine
       In Physics, the distance a body travels in a fixed time depends on its speed.
       In Mathematics one variable depends on the other variable. ,y depends on x , eg: 𝑦 = 2𝑥 + 1
        We can choose some values of x, and tabulate them: Complete the table for 𝑦 = 2𝑥 + 1
                x                  -3                 -2                 0                1                4
        The input values (the x values) are called the DOMAIN or independent variable . 𝑥     ∈
        {… … ; … … ; … … ; … … ; … … }
        The output values, (the y values) are called the RANGE, or dependant variable 𝑦   ∈
        {… … ; … … ; … … ; … … ; … … }
        We can represent relationships in different ways.
        1. TABLES AND RULES
                x                  -2                 -1                 0                1                2
            y = -x +2
        2. ORDERED PAIRS
        ( -2 ; …….)        ( -1 ; …….)            ( 0 ; …….)          ( 1 ; …….)              ( 2 ; …….)
        3. GRAPHICALLY
                                                            1
        4. USING FUNCTIONAL NOTATION
        𝑓(𝑥) = −𝑥 + 2
              This means find the function value when                          This means find the value of x when the
                      x = 2 ; or when x = - 1                                           function value is 6
        1. Find 𝑓(2)                     2.         Find 𝑓(−1)                       3. Find x if 𝑓(𝑥) = 6
        ………………………..                                 ……………………………                      ……………………………….
        …………………………                                  …………………………….                     ……………………………….
        …………………………                                  ……………………………..                    ……………………………….
        The above can be represented by a set of ordered pairs:
        ………………………….                                 ………………………………                     …………………………………
Worksheet 1: Functional notation
1.      f x   3x  5 . Calculate:
1.1 f 2                        1.2       f a                    1.3    f  1           1.4.    f x  h 
2.       f x   1  x 2 . Calculate:
2.1      f  3                   2.2     f 1  a                2.3    f  x  2        2.4      f x   f 2
3.      If   f x   2x 2 and 𝑔(𝑥) = −3𝑥 + 5 determine
3.1     𝑓(1) + 𝑔(2)               3.2.   𝑥 𝑖𝑓 𝑓(𝑥) = 19             3.3.   𝑥 𝑖𝑓 𝑔(𝑥) = 10
                                              f x  h   f x 
4.      If   f x   x 2  3x determine
                                                      h
                                                               2
Domain and Range
To be done with your educator: Write down the domain and range of each graph:
1.                                    2.                                        3.
                        (3;4)                                                                4
                                                                                        -3
      (-2;-1)
                                                                                             -4
Domain: ……………………..                              ……………………………..                         ………………………….
Range : …………………….                               ……………………………..                         ………………………….
4.                                         5.                                    6.
                           (3;2)                        4
     (-1;-2)                                                                            -2        2
                                                            -2
                                                                                             -4
Domain: ……………………..                              ……………………………..                         ………………………….
Range : …………………….                               ……………………………..                         ………………………….
Worksheet 2: Domain and range
Determine the domain
and range of each graph
                                                       3
Reading off information from a graph
    1. Use the graph alongside to read off the following:
       1.1.    𝑓(2) =         ………………….
       1.2.    𝑓(4) =         ………………….
       1.3.    𝑓(0) =         ………………….
       1.4.    𝑓(𝑥) < 0       ………………….
       1.5.    𝑓(𝑥) ≥ 0       ………………….
1.2.   For which values of x, as x increases, is
       𝑓(𝑥) an increasing function?
       ……………………………………….
1.3.   For which values of x, as x increases, does
       𝑓(𝑥) decrease?
       ………………………………………...
    2. Use the graph alongside to answer the following:
       2.1.    𝑔(5) =          ……………………
       2.2.    𝑔(0) =          ……………………
       2.3.    𝑓𝑖𝑛𝑑 𝑥 𝑖𝑓 𝑔(𝑥) = 4 ………………
       2.4.    𝑔(𝑥) ≤ 0        ……………………
       2.5.    𝑔(𝑥) > 0        ……………………
2.2.   For which values of x, as x increases, is
       𝑔(𝑥) an increasing function?
       …………………………………………….
2.3.   For which values of x, as x increases, does
       𝑔(𝑥) decrease?
       ……………………………………………..
                                                     4
Worksheet 3: Reading off graphs
  1. Consider the functions 𝑓(𝑥) = −𝑥 2 + 1 and 𝑔(𝑥) = 𝑥 + 1
     Use the graph to answer the following:                                    g
     1.1    𝐹𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑖𝑠
            𝑓(𝑥) = 0
     1.2    𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑔(−1) =
     1.3    𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑓(0) =                                       1
     1.4    𝐹𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑖𝑠
            𝑓(𝑥) = 𝑔(𝑥)
     1.5    𝐹𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑖𝑠
            𝑓(𝑥) ≥ 𝑔(𝑥)                                      -1            1
     1.6    𝐹𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑥 𝑖𝑠
            𝑓(𝑥) > 𝑔(𝑥)                                                            f
  2. The graphs of 𝑓(𝑥) = 𝑥 2 − 4 and 𝑔(𝑥) = −𝑥 2 + 1 are drawn.
     Use the graph to answer the
                                                                           f
     following:
     For which value(s) of x is:
     2.1    𝑓(𝑥) = 0
     2.2    𝑔(𝑥) < 0
     2.3    𝑓(𝑥) ≥ 0
     2.4    𝑓(𝑥) ≤ 𝑔(𝑥)
     2.5    𝑔(𝑥) − 𝑓(𝑥) = 5
     2.6    𝑓(𝑥). 𝑔(𝑥) ≥ 0
     2.7    𝑓(𝑥). 𝑔(𝑥) < 0
                                                5
Worksheet 4: The linear function                             𝑓(𝑥 ) = 𝒎𝒙 + 𝒄
Exercise 1.
Sketch the following on the same set of axes:
1.1.    y  2x  3    (gradient intercept method)
1.2     x y 4       (dual intercept method)
1.3.    y  x  2    (table method)
Exercise 2.
                               y 2  y1
Use the gradient formula m             to calculate the gradient of the line passing through the following
                               x 2  x1
points:
2.1.    A 2;5 and B3;4                  2.2.    A1;7  and B 3;2
2.3.    A 3;2 and B 3;4               2.4.    A0;5 and B5;0
Exercise 3.
Re-write the following in the form y  mx  c :
3.1.   3y  2x  9                          3.2.     yx7
3.3.   2y  x  7  0                       3.3.     4 x  5 y  10
Exercise 4.
Determine the equation of the lines with the given values of m and c.
4.1.   m  2 and c  6                       4.2.    m  1 and c  10
            1
4.3.   m  and c  0                         4.4.    m  p and c  q
            2
Exercise 5.
Determine the gradient , the y- intercept and the equation for each of the following graphs:
5.1.                                                         5.2.
                                                      6
5.3                                       5.4
Worksheet 5: The quadratic function                   𝑓(𝑥) = 𝒂𝒙𝟐 + 𝒒
ie: The Parabola
      1. Sketch the following on the same set of axes:
        A     1.1   𝑦 = 𝑥2                B     1.1    𝑦 = −𝑥 2
              1.2   𝑦 = 2𝑥 2                    1.2    𝑦 = −2𝑥 2
                          1                                   1
              1.3   𝑦 = 𝑥2                      1.3    𝑦 = − 𝑥2
                          2                                   2
      2. Sketch the following on the same set of axes:
        A     1.1   𝑦 = 𝑥2 − 1                  B      1.1   𝑦 = −𝑥 2 − 4
              1.2   𝑦 = 𝑥2 + 1                         1.2   𝑦 = −𝑥 2 + 4
                                                                   3
        C     1.1   𝑦 = −3𝑥 2 + 3               D      1.1   𝑦 = − (𝑥 2 − 4)
                                                                   4
                              2
              1.2   𝑦 = 3𝑥 − 3                         1.2   𝑦 = 9 − 𝑥2
Worksheet 6: Finding the equation of the parabola
Platinum maths pg 148 Ex 17
                                           7
Worksheet 7: Application of the parabola
                                                1
1.     Draw an accurate sketch of      f : x   x2  2 .
                                                2
       Hence, use the graph to show where you would read off the following solutions:
1.1.    f 1
1.2.    f  3
1.3.    x if f x   6
1.4.    f 0
2.     Given    f : x   x 2  4 and h : x  mx  n                                    C
2.1.   Find OA ; OB and OC
2.2.   Determine the values of m and n
2.3.   Find the length of AC correct to two decimal places.
                                                                          B             O       A
2 The graph of f x    x 2  9 and g x   2 x  6 is given.
3                                                                                                   g
3.1. If S (4 ; p ) lies on the graph of f, find the value of p.                         C
                                                                               P
3.2.   Determine the coordinates of C, A and B                                              D
3.3.   Hence , determine the lengths of OC and AB.                                 E
                                                                              Q
3.4.   Determine the co-ordinates of D.                                  A                      B
3.5.   Find the length of CE.                                                  N        O
3.6.   If the x- coordinate of N is - 1 ; find the length of PQ,
       if PQN is parallel to the y axis.
4      Platinum maths : Ex 21 pg 154: 2 ; 3 ; 5
                                                        8
Worksheet 8: The Hyperbola or Hyperbolic function                              𝑓(𝑥) = 𝒂𝒙 + 𝒒
   1. Sketch the graphs of the following, showing the asymptotes and intercepts with the axes.
                            4                             2                             𝑥
       1.1             𝑦=𝑥                   1.4     𝑦=𝑥+3                   *1.7   𝑦=2
                            −6                            −4
       1.2             𝑦=                    1.5     𝑦=        +1
                             𝑥                             𝑥
                            3                             3
       1.3             𝑦=𝑥                   1.6     𝑦=𝑥−2
   2. Determine the equation of the asymptotes of the following functions:
                            4                             2
       2.1             𝑦=𝑥                   2.4     𝑦=𝑥+3
                            −6                            −4
       2.2             𝑦=                    2.5     𝑦=        +1
                             𝑥                             𝑥
                            3                             3
       2.3             𝑦=𝑥                   2.6     𝑦=𝑥−2
   3. Write down the domain and range of the following functions
                            4                             2
       2.1             𝑦=𝑥                   2.2     𝑦=𝑥+3
                            −4                            3
       2.3             𝑦=          +1        2.4     𝑦=𝑥−2
                               𝑥
Worksheet 9: Finding the equation of the Hyperbola
Platinum maths : pg 149, Ex 18
Worksheet 10: The exponential function                              𝑓 (𝑥 ) = 𝑎. 𝑏 𝑥 + 𝑞
   1. Sketch the graphs of the following, showing the asymptotes and intercepts with the axes.
                                                              1 𝑥
       1.1             𝑦 = 2𝑥                1.4     𝑦 = (3)                 1.7    𝑦 = 2. 3𝑥 − 18
       1.2             𝑦 = 2.3𝑥              1.5     𝑦 = 2𝑥 − 1              1.8    𝑦 = −2𝑥
       1.3             𝑦 = 2−𝑥               1.6     𝑦 = 2𝑥 + 1              1.9    𝑦 = −2𝑥 + 4
   2. Determine the equation of the asymptote of the following functions:
       2.1             𝑦 = 2𝑥                2.2     𝑦 = 2. 3𝑥 − 18
       2.3             𝑦 = 2𝑥 − 1            2.4     𝑦 = 2𝑥 + 1              2.5    𝑦 = −2𝑥 + 4
   3. Write down the domain and range of the following functions
       3.1             𝑦 = 2𝑥                2.2     𝑦 = 2. 3𝑥 − 18
       2.3             𝑦 = 2𝑥 − 1            2.4     𝑦 = 2𝑥 + 1              2.5    𝑦 = −2𝑥 + 4
Worksheet 11: Finding the equation of the exponential function
Platinum maths: pg 151 Ex 19
                                                      9
Summary : Determining the equation of the 4 functions
 Linear Function                                                             𝑦 = 𝑚𝑥 + 𝑐
                                            find “c” by inspection
                                            find gradient by inspection
                                         
       𝑦 = 𝑚𝑥 + 𝑐                            find gradient by using 𝑚 =
                                             𝑦2 −𝑦1
                                                                                                 3
                                             𝑥2 −𝑥1
                                                                                           -2
                                            Sub a point to find the other
                                             value
 Quadratic Function                                                          𝑦 = 𝑎𝑥 2 + 𝑞
                                            find q by inspection
                                            sub a point to find “a”                             3
                      2
       𝑦 = 𝑎𝑥 + 𝑞
                 OR                                                           (-1 ;-2) .
  𝑦 = 𝑎(𝑥 − 𝑥1 )(𝑥 − 𝑥2 )                   Sub both x intercepts
                                            sub a point to find “a”
                                                                                    . (-6 ; 3)
 Hyperbolic Function                                                              𝑎
                                                                             𝑦=     +𝑞
                                                                                  𝑥
                                            sub the horizontal
                                             asymptote
                 𝑎                          sub a point to find “a”
         𝑦=        +𝑞
                 𝑥                           OR                                                       2
                                            Sub 2 points and solve                                       3
                                             simultaneously to find “a”
                                             and “q”
 Exponential function                                                        𝑦 = 𝑏𝑥 + 𝑞
                                            sub the horizontal
                                             asymptote                                                    .   (2 ; 5)
                       𝑥                 
      𝑦 = 𝑎. 𝑏 + 𝑞                           sub a point to find “b”
                                             OR
                                            sub the horizontal                                  -4
                                             asymptote
                                            sub 2 points to find “a” and
                                             “b”
                                                        10
Determine the equation of the following:
 Linear Function
                                                                    3
                                                             -2
        𝑦 = 𝑚𝑥 + 𝑐
 Quadratic Function
                                                                   3
                        2
       𝑦 = 𝑎𝑥 + 𝑞
                                                (-1 ;-2) .
                   OR
  𝑦 = 𝑎(𝑥 − 𝑥1 )(𝑥 − 𝑥2 )                             . (-6 ; 3)
 Hyperbolic Function
            𝑎                                                           2
         𝑦 = +𝑞
            𝑥                                                               3
 Exponential function
                                                                            .   (2 ; 5)
                    𝑥
        𝑦 =𝑎 +𝑞
                                                                   -4
                                           11
Worksheet 12: Past papers - sketching
                                        12
13
Worksheet 13: Past papers - application
DBE 2015
DBE 2012
                                          14
DOE 2007
           15