EE 327 Signals and Systems 1
Homework 4
1. Use the definition of the Laplace transform to prove that
ω
L{sin (ωt )} =
s +ω2
2
2. Use the definition of the Laplace transform to prove that
{ }
a. L e − at f (t ) = F (s + a )
dF (s )
b. L{tf (t )} = −
ds
3. Find the Laplace transform of the following continuous-time signals.
a. x(t ) = 5
b. x(t ) = 5te −3t
c. x(t ) = 5e −3t cos(5t )u (t )
4. Find the following Laplace transforms. Assume all initial conditions are zero.
d
a. L t 2 e −3t
dt
d
3
b. L t 2
dt
{
c. L 3t 3 (t − 1) + e −5t }
5. Find the inverse Laplace transform of
5s + 13
X (s ) = 2
s + 6s + 5
6. Find the inverse Laplace transform of
F (s ) = 2
1
( )(
s + 4 s2 − 4 )
7. Find the inverse Laplace transform of
G (s ) =
1
(s + 1)(s + 2)2