0 ratings0% found this document useful (0 votes) 51 views37 pagesStats 1 & 2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
gn the
ate
pouitical « =
Ascope of stat Was p umanily Limited
collection of data welated to data of
tien Ff the county f
fuy. by the eect.
Jour ge popula
of the @un
YaMnG militauy © 4
phe eanuecst CerbuUA F populaten
rducded by the ErpelowA of
with the ‘ceormstucen of
Sn trda,an efficent Ayskm
SfAHAICA
gover me nt fou
revhaps, ene of
ancl wealth wa, C6!
egypt in connaticn
(INOUA yuan as
t mae of nial @ admintsbiatrue A
ted even «00D ft AG Os ALEUNG the HetGr of
rduagupta Uaurya in’ WOB.C., peatles Stats ©
( ots & deaths even befoxe 300 B.C)
aue available ‘in Kautalya’s puthashashtua, The
econ of land aguitel Lue & wealth Atats Were
wntaind by © & mal. the tand and Heventie
mitaistes tn the Hen oF Akhay i St Catuuy AD
em Cntwuy saw he ap litation of stats {or
Me collect@a of the data uelated to Me
movement o heaventy hoaivs, slaw @ panes to
con & prediction of KUCpres.
B know about thevt posit
ex
i
wegistuation of bowhs
¥WA Crtaweg utttrressect London, A
Statistics G@ptain Jen r 1p Stats WUAS,
1620, known as 17 qf 2 study
Me V7 man te make pe backbone
the pith and deat Up aah pucbability
of the so-Called CML FT el utntth Ula
on the | OF ger 17h Contueey, The #Hench
alevelopect 7 sal 623 and T.Teumat, after
mathe 0 wespon dence hetueen th ernselves
sh, saccade tn solving the pxeblem
youn Reseanrhers ti the development _
6 of stats, englishmen like fants
{ 2 utho gave the concep of eQHEssIOn
Kaul POuWsen 1857 wre founded the
Gounclation analysis. he fauaue test
dines of fit, 5t1 Kenald_ A. Fisher 1890
6 applied Atathae (a vaselety Tela such
1 genetics § psychology education , agsialtivte
ete, and whe 4 Hightly tuned aa the yath ex
of satire, }
— __ Stbguilan
weaning of Atatistts ipwioap
yhe weyd siati tis & commonly usec th tue
bse
A) Plutal — Ff means (lection of numeucod
{ack Like sfatcsties of populatron ,
Buta , deaths , peice puceduchOn otc.
Jul — stati means A teed ox methact usect
fh Collection, analyak and Antcupu
an? ; eat
of cata 4 ; i .
DE On
* Accaudin
tateme:
enqutiy
~ Aaoud
be defi
analys:
data”
Functic
42 Epato «
(as = t
= Acouding to f oy» bia
statements of , it
bility placed in sielaton
1ench vicauding t ¢ o @ud
Layers
seg Pre ;
>)
nction ¢ f 5 sah 3tie
rere
> &x, ono jac a
wof stat b fo expe
louyn Of numbeus 4© a
in the
them make them Mone
[ith the helf of st afastics
like unempleyment honesty »
also be changed infe feumute
2 Compausen ©
Sati whe hel of 1 Me
mean tg anne
in quantitative funy
ou CL, ta com” of © gc
Boy f a cenclud
3
ual
ma 7 e people nau
hy AEM ple t
mi ci the 6thev may ©
DA [ew cu but when a A com
gs onsn n © newt counties Sey U
a wutld get lem gact
@ uelation &
PS frog moll ye method of,
sect sith Ek las ly ne noe .
efatin quocia won Ee ia oe Wr ojo
een M
ie egos ae
and ©35 1 foumetate fotivies
Statistical methects tan be wsect Jon Bucing
Politics like inpou out of ab (us op oui
fencer planning & administrative pé Bn ONE
founulatet y anilysing the wllected data
the matey,
12 sed not only for the
analysis of the cusuent fats but Ase
sHimation of future yack by uing fhe
thteupolation, exhiapolatian and
ote.
[ae
C5.cleas with
agquegate items & not with
Ql units Fou 24..the Income of a family
0B ESODD acesn't convéy satétial meaning
tuhile the statement an inceme o
ts 73050 fed Ment con
SO familes
Ys STatisnal sense
deals only utith. quantitative data,
Hate phenemeng like “hones » POVEELEL
et Cannot be analysed Sratitially unless
these attuibutes aug assigned! Aumtable quantita.
TIVE MCOAUMES |
* dfatintal Jau ane fiue eply wn at avounge
tus of Atatistics ave not URIVEMA QU a
4pplable. Whese may not be tuue i Ud Q
Patbialay tndtvidual.
+ AMititis Gn be mistued & mizinteu wehEed/, >
He linitakon Of stabs 3 thal ta Gee, a
be misused, he Mite MAY QuBe due to
Aeveyal MEAONS, HOY OG. Luhen CENliustorns aue bared
” Incemplefe info, ou ave duawn by unskilled) .
MV ES TIFTnue ation
@) @llectian of datas
Fis the backbone of siatisticol en qubbuys*
wllection of | aata is net in puoper lawn Teen
the conclusion Auawun Con Neved be welable
the sounce Of data may be p* eumary OA ondary
(é) Ouganisation é 3
ws genewally or anaed NM 2.
ect of tabulation
intewp
Ayre @llec é
eee ze, (t's tabulated , the © byt
fo aviange the ee eA cle % tolumr
[OH as the sentation
yesentect
y complete cla
f gd a eithet
{o
Pk of data A ConceNne
data wpougn ey a ou guaphs
ea cee Analysds :
ey Ht once *he date B 5 euganied 6 G purcsented , TE
mani ta necé whep On obje cS ae: ant 3. Gia
re UG A
Tl Wuaion +
recs to PEPE
a te to hive at ceutar oe
toda { qnalysn oa rte if
Ff nd n easUHA > ts, 4
ak aa tile aiid , 3e emi- quostile
n cle viation,
Hani rn
y witile reviation m
oofficrent of ¥ vautance &
MGS
el
Han
soos a Geviation,
Pr 2 COMM est
kelly (te) skewnehs sconetatior, egae
© @.) pntenpxteeet a
7 od & to
“he, (ast ut 9 ti tical, oe4 netan
Y Analysed. fhe fnroupctaver Of OO GU ad
CAsYy For & sequiues ia Pi Les aue not PHopalg
C he aniily sch A CnguUitly
| Heapcrat he unre cojerttv of ae
yail
classifitation * ’
> Bala ceoltectien anil dassif! a ¢
Genit sat, cleats with tre applitation
4 a methads 18 specific Pade If we :
| cg “mate phe investmen?# Ou Vif?
e has to ke i
(
oe special recPnid tc
ay Og ppl battstics thw
meth eels 79
‘Yo achieve
me appiianen e/ 2 t
specific pHoblern Gs population, natenal nme,
1ages, price etc, The applied Stars Can be
claisigiec! tints yollauung 3
D Sescuiptive Staristtcs 2
t's cenceaned with the ic
& uthich natwrally Nolin die Daeame Be
Past, the business “atatBHic, ase applied 4
descuiptive stats as they aye cence ned wrth
the analyst, mensuxemenh& pusentation
bis facts. thus descpiive Sats deals uP py
the exixtin hots & yiguites au Yack: of Yhe a)
29. populatien Stats déiuss /he Nate, 9,
causes of pepulation Auning if peniod tke
(ensus of 2001 shows the population of
India upto 2004 only. *
Ga Papal Inductive stati nes 2
Ht Hees 10 the foucdishng, puedithions, eatin
On judgement rib [ox Lp hike on the Mee
Ae lem sampling technique: the cenclusfen
ved thucugh sindem sampling aue supporteel
by stuong markematical quountls 2s such these
@S$ OF STATISTICS |
nes compl
btAtAtA
systematic MANNE
jhe unp2t
Jiguues na
in Yauch a {oum that they ase Ce
Human mond cannet undeustand
e,°8 the Im
ond ges af ene; Wie na fu"
oth a to AIMpIyt b comple data Wm
NN matic abn wuepuenentarien, Av
suememben the
“aruclents, but
no ks whe
stimaley
DOs
~)1 SIE puesond yacls tna clef HE se 3 . @ndit
, define. OM)
€ Sats Ep hms ‘oT of WunatB BeinE
€ thus Di so eyed COnlusiends Me >; i q
fh Alakc! Tne pucduckion of paddy gat te
¥ / tonnes (tn B02: poids
7 SOUL
gives @ definile tnfo., theo
a ump Wes Like #he Popul: of indigh
av Se, ware LB ner nities but
ot the popul of mda & GuOUUAG aT
pat stats bcuz fF CONVveys GA
MCAN NG
¥ “ifOPES COMpartsEp 2
s ene af Fhe imp. yur 4 A1G6.Tt helps th
paung tne data wat. Hime location, #
ase heir ts 7 Compane Gne phenomena, ulith
the orheu. The Vauious means of CompauGen aue
HOFOS , QUCHAGA , HALE , LO- Gfrcnts ek,
£9. > the liuacy uate th INADA stOOd AF 36%,
A c00U as aGguinst B4% th 2003.
4 tt hes tn foumulating & resting G_hYypophesea 2
Afathtial methecls aue helpful to develap ne
thenules. He abe helps En yeunulating a festic
hypothes4. Fox eg. we can veuify the te
dupply with the help of 0h. dimilarty the
AUC, 64 goars of New Theale Gan be
known asily uth the help oo Stara cal alate,
it heirs to “pnecacine hE Ufecl Wf HBC th inks
se on AWiINGS & invesymenk & i? pHovide
widante i the
polite eC {oun ulation of Rew theauies &
Se Tt {OUees futune Couey
the methods aue vy Y
pltwe dis on the aap OE wi, rae of
m co!
ee OTE hens Of Coens
Econditions. Aappna) memods Hey, 17 tre
ey mulatTor? ou futuye polises by anatys ins
past & pue sent end?) 5B making pegpetio by
ou fun. 7he Arye You XPHG
Z HWE
es Ne feidien is highly
APhearues
stabatical fel
usepel {© { JOUCCAMAG {eoto a giver
1e4/ tudy
AN ONnGetAy PHOLES
cheb
lity of decision makihg by
ng alteunaliv€e couse of acon tna
TRG PHOCCSS Lele ching an approprak
Guessing Ihe Causes & pyobable
1 cutain CAUACHERT STIS. in given situations
italy the destue to undewstand an
Anew phenemena
fu
tial hata ase the eur
process of measwutag, Counhis
may tead to Bee) uUpeak & PHOb/Em
adue measuucble, quantifiable coun fable, cl
lhile cenduchig a AUUeY th @ stucly, inves
develops a method te ask seveual qubspens
deal with the vatiety of chawactes tie, of the
Fver PEpulahicn | univeise © due teumedl Ad Variab lex
[Oveg.> GCrsumex behaviouy, féL 10. 2.,
f Jeb sans/action, AeInking (smoking Aabjts
leadeuhip abilities etc, :
The chefte of data célletion methed from Q
Pastiulan souue depends “pon the Yacrlities
QAVAhAbS the extend o ACUMALY, HQUiNed Gr
analyse, the expeutie of the invesmoatey, the
,
g & chseuviratau deosn't a
beh aviOut as
opseuvation studies, the invang
ad he uecouds the
metimes, mechantaa lelectiontc
ucceud destied cata. Diveused
ns of paupitulan adease could! be
cbseavaronal study
westions , inst
ifecuu. dc
ce Gu Ovex
© time
is fo be
tenclucted eftheu {ace- to-4a
, Diueck 7Areuviewta asle eKPENATY
Consuming a big sample of Hespencdants
J :
personally mn fey vieutect An teH vieut es biase
come tn the uiay should! |
duch infeuyrecus 1
at the x, Be arages ‘sesearch 10 handle
{ sruatenad fae
Py
cd wet of quest |
edhe Tee generiad
seation
of qMestiona que — ait
—multiple choice
»-open- ended question
ons fou extracting 760
Y¥ts a {OUMUM
e Tugel nespondants
Ztomous (Yes/No s1esponse)
4(nochoices‘
Seondary Sata dewces ?
reondohy Oata neyens Fo ¢hase date which have een,
purpose offer than the
Besides Neuspape
of Auch info are &
Collected! Canlion {OH wome
Analysts curnentig beng undentaken,
} business Magazines, Ether SOUnES
2 exteunal Secondary Sata ee 8 ‘
Ht atucles cendua) AtatAHtal eug, data, national fA
awcounts Atatatics which contas estimates of 2
national income fou several years, gaoutth Hote,
wale en mojo eonomic Acts, Auch as Gi FULUtUre
Tndustry, tuacte ett. Wholesale puice Index published
by the office of Konoryc asa, nist of
commeie G inclustry, COMUMCH pike index, KA! bul
economic survey, the vartour hombeus F Ommence,
BSE , NSE elt.
Yateunal Aecencary Mata dources?
hte. genouated within an wug. in the puocess
of Metre business activities aue mefewted 10 ad
inteunal secondary dato. =Anantial A[Cs, proctuetion,
quality cenbel € dales wecoucls axe examples of
such data
GES & ADVANTAGES
-advANTAGES
>auny to collece
Involves lessen Hine 6 Cost
haps can be elentifred easily & steps an be taken
paiemptly to oveucome the “same
DISADVANTAGES |
peel ogre Uni}
i yt EY iit
of employers, gross aales*G-p. etc. of
— hale of mecswxement may also be different. te
cleclonod™ by VaNGUA Co, mouy have break. a. : .
are * kei the ne, ®
15-20%.& 40 6N. 10 a 4
4{.(, who have euvan tas 167 above , such date ts o
re tse+ may, not be Hi
stared in rem
ett.
be dijferert
baeakup of €/02, (01%
ing to know the nb
ihe such
above , such cate. A
selecting a samp
process Gs Her
nults Called sample bit
aue made about the pop
Gastance a pe tne
‘Hantom act of peop!
the pucpe He, Poe
may get fiom
auditor selects Ht
the sample mean fe
“i Ye cseaws conclu
jood cons
on of
f youth:
eMeel
wagon of +
cl onarantty
stead of atrempry
uation, ta de f
counting biol ¢
mandom aC
Fime uequiaed fo Gntack the wi
of ceutain #5
|
3. Hestuut Hue natue
Ag 2
gy
y membey o4 element &
‘nas an equal d ine lent
elected! again & agers when a
fom the populaation-Fe duow &
need a compere dS
conte so ney eath
eve
cample ute
A the population &element can be
B Glled pram
sample ef 5)
sample 6
Aelected b
gxOUps aL
Clusteu au
do nod hal
€4.3 om"
A an ouc
pHoduct
yy Computer O4 Atuategre
1ocedtuuse Gives UA CVE
PopulaHen an equa
the sample
cattle fuar
populah
wrth POL
J homogengua compaiedl
a Whole. Thus, population &
rio mufually € / ups Gallet
aue ueleva ppHopurate to the
sample called a sample
q alfa 64 guoup in
wopention Ye. tts srte. As the
topontiond sampling pxocedume
t the No.of element ih each stuaira
pHopeution as the populatror ¢
h non -pH0ope tonal & the epposite. Thus samp
PHotcediuie B mexe efficent than he simple
Hanilom sampuhs becuse you the same sample
Aize,we ger moue HEepuescn tativencss JOM each
imp. segment of rhe population :
() Cuter Sampling Method 2
TAG noun, OA QUR 4ampling method uthFa
has been divideot to meet the puobiem of cart.d
nadeqase sampling Home, The entive population
to be analy fs divider inte small chunks
elements 6 a sample of the deatued! noRn oleme f
4, called 9
‘a mple §
cons! 1179
A= ie [so ao ,thws,@ a samy d
“sysionatie yy jhixough the
k=
rdentih eel by, UG
popu! ibtion Oi vrentttgi§ cuameorn nlhs
Bon heobability Metned
@€nvénience Sampling *
I thes puocedune, units to be inctucted ip this
sanople tye aelecke at the convenience af the |
Investig ato Mathew than any by any pxcspect{iad,
Probability of being saected , tat e.g.» a Atucent
Ter KG puoject en food! habits among adults ay
wae hia Guin fuiencls th the college to constivute
a 4ample bequse they ave easily available & Will ¢
Pauticipate fey Uitte 64 no cast, btheu, examples
Que publ opinion 4xuyvey Conducted by any p
TWehannel neay the “ofhuag station, hus os ow
7 a mouket. tts not passrhie valuate the
Sepuesentativeness of the population sample
Cbtacned fuem pha Fecrnique & hence PACQUITEN A gs
AGU bE taken tr infexpuering the s1esutt omf
Me (envenfent sample that ane used te make
PHN aby
OD hesiposiye
in OUMATE, 0
ee eneten dyer ase Ph
toebiatn information ye,
% who uit! be
1, beauye
ve the desine
F240. 04 beaunse they éatafy to dome Bie
Aent by “eseachey, i
oO Tudgemental damplti 8
Tt invewes the Acle cts, Her
: NAAN b
inn bal position tc ovitle she deschert FE
it's based on the aki & expeuence afm
tavestigates, to select uthéhaample & at
Hime & where, 50 thod the Prfistnfueences duc
Mite 3 Coumect, the Jedgemen te) sarn pip & used
_ i unlid nb.of Hespenclant, have yhe inf ilesmecteelPe tn
7 Such Ca an, *
We Puiporeless & nol Lfer fea sary
May Contain the geneualé oad
dust re fact Pe one ee ee
“espendants wihoave casiiy awn
Validity of tho sample Mesuitts depencts ese
ie vse ment of the investigates tx choo.
@ Quaia dumpling 2
a « foun of pucpeutionale staatifiec! ste plicg
& whic lpre adele psopextion of elements
aue sampled frcrm diffe gups: ine population
z. but en convenience basis, Yn oTheH WEN Y
pre banrpling & the Adection uespendants Ue
SIE? the investigatey although G9 Making auch
/ Jo make election, helahe must ensue that each, sespendanH
satisfies ceutain aurea uthith & essential pou the
atudy eg. > the Tnvestigator may choose _t0_inkeuview
{O.utemen in such a way that & of them
intome ofp? ROOCDD sof them, have
biw BIOvODD- P26Dood & est OF
4 them éheuld
1d EUS
10 mtn &
have annual
m
Dey Tp annual fame
j, below FIOpUDD. Furtheum eve, SOME
Hon 4b
| be blw Qs 36 yes. of age sothows
ees: phe balance coh tk yea
None CLASSIFICATION & TABULATION OF DATA
Classifftation i phe puccess of cumant ing data
into eee e ges ee, to heads commen
: chomateuisticn eu separating ae into di bf s ee -
A e auits Ahus, classrfication fmpsesre> Mle
Sein. in Oi of BRO digf> classea y ewhit
of the e Yicteumnined Tue , objectives a
wahat f the inquiy. of stuclen'
a QUE sewed in ev Hee
| ae be classigfed! en th bos of 9
stale Of edorgurgrreas » sel’ giOr, 1h
hetghis weg hts @ $0 Ou.thus, the ame
e4 (on
asst
| the uni. acoudin
cutheuia JO" eg, the
YM Uthic,
Beh of dati can he cla
C5
tudy the Hela ke
ification of given date w.s.4. 2 ov
ool tat
‘ation puesent the huge uaw data Ba
cd AB stad? compHhansh le
dA © attempts to highlight the 4
uke the date
Uitetes Er pariGon :
TOaHen enable Us TE make Meaning
Compasions depencling en the bas
classification 69: the dase
445 04 CT eiQ &
p IG
Hatlon of students 7
1g 1O gencle &6 enable Us to make
9 Compauative stucly
f{ the pxivilence of unr edu
Ships 2
MoYe
gender of the siden & pre
culty joined” t th Unk. wil enable Uv
che Helationship, blw these & CHifenin
& tO Study
Ao Facilitates the Atafatical tueatment of the daty 2
the auseangement of
ote uniformity
available yp Juuyhew
analy 46, Inteupretation
4
b 1 the velum@nous Ketaiaoo
data into solofively homogenous
fi UOL OY Claas
16 ‘theby pts. cA Alnilavitg Peas + my
midst divers,
open cus
CEA NOMOQeN?h
a makes I- oy
Protesing like atculation,
data,
aiff PPS. 64 lassen Bc nc of ways based En any 7
MetegnGable physitat, social ou mental chiud eulatic i.
athith exhibits Variation IMG» el elements of ba lo Get
whe given data, the yack tht dass will Olfffe t Gn +;
eof another lass wi,t. dome Chavachecisy
alled the bas ev wipoua tou dassifiatios
Funclions he
gi
ndonse: the data qTypes OF CLASSIFICATIONS
Haron,
b Ceeguaph jcal Class
bas
nal
data like fat
ine yfold of agri ultra
in SOW
etc. Fou eg
hectaue {or cliffs ountArer
given below
Anca
usA
Rkatan
Russia
china
Ay Hla
Audan
LAE
2, Chuoneteg ical COs Classification 2
Sn thes, the | ne data aue Classi {feo
Siete) in mme example & pxlc ue
induatuial ConceHn ie aij 2 pexio
a big bis house diff. YOu, we
any country 4o4 iff» Years . FollQLuing ie one
which shows the pe pueden of Yn to t tf
decades.
Population Gh O«)“y
3. Yualijative ¢ n 4
Whonwe dal Bre clautitd te some qualiasive _
DHEA eT ue norcapasle of quantrayie
measoement employment
inked ip the. classification
3 Fw qualrtahve a1 descuipive with
attuibules.%n qualitative class,, the data ate
ws fo the puesenee jabsence of the
tiibutes tn the given oe ple
classet7ed inte only wuts Gn CH! a
like (h puesence /aksence amg. vouteus Unita, the
lass ipitation & feumecl ar simple O4 dit tomeua
g agiven population o
at honest |dishones? , male/gemale , employed |
unemployed, beautizul)not- beatiful, Houseve> if
the given pop.G Clamified into maue than @
Classes w.sid,a given athitbute, H's dard 70 be
manigeld classi#ication. £9. fou the atlat buke o;
intelligence, verrto.w dasses may be,day, gen ius,
very MIELL , AVG ink, below ag & dull.
4> Quantitative dassi-ticn 2
Yh the data aue dassified en the basts i ees
whith & capable of quantitative measudement =
like age, hetght , weg ht 7) PHUCEA , PHOoduttfon ete,
B teumed a quantitative lass rfrection , The.
Quoustrative phenomena undeus tu & known
a vadable and hence thas dossiitoHon b
dometimes also called classifrcatien by vaiobles.
Ff vauiable & a te eg phenomena
uncle stully like mouks th a rest, helor ta] uebhk
of student by a class, wages of woukew th a
Ui of femrd as varrable, thase VHA les
whith an Take all the possible values integuct
a well a aliona! th_a given HaNge Are ttrmed
4s continuous varloble £4. age of Student A a
Adheal, because aN ace"@an take all poste yatues
a TF (an
like ya.
these va
values cui
toured a
marks TH
da cue te
take only
FREQUE!
totadivid
Serres «
uhete |
as dati
the dat
aAfeu
data |
useful
the mi
data |
euder
auna a
as 7 Can be measured H (actions of 4
tke ys.,dmon ths, day? , niinuler, a€ ‘enc. etc
fake al the posible
these variables unable to
values witha a Given specified Mange ate
Rel os cecil AA fontinuou Cowie leas
marks tn a fest out ef (OD4PRP Ff stucent x
dawiete vartable alace in pits case, MaHks (ap
take only Integsal valucs fiom 0- le
4 f
FREQUENCY DISTRIBUTION € TABULATION
to Individual *
exsles of indiviclugl ebseuvation Aa SE
dahove ems ane lated singulaxty after ©
sting ucahect pom lating them th
ain the table below G cat
data. “the belew puesentah
cu foun doen't give Us ang
@ & Hothex Confusing to
wesentation of the below
nage them th Mild
% & called the
AG OUGENGE
data in 16
uf rageumation
aie
the mind . A bette
data weuld be to aHHany
exude of magnitude whic
quuaying of cata
no»
Rel
q
2
3
4
5
6
a/uselshhs i
aa ¢
diah les 4
gaat 10
tse
NA
valueMagaire
wele Aeules, He Wika a aue pre sented
frat exnce mensuuemen t of units
ly Inclitakdl. fhe 40% fig Bay: bl
of off 9 7A él Ads
LEP Oi ate | i > Othe UAs eS 5
At
e bw the lourey &
eu omit of the
4 the Class inten Val,
the Class [0~ 20 ,the clos
frieuval B 10 (80-10),
Formuln 2 f= L-S
TKO. Cag)
* clos inlewvar
4 laugest item
°.S= smallest Hem
°K=no.of Classes
IM 69. if the marks of 50 atu dents axe varia
between |
60 GB if Me WAnt toy uM F class
then the cl0bs injeuyol ena ct axe
60-10 I ae
Cass Yntewval + the diffe
‘= ft depen
Tata & the No.of ch
Magnitude of the class infowe
the HaNge of thé
the uande ti the diff» blw the lag
the smatieat ehseuvaton tn the given date
Fou 0g. i the Hange of Mauka of a Gup
, { q
; : 2 016 H we dexive te
‘es. then fhe Mag nitude
be
h class tnkouwal utor
YI0= 5. Aclaw interval
gencally be i mul
4 a0 dunth uould be
handle @ Jacilitak cemputatior
given a fermula jou dlckeumus
Atuuges ha
the no. f ¢
A the
total no. of ehacuvation A 10D,
no.of Ua%ser weuldl be 1+B3nxF
(ql0v) 64 4+ (3-328X @)= you
a)
Aiuuges has dhe given jounula {on dereurtini-s
the magnitude oj Has intewal.
Re _ Range |
1+ 33a LogN
wheue, =magnituae of class Tateuval
(0g = logan thin of total no. of observ.
a q ye fyy wh equal
swig the stuuges (ounule , clasity
Pr bans the ji. ctata of, hows Apent fh
wouking by SO workers (Or peulod af amenth
fh @ (eitain faloxy,1s9)
tsi
124
tug
(ey,
161
tas
les
162
183
Is
7
164
WW
133
+36
140
tu|
1u3
14y
We
[10
3
No.of Classea
N= 1 + 3-322 logsO
4 3:322 * 16985
+S 6435
6 6437
=¥
Gas Fnkeuval
30-5F
SS- 80
80-105
105-130
0-155
1SS-1BO
(80-205
oy
199
114
30,
104
43
03
18
164
62
ay
WG
4
YO,
162
leg
164
(6s
(64
las
18
126
42,
144
121
122
(ey
187
195
(97
203
204
108
qu
146
13
er
(4g
yq
(st
(SB
(sé
Is
161
t
Alas trdeuval
N= Rauge
n
= 204-30 = 4
F a
= 2Wes7
=0.
= 21498
a2e8
ree a
MI
1
HAL |
HH 111)
HA
HH HH
HHI
Gis) Make f%eq, détuibutian e
ks
él
ey
40
aly
SF $4
44 94
ou
2 163
34) 4s
40
y
34
38
86
Go
ae
62
68
a2
|
88
65
a4
vo10-16%
=1498
“ee Mass srteu vat -
Sat Cans ar Fuequency
uu—yu m q
Sisal HLL 7
Chet HLH 8
34-84 an E
ow HHI
DIAGRAMS
A diaguam & a vbual {oun 4 ieenia
Wott fal date, Diacuiarts wef eee
types af clevites Auch as haus, cincles, MAPS > f
cawtoguams etc. Dhese devites can fake many
atuactive four, atufetly speaking these ate not
hic devices. Diagsams do ner aclel Any new,
46 the statistical (ads, but they “exhibit
dhe seats mere clearly » An eudinaxy ma
unolewtand pretu4es Gidiaguon ngewe Ary
the fiquycs. Me we of Aicag Hans 0 AecomurG
mes moxe popular in the puesent rime.
meantnPOVANTAGES te fabs bh the mind
+ Attactive d tmpuesstve and 010ak raliig to Phe eye.
af the Headoua he, 'uc Moyo Appec AP he
of the Meadour Ahey fand them v-castly
Yen a lay r n under ie iano ie ae
SN TA OUR T AIS OEY L can LER OA may
Agfud infaences f4om if, Ge Ais at
fro Wowie Vistough numeuita. '
ay Go Thue dia 3
ay Ge oh tough Biya die ileite, Ose 3
Weesal ap licahiity & & 4 guide tn CCO,,
atmart alt Sirsa life asa geod g
bls , social instifutions
make data simple & can be wemembertel 8
Yy GA they Hendey (empauon an CAasy ©
way. ”
~ They provide meue thjo. than the data tha table
‘a. platy an imp. x6le ty medeun sh ampatgn.
The neuspapes Jowinal. etc. ave Filled with
diaguann
LIMITATIONS
+ Oia, can't be GNnAlvyed yeeithe.
+ fia. Ahouw only apphior, values
> Yt CXPAAEA only Utd, Yack
To duaw a table & O24 but (Cnstuction of a dé;
B NOF 40 case
YH Ss Au plement tO Fabuiasy HESeN AKON. by or
ean albetie tive to FF. p Fea
> Small diff. i (auege MEAS Uver) E, i
z| z nl Can't be studied
5G, $Q =, q
89. > the diff. bud Gos WO AhoLun th a dia Hhan,
TYPES
'G Che dinensienay
out, the dength
duittth of the b
The +
@ d
>
JISIIPF A,
J
©
LILEEEIIIII Id
ct
The les ay po
aus ts
Qs
Qe
ad
4G paws p p.
4 net ead fon ibalclehed
The town bay + a THICK Wide line.
ONS OnAH BUmped tant
dda)
=
ooo&x ;
- ca
suitable data {40m out
mT
ts
|> Simple Bau Diog.sam F } ‘s © Matty
Ft aan be duawn eithey on houtzonfal eu vertial 5 —]
base. Baws en heuieental hase ave moye COMMEN. « ee
vt baw dig, & Ye to duaw @ euy to undeush yeas
and. tr bls & Xo., t's commonly used pe
Auau
. bana,
its Cin thousands) & kee
is the
The
om
mu
Ques) Ouaw a subtable hay diagsan ®ou veil
© COM
fo uniteus}
be
multfp
7
pH
datinguish differen component fom one ¢
diffevent colo |Ahade may be 9 en
Gua \ Repsiesont the {ou
; A
Male (M)
fom Ale tf)
bau Aiags1 On
rm) ‘
+ Buofit of Gmpany A
the values given in
e é
opoxtion to al
psolute gute on percentages
duaun ena
louring data in the suite
00 ao.
2000 | p00
“otal (Dlel bau cuegHaAmM
¢ 1GHAMS have been uu
DHEENE Ahselute yatues but compauien cs
sed en a selatve bad. The vaueus
mpenen& aue expuessed as peycentage
Feu dividing the bas , these Kage: auc
LMU, th tha case, the haus aue of ul
( gach segmat shou the /
tne totel
Repuesent by & Kage ba dinguam the 5
felleuting data on investment fou the yfualG
second Yyeart Plans.
fon OO VS
Aguiulhoe 359 160] 768
Suugahon YGe apa) Ado
Sndustouy 26! 12%) 90F
FAN Apo 6SuU 3007] (Ue
Borigl AewvICEs | B06 Muay) Quy
Miellenous 40 Wes) 300
S7otet &t60. \oot ¥3q3 Wd?—
Sy
ven of Hp
rena cus
vecaneing Te
also ‘be dliyfuedt
QE 360 deguces Ct fh
Ae peler aking the x
Pie 3 ots, a
» OOS Whe cen. oF the wal). Re
Ocean) or a
wie | PT, ae
Han eee F
2 ae a
An lauctég we ,
vhactic be ;
eat «pi V2g81aM) fp Mepulesent q dato, i
aa ti)
facific |
Atlanke |
Indian
Aatchien
bec
60 = 6
76 1180-4 % 360=
1g°
4-81 IS@.q x 360 4,°mae usect when tuto
mponents have
aue ke
nectangle OF iA pHor
auica of the
Bho Ne, T
He be values. Yt may be of 2 type:
m diviled ectangul
claguam, the uti th of ¢
ition
value
G) feucen tage
Yo such a J
& kept accouding to the prop
the vauidus component of the
into rage & xectangles aue divided
phenomena
production e
GD Auaw a &AWimensfonal arag
the Yollourtus dato
expenditine
Bep.he)
YEN Gj
F000 300
clothin
education
Howe “ent
MiBCOLENCUABotution >) */ | Cumulative nage B) '’. '
Get itn) Cen) Ps cc
TT 50 cc =
// 1 ¢ arr ¢
| § | 666 691
to | tas 8-6
é | tary 10D _
363
# GRAPHICAL REPRESENTATION ©F DATA
% deteguau
WA Fust like ¢ bax Maguay One of the Most Crip,
é Useful meth og of Pxesciting PEGE Continues
Ate & known a ‘nisto pant
WOKS in teat
ithe magnitude
dotted along the
the veutical Ger
2 In this ma. nitude of
Of dads inketvgl
hexizontal axa a the Peequency on
5. £ach 044 hay (outer G Uppey values
Thi, GVEA US THO ‘vextiens WOU Lar
HepHeentifg jug CNY , Uppeu e ‘Gj
jethed ‘ogehh a prices oh is
} Whee axe Clawer, and the LEGA K
Ptopohionare to they Peequency, Histog
ENON an block Aaguan OY Sabai
*Uangle 4
24
A<ingle ane
HAN)VG alec
hautANGICS, A
gle,
YE ate
& also
Aas Suequency polygon 2
A berquency ABtuibution ¢ fan be sepuesentedt br,
h&toguam. 4 Alpe Method of smoothing i
histequary Ww A fuequency polyGr
e by 7 the micpotat of each
ith the mid point of the Yep cath
wectangle by Atuaight lines. Tha & done
rho that puequenty Aa
huket
polygor
cause She
asen Ff hGto Guam, oe
ust equal to Fhe
easily be Youn
‘ vt fuequenty cuHuve
n12G the puequency pelygc
tthe Bhaup twins due BUC
1 ency pry B Armootn yusithen 10 OA
A hOAGE wesults Bro a conta MUCUS
frequency GY £MOOth
0 fn
hae Cniluced a
bi samp be A12e Of &O §
of a new puoduck yh
a @
t launch, The SOY eA Aas AA Ponded en Pc
OppHopy't.ke ae A 4s! Vous .
eee? ee Fe ge Bo Mes E
Boe? 29 8 aa MO By gt z if 1
41 3 UO W 2 :-
DS aeeP es, 4, 4 pe 82D ux
ES ewes un 4° ge a Bip 4°
banat 5
hfe ts the elin o pas 3 present the same
Ato G Hau YEGUEALL
polygon i Gl feqeny Cab e 4 4
raked suuvey wuthih co
pe the allepya
46 we empant
x
2
3
q
a
oe
1 “7
_
=
: a
—
Oqiv
ne
then
oH tu
mecli
Show
the \
freq
inkeuPHC nbect
AMb0thiAG Hh
OGIVE
then cumul
then the +
C4 Lumulative jue
median , Priel pe
Shown along x-axih& Cumulative reque
the V-art 4h dating an egive, the cu
equency tA plotted at the Uppey limit
PM the sucrose Pris latey 7
together fo get an egive cuuve
of comteucting Ogives. —* ex thaw ogive
More than
the less than cumuls fueg, due
upper Claws beundauics of “the Hcy
phe points ave je ned by @ Smooth pecee
Ohas the shape of an Aongated &
the mete than
moue than aue plottect against low
of the HeApective ise, sink due ZoIr
free hand awive 6 has elongated § stS80 compa
Wo. of
companies
43
qu
One (an locate the median by ayouir A ogiv
less than meye than ogive. 4uom the infeurcetion
phof these agives, a peupenditulay line touches X-axs
whith is the value of the mectian
the Avg. Annual pu ofits for
fess thaw {Mo
ulatry
aguiency
Cur
24 +21=5OWBO-21= 334
64
108
(st
@uys
BIE
386
One
tho
5
s3C
SH
4wequq2
335 424
BER 33s
+4 262
458 194
HS-150
86 113
Be 86
+ 38
17
or