9/8/2021
Measuring Errors
Son Dao, PhD
Why measure errors?
1) To determine the accuracy of
numerical results.
2) To develop stopping criteria for
iterative algorithms.
2 Son Dao, PhD
Son Dao, PhD 1
9/8/2021
True Error
Defined as the difference between the true
value in a calculation and the approximate
value found using a numerical method etc.
True Error = True Value – Approximate Value
3 Son Dao, PhD
Example—True Error
The derivative, f (x) of a function f (x) can be
approximated by the equation,
f ( x h) f ( x)
f ' ( x)
h
If f ( x) 7e and h 0.3
0.5 x
a) Find the approximate value of f ' ( 2)
b) True value of f ' ( 2)
c) True error for part (a)
4 Son Dao, PhD
Son Dao, PhD 2
9/8/2021
Example (cont.)
Solution:
a) For x 2 and h 0.3
f ( 2 0.3) f ( 2)
f ' (2)
0 .3
f (2.3) f (2)
0.3
7e 0.5( 2.3) 7e 0.5( 2)
0.3
22.107 19.028
10.263
0 .3
5 Son Dao, PhD
Example (cont.)
Solution:
b) The exact value of f ' ( 2) can be found by using
our knowledge of differential calculus.
f ( x) 7e 0.5 x
f ' ( x ) 7 0.5 e 0.5 x
3.5e 0.5 x
So the true value of f ' ( 2) is
f ' ( 2) 3.5e 0.5( 2 )
9.5140
True error is calculated as
Et True Value – Approximate Value
9.5140 10 .263 0.722
6 Son Dao, PhD
Son Dao, PhD 3
9/8/2021
Relative True Error
Defined as the ratio between the true
error, and the true value.
True Error
Relative True Error ( t ) =
True Value
7 Son Dao, PhD
Example—Relative True Error
Following from the previous example for true error,
find the relative true error for f ( x) 7e 0.5 x at f ' (2)
with h 0.3
From the previous example,
Et 0.722
Relative True Error is defined as
True Error
t
True Value
0.722
0.075888
9.5140
as a percentage,
t 0.075888 100% 7.5888 %
8 Son Dao, PhD
Son Dao, PhD 4
9/8/2021
Approximate Error
What can be done if true values are not
known or are very difficult to obtain?
Approximate error is defined as the
difference between the present
approximation and the previous
approximation.
Approximate Error ( E a ) = Present Approximation – Previous Approximation
9 Son Dao, PhD
Example—Approximate Error
For f ( x) 7e 0.5 x at x 2 find the following,
a) f (2) using h 0.3
b) f (2) using h 0.15
c) approximate error for the value of f (2) for part b)
Solution:
a) For x 2 and h 0.3
f ( x h) f ( x)
f ' ( x)
h
f ( 2 0.3) f ( 2)
f ' ( 2)
0. 3
10 Son Dao, PhD
10
Son Dao, PhD 5
9/8/2021
Example (cont.)
Solution: (cont.)
f (2.3) f (2)
0.3
7e 0.5( 2.3) 7e 0.5( 2)
0.3
22.107 19.028
10 .263
0.3
b) For x 2 and h 0.15
f (2 0.15) f (2)
f ' ( 2)
0.15
f (2.15) f ( 2)
0.15
11 Son Dao, PhD
11
Example (cont.)
Solution: (cont.)
7e 0.5( 2.15) 7e 0.5( 2 )
0.15
20.50 19.028
9.8800
0.15
c) So the approximate error, E a is
Ea Present Approximation – Previous Approximation
9.8800 10 .263
0.38300
12 Son Dao, PhD
12
Son Dao, PhD 6
9/8/2021
Relative Approximate Error
Defined as the ratio between the
approximate error and the present
approximation.
Approximate Error
Relative Approximate Error ( a) =
Present Approximation
13 Son Dao, PhD
13
Example—Relative Approximate Error
For f ( x) 7e at x 2 , find the relative approximate
0.5 x
error using values from h 0.3 and h 0.15
Solution:
From Example 3, the approximate value of f (2) 10.263
using h 0.3 and f (2) 9.8800 using h 0.15
Ea Present Approximation – Previous Approximation
9.8800 10 .263
0.38300
14 Son Dao, PhD
14
Son Dao, PhD 7
9/8/2021
Example (cont.)
Solution: (cont.)
Approximate Error
a
Present Approximation
0.38300
0.038765
9.8800
as a percentage,
a 0 . 038765 100 % 3 . 8765 %
Absolute relative approximate errors may also need to
be calculated,
a | 0.038765 | 0.038765 or 3.8765%
15 Son Dao, PhD
15
How is Absolute Relative Error used as a
stopping criterion?
If |a | s where s is a pre-specified tolerance, then
no further iterations are necessary and the process is
stopped.
If at least m significant digits are required to be
correct in the final answer, then
|a | 0.5 10 2 m %
16 Son Dao, PhD
16
Son Dao, PhD 8
9/8/2021
Table of Values
For f ( x) 7e at x 2 with varying step size, h
0.5 x
h f (2) a m
0.3 10.263 N/A 0
0.15 9.8800 3.877% 1
0.10 9.7558 1.273% 1
0.01 9.5378 2.285% 1
0.001 9.5164 0.2249% 2
17 Son Dao, PhD
17
Son Dao, PhD 9