0% found this document useful (0 votes)
185 views67 pages

All Maths Formulae

Uploaded by

Vrushabh Dhote
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
185 views67 pages

All Maths Formulae

Uploaded by

Vrushabh Dhote
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 67
_“Tijgonomentey _ form ulee = sin? @ + Cos*@=] sin*?@ = [~ Cos*@ cs? @ = l= sin?@ $ec"@ ~fan*@ St = [+t fanr® cot *O = _ sin Ch + p) = sing. corp F Cosd. sing — © sin CxK-p) = sind *tosp = C03K- sing = cos CXHFP) = Cosx-cos B = §fhk=sinB 7 cos (o-B) = CosX.cosp + Sind sing 9 tan (&k#p) = tang + tanB 4 | -1— fang. tanp = fan c— +anB Seem ait aL ot) pe MOS eo ft ttanr® COS*#O — sf fo eaineom tia tain tz i) sin @= 2519@ - (Oso a LL - _ ©) cine = a tan Ar \y tof Fan® co ’ om (os @ = cos*@f = sin? Cf Loa 3tan*@ c#e = 1 (1 Fc0s2@) z G | eo Co = qo ° ZINN Oy, oy cos O = 2Cos*ay, — i a 73) Cos@ Ss La dant @fe | Lt FAR > Of | Gi yeno pss u tan 6/63 ya i : Loa tant@s, | GY FOS70 = 2cost@— 15 | F C052 O= 2 cosH GA vt = cos 2O = sinr@~ ey) [i Cos 2O VlEsEO nip} f.Cos @ = 9 cos?*O/y, Qe ewes @ Ee sin of : % [oF sin2@= (cos@ + sin@)e es) EL — sinz@ = € COS @~ s(n@)ye Oy 1 4+ StIN@ = Coos Of, +5in @A) = COL f — sin@ = ( 8s Of — stnofryr G3). gin 3@ =. 3 sin@ — YSjn&® (a) Os 3 OVS 4 ¢os°O — 36050 Ug) _jyans@ = _37an©@ — fan3@ @ C Sin ~o= ube C4 = ¢os 2@) L Cee ton) + Cos(¢t>)] 7 Tm Ean CHd) . cos[c=d\ | ~ © me pads aah Tas) LED) ) gine = stab = 2008/7 C FPN o sin [C-9\ il = ar C x z z) % cos © oF COSP= 2eos/CHp\ (os /l-D \ es [CH BELEB _@& sc esac (.c+d) + sinf c-D) a : a0 crew G3) gin (—@ )= — SIN@ a) co(-O JE (ose ea) tan (-@) = — jane ® qonf or ~o@)\ = [- Fano : C4 ) | + Fane claccnute eae sin (1 -@) = : nila os (7 = @) = -cos@ ° qan (CW -@ ) = —tane Fj - Cinema) fe )=- SINO- +0 ay - © cas Ct +e )= = Cose ton Cr +@)= fane @__ Sin (37, -e)s - oso cep (30%, -&)= — sine tan (30/2 ~oF = Cote = Ga). in ( xy fo) =-603@ @ cee (374, +o) = Sino Ga_4an (39/4, to) = — Cot© “BR. NILESH M. PARDE BARDE MATHS ACADEMY | , 24) 1 cos 2 35) 9 i 4) | 26) 5) sec’@=1 + tan"o a) | 6) casee"0=1 + cot’ 28) i 7) 1 J 8) Bb) 29) sinA+h cos Beas A sin B » Lal , | Aj 30) sin(A-Bj=sin A.cos B 10) ial | | 31) cos(A +Bj=eos’A cos B~ sine sin ry a Fe | 32). cos(A—1B)= cos A cos B+ sin sin 8 12) {Fy Lol sca ey -aznatims 13) | OD ORAS SB) ean atan 8 7 ee Te 15) cos (-0) = cos 6 Ze i 4 16) gin 0.c0s 0 a Ss | 5} tama +0) = in 0 cos 0 = ante, ye | 335) wine +0) = a rr) S-sin'0 jase satan Jc) 36) tana =a cos") Heal TAT a-tanta | cap 5 ial Ein Cea = Jain ee ces aE } >| 37) sin C+ sin D =2 sin === cos ; araif c+E CD Is} tan29 = ae | 38) sinC~sin D#2 cos S22 yin S=P 19) 1 = ca820 2sin*0 Cre " 39) cos C + cus b=2 cas S22 2o0sA sin’ = sing\ + B}~ sin( A A cos = cos(A + B} + cas, 0 = By caster t by 30) Cosine rile cos A= roje: axbeosC u e=acesB pete? ction rete coos? os Abacos C boos A, 56) 3) 58) DIRECTOR : ER. NILESH N. anave SIR MS. NG. : 8007525257 ii) iii) (atbP = (a? + 2ab +b?) (a= by 2ab +t?) (ee atb)(a-b) (at bP =a) + 30% + Jab? +b? — by =a) Sab + 3b? — bP —b = (aba? ab +b?) (a +o')= (at) (aah +b ) PE i . ‘ = a — a = 5 | V.S.A. = Vertical Surface Area 59) i J | C.S.A, = Curved Surface Area i | TSA. = Total Surface Area — ir — VS.AICS.A, TSA, | Volume { | | ee a | 2(1+b)b 2CTb+ bh “bly Lbh | ar | oP B | 2arh | 2a(r+hy ; xh | ‘ Lady | ail | mrt) a ' i | : | y | dae | = ' | | i J | | | 8 A 68) Area gtjanile 7 Area,of equilateral & i: . al + Dx = . j Are(of circle = mr* || a I Age Of Parallelogram = bx h | i ! ‘y/ A [ee cea ‘Area of trapazsie > (sum of sides) x h | > by | : Perimeter of rectangle = 2 (1 +b) E ao | Perimeter of squar uM bos 3) When a detertaires. fins two Sdention! Perinneter of triangle =a + b+e ie, sum \¥ oY or colsain tha P= 0 of sides | ii) When ww sows oF ¢ cireumferce of eiveie = 2nr | of tie waterrainan . | & vinant fs ; iF two lines ¢ ivovo lines ers pornes yee tne nes ten ii) external x= 2 #i) Midpoire formula = MUN | eve 7 YES . re 7 _ Mt Ve Ys Ne 3 SRR Sta Dis trates n n roots are nol nat 7 yeas iim (Lex SI) Ate 97. BG roots = inpe porst form y= yy, } wo Slope interes: from. y 465 Two points f x 82) Deuble tatercept fom = +E = | : a’ b 86) Cenesel equation of line as + by +e = 0 Ty at by Siepe ="), Stanx & eV, logfax+b) arn 09) SL cotx= 109) oot = 110) jy seex = see tan x 13a) fekdx iby fee ade 135) 136; f sinzdx 137) feosxd 138) 139) | | | | | | _ 3) Eijr a , a | 145) Bt c | i46) MT 147) ~ 2-2 e ; vl] dx du dx LU 138) | 149) ae 150) 123, Approximate Value 7 rae J=T() +h Fa) st) 126)., Approximate :vor in y Yay 182) ay dy= Ex bx 153) 127) Relative error in y | I r in Ps Gnde =~ | fede ny 162) cus¢—8" = con $64; tan (—@) ~~ tant! se 136) see (=8 = ser | | | i | | i i i Me | i | | pies iG | me Hai ' i | jo | Wg te MA | | , om, wt (foods = [ fat b—xax vf fOodx +f (ax sax 2 ears | pta~ayde iseven, a Gato |\—__4 JES (ue ele i tans ~ ——— Ave. Che » 4 Bocg 2 4 2, me : Bind. GP+ Bd. SinB ys 1 Sin_(l-B)_= Si ol. GB = Chel. Siu P Les) (4B). Gol. @B- Sind. SKE Lt. hol -B) = God. @B + Sin of. Sima B 65-1 2S MGB = Bu + Ain (A-B) 2GA.SinB_~ Bin CAtB) - Sh (A-B) 1204-8 = cy(AtB) + @(A-BY 2 Sard. SenB > Co (A-B) ~ G& (AB) eC ED es SLE. ¢a.| Ain Ct Sin ® = 25in (CB CPN | aan CL to | Bin C- Sin D: aS gn_(P\ AU 1 tos (Cee @ i +8 GLB) Ae. ltac- (hf = - 2 Si (ci®\ St. {t8\ EAB) Bin Cs} 43. |Bm 26 = 25m - SG _ % | oye - Gieo Ge 2 2 4: [Anze = 38in9 - 4Sin%@ +c. | cb 26 = 8"o- Sin’ _ . = 20e-1 sz 4+ 28mg qi} oe = Ge ~ Sho 7 2 a > ate oi 28 - =. 1. 28m. —z 45. | (39 . 4@30- 3% 49. | Air 26. 2fime _ oe ____ + amie, a eas? % | @26. 2 \-donig a [4+ Jtanre oe : f62\ | 7 a Pe 7 py S| dom 39__ = 34ome=tomio (ca) | | atoms , $21 tom A+B) = time + tam B GP) - (net. dan ——| 83.1 ton (o-p) = tim, of - Zam B SON | I tdonl tom & = tai! “8 4| 4s. ta { AB, dow A tn 14AB. 86] 1-CosKo = 2Sin* Ka e L S| bare: “Sa | 4] 4+ @ 26 = 25h 0 | a es ashi s | hs ko 2 2G? ke 4 2 eee G | _ 1+@26 = 2a2q ee | 44 GRe = sare —_____] 2 aT 421 4+ Sings = (GO +Sno)* Pe 4z| 1-Sin 20 > ( Go - Sine)* ma 9 | 4+ 2434 Ms MCMtL) a 2 2 | qs] 7+ o2e tee. t= p(mtt) @ntt) —-1 G aes == Pe | eae yee, yn? = [nent | * R A z _ 3 on (nay aie ‘4 ag | SEO _ G41 tong = Sin® —s a Ge ag.| mre = Be. aa Sino T ga (ayby?_> o2+ 2ab+2* Yoo! Ca-byt = at —2ab+b* joi, G2 b% = (utd) (a-b)__, or} (a+b)? = P+ 3q7b+ Ba + bE sl (a-b)? = 0? -aeh+ Sab? —b —t wlio? b? = (asd) (abt B*) os |g? ~ b? = (a-b) (a°*+ab+*) __ Jb. eg 40) = b mn a dot log {2 E Log sm = bog Jo n= sn Goa 2m i 109, nym 5 loge lo zk . _ ee Uy | Pon t = ©. _ Ut Who =D if > Asin (sine) = © 2) cs" (ese) = © \aan*(yare) =O —S “)_sin*(coo) = pO _§) cos "* (sing) = Ft lete)s ome 3) fe“ leone) =n 1 sin Cone) = ed) tan (tin“*@) = © see ( e¥0) = © a1) cos ( sino} yn Na-o™ a an 4) fa = con't) i - b a ») tan “(4) = col t/t) es 14) cos =f Z tan*® + cof to = ay 2) See ~*@ + cosee™4 = sin “2 (-*) = ~ sir tx “AL tanh Gp) Eo teh 8) cost ex) = Me cor tx _Devivative of Trijonomedvic finefon 2) Ux cx tene 4$x0 es Le Ux ) x= fano A ppl ca tion s of Derivatives. Approxi methions => _fca)_+ hf ica) Taga = em wocetion ays ent to curve y= Fr) at _P Fahy Y- “tae fae) cx —x1) ~ and The equettion «) Pe given by Y~nH= st (x-*) (2 Ox ; , note 3- @D_ TF tute fine cue perpenclreeele fhen mime. = -1 7 @ 16 fue ines ae then m= my “Rofles fheowm i> rey = FX) TF veal vetlec of funclron _— of rect veenietb le. such fret - a —F) FON ts confinuous_on Carb] _ BR) Fx) fs cbhenn Heth om (6) | an ii?) fea) = FCb) then thee exists ec rea] num ber ~ - Fuse €Cetyb) such thet ¥'Ce) =8 LITTV C Levrgy tn ges Pein veelue fheovon) mn funcfien fx) ps sarel Have cesfitfied iain tes sett hes Bleue: _conditen ee - ® fix) ps Confinctows” on carne Sor 7s ORreatiecble on (a,b) ~ Forke ext = € (76) i Incvcecsing ad ctr fanctian o oo ON re funclisn y= tix) on a,b sy, ce febeg o Innceaig funebien fax YO 6s ; faanetisn rt ft ax LO clecreZe( = |“ axima and’ Minima — Sees ACG e Shel Sei 9 _f' fe th) <0. [awe fl (c~h) £0” SS a fi Ccth)yo0. = es wee aahbo ame at _-edtto said tobe firs} qferivativve Pop et) Rute: consiele viven ft y <5 hen fica cron 1 rulths rreegaimeeen ov nung i saicl fo bea point ef toflechon in fhis case fend leiv cétioo fh yet fixie! thu cppty Fost ebeivective Het ——~Suenel aleaverice Fest > n) find Fe) Fr) 3) put i(k) =e and obfaincd fhe oneor me - expert vetltct oF bouncloy Yeeletey = 7 a) IE x= & be fhe one of oder value then Orta) a SIN X dx = — osx tc 1) ( Cos X cle = sinx te ca See xd tenn { + co J) x [ tanth | + Dn feet x dy: ¥) i) 1) j j es i Side et pe ae tein x te corey dx = seek Ferny efx = = ste + c soe tote a= = cores: eG -3)~ | coeeK — saa ‘bo — pul aA = bo a C SW) ers mabe -aabese a sinB gia. q a @ oe _ — Cosine “pale 2 4) av =br $c*_rbe cos A ft) pe: bes qrder_ ae cosB ion Rule =— sina UL usiry projection mule cesinrale. 2 a T Tt a oo oe By. tI Cog G= at tbor_cr _ rab | ems Cos A= beter Qe * a zbe 2 Cos B= Hol Angle formula 7 3) sin Ah = [ tsb) Gs) == Besos 5 Hy] sin By eS | (S-a VY cle ape te as sem Tpeindey - aa & re = be ac ac sin a ai es ii) A C4AB¢) = 1 ab sinc u Heroes formule: 3 oe A (DABC) = \f's (6-1) C5 B)GHC) ey Anal loyie S 3 ES fon( B-c\ = (b-c \ cota [oN es b te os oa (4) cot 8 L etd u 4. pair of Straight Jine joint eqtecetron = (A+ bry)=O F (a + b>y)=0 joint €an fs Caretery) (artt bey) =o Foy slope of (ing S- © eartel @® pespunclccecles 2- stope= & ee a A eg 1 af point ancl tinedare gryen euhichns IS dren [Cy-9n) =m Geer] Separcite equation of line :- | vit imys oO ° eo cand! tt 3g=O 389 cay eo = ee eceeecltm of IE any To tine jor equecttrern rine Fhrough oxtgINd Je bing mo i mo > combine Ce by ) gee ey 439% Caine ma-yso | thim ho owygin fomel | tq? of line Combinect eq” is axttohegt by Zo | rr" gr sere re slope sum = | G& Thay procluct4m,.m,—q | 5 ancl ciererey v= (mbtn JE Ctr ©, , “1 — 4mim pen ener = 4 m, Faery . of che, crpta beter lin oa Fan @= = M caserre atib | sfope tine only treet eccn aniby to° Grenenec| eqyeea tty ef paw 4F line meen nos an» Fahey tpyt pdyrt +afy 4 «2d th ©, <@ bex hg a eek g fo ich ©, be THE cEete given by euch be ubey Fy rp gato fute= eo y a fans > cS? atb oe pew percliceclers dain =O te unyle beturin pero & lft? Te tato IMS atb=o af tuto yinet tet ane! ewinerelens fhe ancl fhe point of intersecfron is gmen bY bh-by gh-af ab= he ? Gb he Bee me 9 eg peri of fine cacth Anel cuuh ido, pa@ h? cry =P EB) arin tt wis . sO tef ego I NT NI NIN ‘pv cetrO orn, 7, Vides ) Sectton Form ule for _intunaly | ys mbt na SSS Mh oun Y i atly Fo ratio 5 i) Secflon (Foe: mule Foy my be yo me na L ne A $$ =p ome vector oot coplang +nen + = —_— oy ira Bal =o] Scalat Porple product *—~ (go x procuct > (exe) oO” {a bt) = GJ, A As a-( ) br by b3 cy Cz C3 pe petits of s.teP 37 - ) y \ G2— b clock ue pabel= (ecal= peak] olmoys if) positive uw _ Anticlockurse . - epavcjJ=-[b ae] = -(é 5 aj=-[4* 6] climays Ny cet Ht an sectlar triple prectucd =P any tucd vector vepreedeel Hen Cau bj =o => cabéel= a. (bx2) cCaxb)°s _ veors are col{fnecy éhen fined c= 4, a= Pre ei 4 bo at tbujt Gk af oe ome eee olunes ot fetrechedeon => TAs Ac AD) z | ot poreutstopipic ot ca & 6] yolcrt colfiness ev coplaney inn ap tutto Vetos Or fab é] =o ov Re Points 4B,c | PAB HEAT] =0 | ieee _ 5D - Geomeriby Cdcs) direction cosines = cosy , cosB cos TH Lim, n Cdys) qirution reuttos = 4, 62¢ © Maton ratio fe gin ane Ane direfion cosins ” Use irepion cost” 2 4, mons _ a : 6 ie Vatipye Vaypie Vatpre~ © for Co-orclinate. frnelrey A Ceig ie) = tes40 - @ Suately ctr of piven tine Z oe consis A btranen cy tmv) > (z£n¥) 7a? anima | @ pus _betesen dove [ine coi © = [LZ,Lrt TUM © ef yutco Lind are flee thee a- Ba Qi Be ee @ Th dee find ane perpenclvculay then at Qrtbtthrtata= Shortes! test befeereer fines 1) Vedor eeperafion Fo G4 Obi Y5 Get Ube d = | hy xe). (a.-%') ( & xbo| a) Cartesceen eq cceehro? AUK a ye 2 Ett Ao a “m1 Xr 2 y-th 22, ne 4) finel Vector eqn from Cartsean ect? Mer le ,Octty , mee dinchon yatiors Asm Ven ear yr atnKb PAny lo bute [ines be) find «Hf fine avel™ Fo ecech othe Ss c) Ante peturen plane ay Angle (se ) x vector ec) ne ante betucer plane ns giver oo) Ar oe d= Kitt At me Ac me Cami — ey nye t Chim — hans) 3) For infesting Cyd Cartaven eM 1s ve finel Kit Hines evn tntesetny Mets Ya-Yy Vane ai mm, ae me By. 7 Uy 2% coo = bebe ler{B.l & ContOo1con ee aie) tener fee to tach ore. find k ad. fhroxt artes O| Ryze, 6) 1 et yD, Pw tan of pla nw RyRy Tri ttral =0 d) My yeu . Cavdess1cn egtUe> geen . . ; D Pistene bel? HL Hines plane eqn Se EE y seep} Comp oeiny anel put valu rm sae Buna fomula piace, 0. A= [ctar-cu) vB . -| ag,+ boi tor | SIND = I ; —TH El Via pyre Nantes tc) 2) Ab YR) BOn Ie 2) ee ee "ial Aivechron ret o+ oY fo [Ines ied 24 of iat Boon ery Pe S : 3) Velo eqyucctiono Plan, as custhy Inve h b P ? 4 Act tort) B Ct ot ot), clr oO ee J. CAB XAC)S & (ABA) ABYAC B c ) collineos pein’ ACt yi zr) Blais ye zs) 6 Cmts Y325) Aine A 34 4 B4em Collmmcor eee C —— VG = 0P4 > \ siu)evnreq_\ oe y 5 E Cx) Se Vix) ay ie 7) +) Keto, 6002 5 Pa? 3) pro 6 E€u=é VO) = 2 2 = 20 = ; NTC Vix) = > Sd) ZY) Steud ang oo ni P=? cl new, P= 6-4 EOQ S72 Ue ear7 fe eQuine ot Boole Gi Ha Fa = AB = [aubn sank, at Bit Fy, bs F4,yb31 at Bt daw Bagh Gag fete. aan G53 eat | Fens gnvas- of cofetdev matix ge m Colma, .. nek Th thats ay : Se eae E = (an A ) yw ay ies An Ar 5 lagu ay Gay Fi gr | 43 | aoa S41 (las %93)\- (a a 3) — (r3* a o bogerins = igen’ - = an ae = “ge ee loy B= lojffaey 2) WG A — 1h p= te CA/B)_ Tt) ley 0 = Not dehine — 4) Wey (ye) = vot define 7 9) é eA ee ee a __te) ‘os e=i- - 4 WW ys (A) = = =! (%) 7 19 Ba fa Ba ne = = aan o kg: 2-303 lege (omphye Number Q -=-Real zi the comple ee bio= image nevy 2) wr fort] Zo wie 2 - a : W4eu =~ 1 uUt+ y -S-utr> aie fy = HU ) af oc and am the compl Llihe we of undy flacn : At=P, prs oC 3 Bs 3 & x 7 DoD yl ] [_imits Pe ape fance Ao et Cexknds toa) f [put value athe | limit _funelion £= Seamer Conca cricrem (ct hand fiof CLH-t) | - I _ = xm a oo Ry ht hand jimit (ReHet) - + fee pel as 1g) theiseune@ xq Subs multi cien [tim Foo Hy hin q Oe \ as _ Vere —a Cx a J — Formulae claserate, C) (O pose & F = 4) eg Ween ce and Series. formulas te Dine a ¢(n-i)d in =n [rattn-~i)d] DQ tn = Sn-sn- | dy = aynol Sala) y>1 4) dn = yn : sn =a(t-¥) +Z | na Lifer (| Fe gp Cz Shi = a (ley) +k] = Niza at sequne ft dt% 5 ta... tn Set fobe aqip if “dnt = leenrfanr) g° +n . — @& sum of _/ntinite ¢ 3) SoO = q 1 a a dor classiate Date J pone ipygeesion (Hep) ~ A sequence! “GF fy »trity ... FS Collen > a 4 7 - AP = wot ifoi4 oo fee aa for ti Rta) Mai tn - an Hep \ — A Avthmatre Mam CA) : | 9 ALY Or thie numb IN A® A= x+y | | ae a ® Gomiuotic meen Gie ) “vadjoncll numbw Cin oO age ba gs) _to- oor, +o. 000033 ie s Greomenbr< Puprssion JP) g} Aetna Gteomen hic Open [dy = Cag = “Dd y= i} Se _ ; sno g 4+ dy G=v"-T) Zn } — Jur Cl=xye ] : Coeein-De fx? | I~ i xx t VF tee one i EP “Thad oom oa a Qs Cw = a 4 » ay ar? x3 Y c q q a *) AY gy > as ui bre ore three hymi ig F the bra ac, ¢ ~ Campus Education 3.Co-ordinate Geometry (i) If Bis the inclination of a line where @ + 5, then slope of the line is tan 8. Itis denoted by ‘m’.Thus, slope = m = tan@. (ii) HfAGx, y2) and B(x2, y2) are any two points on a line, then slope of line AB = 24—¥2 (x1 # x2) Xi Xz 1) Slopes of parallel lines are equal. If slopes of two lines are equal then the lines are parallel 2) Slope of X-axis or a line parallel to X— axis is zero. If the slope of a line is zero then the line is either X- axis or Parallel to X — axis 3) The slope of y — axis or a line parallel to y-axis does not exist. If the slope of a line does not exist then the line is either Y- axis or parallel to y — axis ) Equation of a line : (i) Slope —Point form : The equation of a line having slope m and passing through the point (x: , y2) isy—yi = m(x=x:) (ii) Slope — intercepts form : The equation of the line with slope and y-intercepts cis y = mx +c (iii) Two point form : The equation of a line passing through the points (x1, y2) and (x2, y2) is YoY LYrY2 gy YM LM X-X. 0 Xa Xz Yi-Y2 Xi Xz (iv) Double intercepts form : The equation of a line making intercepts a on X — axis and b on y — axis !) Slope of a line : Xe¥e sot 1 If P(x1, Y2) and Q(x2 , y2) are two points, then co-ordinates of mid-point of segment (@ +%2 Wit 2) of PQare 2 -19- By Mungle Sir Then, Volume 6. Mensuration (1) Length of the arc = 575 X 2nr. (2) Area of the sector = = Xx mr. (3) Area of the minor segment. = Area of the sector — Area of triangle. (4) Euler's formula : F+V = E + 2, where V: no. of vertices, F : no. of faces, E: no. of edges. Surface areas and volume of solid figure : 1) Cuboid : 1) Total surface area of cubiod = 2(Ib + bh + Ih) fq 2) Vertical surface area of the cubiod = 2(I+b) h 3) Diagonal of of cubiod avi? + b? + h? 4) Volume of cubiod =IxXbxh. 2) Cube 1) Plane surface area =6l* 2) Total surface area of cube = 6l iC 3) Diagonal of of cube = v3l ——— 4) Volume of cube =P 3) Cylinder 1) Plane surface area = 2nr’ 2) Curved surface area of cylinder = 2nrh 3) Total surface area of cylinder = 2nr(h+r) 4) Volume of cylinder =arh Note :-All the right primes have top and base congruent and parallel to each other. Then lateral faces are perpendicular to the base. -20- = By Mur 1 2) 3) 4) 5) 1 2 3 4) 1) 2 Then, Volume of right prism = Plane surface area Slant Height (I) Curved surface area of cone Total surface area of cone Volume of cone Slant Height (I) Curved surface area Total surface area Volume Total surface area of sphere Volume of sphere Curved surface area Total surface area Volume of hemisphere Area of base x height = tr (l+r) " dy Sm?h 3™ 5) Frustum of Cone WPF GF = 1(r +r) = (ry + ra) + wr2+ mr? = Snr + P+ ran)h 6) Sphere = 4nr2 = tne 7) Hemisphere = 2nr* ) A A Ss 7 - Campus Education = By Mungie Sit | - Campus Ec Problem set -1 Find ts from the following A.P. 4,9,14, .. Sol. Herea = 4, =5 = at(n- 1d = 44 (0-15 =445n-5 t= Sn—1 t= 5(1) — t= 55 — t= 54 2. Find first negative term from following Sol. Here a = 122, n= at (n= 1d ta= 122 + (n-1)(-6) 122-6n+6 t= 128-6n Now t,< 0, 128-6n<0 122, 116, 110, .... (Note: Find the smallest n such that t,<0) ‘Smallest n = 22 The first negative term of the A.P. is 22. 3. Find the sum of first 11 positive numbers which are multiples of 6. Sol. The positive multiple of 6 are, 6 , 12, 18, 24, 30, 36. Which is an A.P. with a = 6, 2 $= (2a + (n-1)d) -: Sum of 1* 11 Positive multiple of 6 ere Su= Z[266)+ 1-0) 2 [2 +60] Le sBxn = 11 (98) Su = 306 The sum of the first 11 positive numbers which are multiple of 6 fe 396. 4. Inthe AP. 7, 14, 21 How many terms are we have to consider for (eting sum 5740, ~~ Sol. Hore a=7,d=7 Sy = 5740 We have to find n, which gives. Sn = 5740 Now, Sn= =[2a+ (n—1)d] 8740 = 3[2(7) | (n- 197) 11480 = n (14 + 7n-7) \ -ByMu ppebraic OR Expansion Formulae (at) easzabi and (a-b}'+ab- 2(abj'atdab+b? and (atb/-4ab 3.a°4b°= (atb)'-2ab; 4. a' +a" = (a-b)'+2ab; 5.a°b" = (atb) (aby 6. teria eal Tabs (et ao (eth =4ob 9. heb) 10 b+ (eb= 48) MH.(a+b/=a'+ adh Sb'+b'= b+ Sab a+) {2.(a-bf = a-3db+3at/-b'=2-b Jb (2-b) ‘RULES FOR FINDING MISSING TERMS FOR PERFECT QUADRATIC EXPRESSION 4, (a) First term {S928 (Third term leet (0) Second term =2 xaos x (am 2 LeasConmen Mail (LCM) and ght Conon Factor WCF) putt nan iso po er La Fintona scolar =LCX et erunbes HF of cnn, Lethe CF #Deeneaes SHOE ad L.CM of polpomis. WCE eter oon sy Caos is et AEA eet cman tt on rent HEE LCM RCE Pdeet hemi Lem rn: ues acre 4. (aby’ = 2°: ae eagle = tay" DIVISION ALGORITHM. 1. Dividend = Divisor x Quotient + Remainder Dividend - Remainder Quotient Dividend - Remainder Divisor 2. Divisor = 3. Quotient = 4, Remainder = Dividend - (Divisor x Quotient) QUADRATIC EQUATION 1. Qundatc equations define a th equation ate =o} ‘Roots ofthe equation a'Yoxt = ae gan by b. Vbrdae 2a roots ofthe equation ax'toxte = 0 _ Govaticlnt ok Coticant of Constant wr — Costlent of “4ittheootsce_andB._ are known then the equation ie given by se. (a+p) x+ (EB) =0 5. Nature ofthe roots :fora given quaatic equation ax'sbxre = 0,D= bifac is known a discriminate ofthe equation Nature (yifD>o (@ifD=0 @iro => then a, bic, and d are said to be in proportion and writter'as a: d where 'a and d' are called the extremes while 'b and c’ are called the mean of the proportion. Conditions :- 1. (i) fad = be the (ii) If ad > be then (invertendo) (alternendo) 7 ss (componendo) od (dividendo) — (e) ab = ord. (compenendo & dividendo) oe + k a=bk, c =dk (k method) (g) for continued proportion $= (h) Theorem of equal ration Wh= $= then each ratio _ la +me+n atso- each ratio = {2 +MGEne* “(i) Consecutive numbers are x, x+1, x+2,. () Consecutive odd number are x, x+2, X+4,, (k) Consecutive even number are x+1, x+3, x+5,-. Pythagoras Theorem — | Perimeter [Area | Nay reelictary are congruent. v) Opposite sides of a rectangle are parallel i) Allsides of a square are congruent ii) Each angle of a square is a right angle ill) The diagonals of a square bisect each other_at right angle iv) ‘The diagonal of a rectangle are congruent. v)_ The opposite sides of a square are parallel 1. Speed time taken Distance covered = speed x tine taken 18 km per hour = § meters por second ARITHMETIC PROGRESSION Sequence = a,(a+d),(a+2d), Where ais the frst term and dis the common Aiference ofthe sequence ofan AP. then 1. the pl tenn of an AP. =at(n-l)d where m = last term = 1, 2, 3. 2. The sum of the first n terms of an A.P let the sequence = 0+ ad a+2d-boudr4(-I) dy “Sy 5 Ra+(m-Na] is the sum of| the sequence, [STATISTICAL FORMULAE 1. Combined M =x tks tly fix : f +f +f, fi 2. Median - (0) For grouped data M = 1+ + h were {= lower limit of the class in which ‘median lies f= frequency of the class (C= Cumulative frequency n= Width ofthe class - interval N al frequency (b) Mode : For continuous series where = lower limit of the modal-class f= feequeney ofthe modal class F, = freqweney ofthe premodal class 1, frequency of the post «mod class 1h sizeof the elas interval TRICK OF TRIGONOMETRIC RATIO] wy Xx (cab, sho) A. Trigonometrieal ratios and identities Perpendicular Hypotenuse Hypotenuse 1, Sind = asco = [sino x cosec 6 = 1] Hypotenuse See 9 ~ Hypotenuse Base cos Oxsee 0 =1 3. Tang = Perpendl Base Cora = —Base__ Perpendicular Tan 0x Co (To team above = and Bade Prasad Har” Har” Bole tano = 28 andcora Se? en ox Oe in 5. sia 8608 8-1 sin #=1-v08 sin = Vi-cos'd 6. see! @tan' B= se an 7. com’ -co¥ O= cof 8 B. Relation between trigonomentrical ratios and complementary angles. 1. sin@ = cos (90-8) =sin (90-8) 3. tan @ =cot (90-8) +. cot@ = tan (90-0) 3. sec = cosec (90-8) 6. cosec6 = sec (90-8) >. tan xtan (90-6) s.cot@xcot(90-0)=1 2. cos| C. Signs of Trigonometric ratios in different quadrants. 90" <4 <180° ul Only Sin, Cosec (+)ve 180° <6< 270° WU Only tan, corre 0

You might also like