0% found this document useful (0 votes)
37 views2 pages

Midterm Exam

The document outlines various integration techniques including integration by parts, algebraic substitution, and trigonometric substitution. It lists specific integrals to be solved using these methods, such as ∫ y ln(y) dy and ∫ √(e^x - 9) dx. The document appears to be a study guide or exercise set for practicing integration techniques.

Uploaded by

Aldrin taduran
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
37 views2 pages

Midterm Exam

The document outlines various integration techniques including integration by parts, algebraic substitution, and trigonometric substitution. It lists specific integrals to be solved using these methods, such as ∫ y ln(y) dy and ∫ √(e^x - 9) dx. The document appears to be a study guide or exercise set for practicing integration techniques.

Uploaded by

Aldrin taduran
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 2

I. Using Integral by parts.

1. ∫ y ln ( y) ⅆy
2. ∫ y cos ( y ) sin2 ( y ) ⅆy
II. Algebraic Substitution (change in variable)
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx I. Using Integral by parts.
III. Trigonometric Substitution 1. ∫ y ln ( y) ⅆy
dx 2. ∫ y cos ( y ) sin2 ( y ) ⅆy
5. ∫ 3 /2
( a 2+ x 2 ) II. Algebraic Substitution (change in variable)
6. ∫ √ a 2−x 2 ⅆx
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx
III. Trigonometric Substitution
I. Using Integral by parts. dx
1. ∫ y ln ( y) ⅆy 5. ∫ 3 /2
(a + x2 )
2
2. ∫ y cos ( y ) sin2 ( y ) ⅆy
6. ∫ √ a 2−x 2 ⅆx
II. Algebraic Substitution (change in variable)
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx I. Using Integral by parts.
III. Trigonometric Substitution 1. ∫ y ln ( y) ⅆy
dx 2. ∫ y cos ( y ) sin2 ( y ) ⅆy
5. ∫ 3 /2
(a + x2)
2
II. Algebraic Substitution (change in variable)
6. ∫ √ a 2−x 2 ⅆx
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx
III. Trigonometric Substitution
I. Using Integral by parts. dx
1. ∫ y ln ( y) ⅆy 5. ∫ 3 /2
(a + x2 )
2
2. ∫ y cos ( y ) sin2 ( y ) ⅆy
6. ∫ √ a 2−x 2 ⅆx
II. Algebraic Substitution (change in variable)
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx I. Using Integral by parts.
III. Trigonometric Substitution 1. ∫ y ln ( y) ⅆy
dx 2. ∫ y cos ( y ) sin2 ( y ) ⅆy
5. ∫ 3 /2
(a + x2)
2
II. Algebraic Substitution (change in variable)
6. ∫ √ a 2−x 2 ⅆx
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx
III. Trigonometric Substitution
I. Using Integral by parts. dx
1. ∫ y ln ( y) ⅆy 5. ∫ 3 /2
(a + x2 )
2
2. ∫ y cos ( y ) sin2 ( y ) ⅆy
6. ∫ √ a 2−x 2 ⅆx
II. Algebraic Substitution (change in variable)
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx I. Using Integral by parts.
III. Trigonometric Substitution 1. ∫ y ln ( y) ⅆy
dx 2. ∫ y cos ( y ) sin2 ( y ) ⅆy
5. ∫ 3 /2
(a + x2)
2
II. Algebraic Substitution (change in variable)
6. ∫ √ a 2−x 2 ⅆx
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx
III. Trigonometric Substitution
I. Using Integral by parts. dx
1. ∫ y ln ( y) ⅆy 5. ∫ 3 /2
(a + x2 )
2
2. ∫ y cos ( y ) sin2 ( y ) ⅆy
6. ∫ √ a 2−x 2 ⅆx
II. Algebraic Substitution (change in variable)
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx I. Using Integral by parts.
III. Trigonometric Substitution 1. ∫ y ln ( y) ⅆy
dx 2. ∫ y cos ( y ) sin2 ( y ) ⅆy
5. ∫ 3 /2
(a + x2)
2
II. Algebraic Substitution (change in variable)
6. ∫ √ a 2−x 2 ⅆx
1/ 2
3. ∫ v 3 ( a2−v 2 ) ⅆv
4. ∫ √ ⅇ x −9 ⅆx
III. Trigonometric Substitution
dx
5. ∫ 3 /2
(a + x2)
2

6. ∫ √ a 2−x 2 ⅆx

You might also like