Lecture 6c PWEM Extras
Lecture 6c PWEM Extras
Advanced Computation:
Computational Electromagnetics
PWEM Extras
Outline
• Using 3D PWEM for 2D and 1D Analysis, and using 2D PWEM for 1D
Analysis
• Visualizing the fields
• Formulation of efficient 3D PWEM
• Formulation of efficient 1D PWEM
• PWEM with anisotropic materials
• Incorporating dispersion
• Reduced Bloch mode expansion (RBME) technique
• Generalized symmetry
Slide 2
1
8/25/2019
Slide 3
y y y
x x x
2
8/25/2019
y y
x x
P 1 along x P 1 along x
Q 1 along y Q 1 along y
Conventional 2D PWEM The device is uniform along the y‐axis so Q can be set to 1.
Slide 5
Slide 6
3
8/25/2019
K
x r
1 1
K x K y r K y s z k02 r s z
V eigen vectors
λ eigen values
Slide 7
Rearrange Terms
The field expansion is
2 p 2 q
E r S p, q e
p q
jk p , q r
k p, q
x
xˆ
y
yˆ
We substitute in the expression for k p, q and factor out e
j r
.
2 p 2 q
j
xˆ yˆ r
y
E r e j r S p, q e
x
p q
Slide 8
4
8/25/2019
q q
p p
e
j r FFT 1 S p, q E r
Slide 9
Procedure (1 of 2)
Step 1 – Extract eigen‐vector Step 2 – Insert Fourier
and reshape coefficients into large grid.
nxc = ceil(Nx/2);
s = V(:,m);
nx1 = nxc - floor(P/2);
s = reshape(s,P,Q);
nx2 = nxc + floor(P/2);
nyc = ceil(Ny/2);
ny1 = nyc - floor(Q/2);
ny2 = nyc + floor(Q/2);
sf = zeros(Nx,Ny);
sf(nx1:nx2,ny1:ny2) = s; Slide 10
10
5
8/25/2019
Procedure (2 of 2)
Step 3 – Calculate inverse FFT Step 4 – Calculate phase term.
of S p, q .
S p, q on full grid A x, y on full grid
.* = Ez = phase.*az;
Slide 11
11
Formulation of Efficient 3D
Plane Wave Expansion Method
Slide 12
12
6
8/25/2019
Notation
Unbolded letters are scalar quantities. a 1.678
x1
x
Bold lower‐case letters are column vectors. x 2
xM
e x
Bold lower‐case letters with a vector sign are column vectors of a x
e e y a
column vectors. a y
e z
Slide 13
13
Vector‐Matrix Operations
Definitions
Ai1 0
A x diagonal matrix containing x components of A Ax
Ai 2
A y diagonal matrix containing y components of A Ai A A y
A z diagonal matrix containing z components of A A z
0 AiN
Vector‐Matrix Operations
A A 2x A 2y A 2z A A x Ay A z
0
A z Ay A B B A Unless Ax, Ay, Az, Bx, By, and Bz
A A z are all diagonal.
0 A x
A y
Ax 0 A B B A Unless Ax, Ay, Az, Bx, By, and Bz
are all diagonal.
In our formulation, only [r] and [r] are not diagonal matrices.
Slide 14
14
7
8/25/2019
15
Slide 16
16
8
8/25/2019
1
K r K s k02 r s
1
K r K Pˆ1s1 Pˆ 2s 2 k02 r Pˆ1s1 Pˆ 2s 2
Slide 17
17
Using this equation, we can project both sides of a vector‐matrix equation onto
our two orthogonal polarizations to get two separate equations.
Ax By One 33 matrix equation
Slide 18
18
9
8/25/2019
19
1
Pˆ K 1 K Pˆ ˆ
P1 K r K P2 s1
1 r
ˆ
1
ˆ 1 1
P K r K Pˆ1 Pˆ 2 K r K Pˆ 2 s 2
2
Pˆ1 r Pˆ1 ˆ
P1 r P2 s1
ˆ
k02
Pˆ Pˆ Pˆ 2 r Pˆ 2 s 2
2 r 1
20
10
8/25/2019
Note that both of these eigen‐value problems are valid for general anisotropic media.
Slide 21
21
Slide 22
22
11
8/25/2019
s s W eigen-vector matrix
A 1 k02 B 1
s 2 s 2 λ eigen-value matrix
23
Formulation of Efficient 1D
Plane Wave Expansion Method
Slide 24
24
12
8/25/2019
25
Two Modes
Maxwell’s equations have again decoupled into two distinct sets of equations.
K z u y jk0 xx s x K z s y jk0 xx u x
K z u x jk0 yy s y K z s x jk0 yy u y
0 jk0 zz s z 0 jk0 zz u z
Ex Mode Ey Mode
K z u y jk0 xx s x K z u x jk0 yy s y
K z s x jk0 yy u y K z s y jk0 xx u x
Slide 26
26
13
8/25/2019
Ex Mode Ey Mode
1
K zμ K zs x k
yy
2
0 xx s x K z μ K z s y k02 yy s y
1
xx
1 1 1
yy K z s x
1
uy
jk0
ux
jk0
xx K z s y
or or
K ε K z u y k yy u y
1
z xx
2
0 K ε K z u x k02 xx u x
1
z yy
1 1 1 1
sx
jk0
xx K z u y sy yy K z u x
jk0
Slide 27
27
Slide 28
28
14
8/25/2019
Anisotropic 3D PWEM
The matrix equations derived for 3D PWEM are valid for fully anisotropic materials. In the
anisotropic case, however, the material tensors become block matrices composed of
convolution matrices for each tensor element individually.
xx
xy xz
r yx
yy yz
zx
zy zz
xx
xy xz
r yx
yy yz
zx
zy zz
Slide 29
29
Anisotropic 2D PWEM
In general, all field components remain coupled in anisotropic media. Since Maxwell’s
equations will not simplify in this case, there is almost no numerical advantage to
developing a 2D PWEM for anisotropic media. Instead, use your anisotropic 3D PWEM for
2D problems by using only on spatial harmonic in the uniform direction.
z
y
uniform axis
infinite and
P # harmonics along x
Q # harmonics along y
x R # harmonics along z
30
15
8/25/2019
Incorporating Dispersion
Slide 31
31
1. Iterative PWEM
• Can only handle one frequency at a time.
Slide 32
32
16
8/25/2019
I G s
y y z jk0 xx u x I G u
y y z jk0 xx s x
x I G x s z jk0 yy u y x I G x u z jk0 yy s y
33
I G s
y y z j xx u x I G u
y y z j xx s x
I G
x
s
x z j yy u y I G
x
u
x z j yy s y
Slide 34
34
17
8/25/2019
y I G y s z j xx u x
H‐Mode
1 I G
j x I G yy
x x x z
u I G
y
y x
s j u
zz z
y I G y u z j xx s x
Slide 35
35
E‐Mode
y x
x
u j I G
G 1 I G
yy
x x x
s u
zz z
y x
j xx u x G s s
y z y z
H‐Mode
y x
x
s j I G
G 1 I G
yy
x x x
u s
zz z
y x
j xx s x G u u
y z y z
Slide 36
36
18
8/25/2019
E‐Mode
G
y
j x I G yy
x x x
u
1 I G
zz u
x y x
sz sz
j xx G y
H‐Mode
G
y
j x I G
x
yy
1 I G
x x
s
zz s
x y x
u z u z
j xx G y
Slide 37
37
z x
1 K
s jK
G x zz
u j K
y x yy 1 K
x zz
u s
x y z x
s jK
G z y
1 K
y zz y xx x
1 K
j u jK
y zz
u s
x y z y Slide 38
38
19
8/25/2019
Slide 39
39
I G s
z z x j yy u y
z I G z y
s j u
xx x
G z s x j yy u y z s x
G z s y j xx u x z s y
j xx s x G u u
z y z y
j yy s y G
u u
z x z x
G
j yy s x sx Gz j xx s y s
z z y
z
j xx u
j yy
G z y u y G z u x u x
Slide 40
40
20
8/25/2019
Slide 41
41
The Problem
Suppose we wish to calculate a photonic band
diagram or calculate the full bands throughout
the entire Brillouin zone. a
2 c0
For 2D simulations, typical matrix size is
400×400. For 3D simulations, typical matrix size
is 12,000×12,000. These large matrices must be
solved for each Bloch wave vector of interest.
This is typically 100’s of vectors.
42
42
21
8/25/2019
Step 1: Calculate the Full Solution at Only the Key Points of Symmetry
M
Γ v Γ1 v 2 v 3 v N
X VΓ
Γ Γ Γ
Notes
Ensure that no redundant points are used
1
v
v
v
or RBME will fail. VX vX 2 3 N
X X X
An asymmetric distribution of key points
will lead to asymmetry in the data
calculated from them.
You can improve accuracy by adding v N
VM v M1 v 2 v 3
more key points, but this will be slower M M M
and less efficient.
43
1 M v 1 v M v 1 v M
U vΓ vΓ
X X M M
44
22
8/25/2019
1 M v 1 v M v 1 v M
U vΓ vΓ
X X M M
v 1 v M
U v 1 v M v 1 v M
Γ Γ X X M M
45
45
Gram‐Schmidt Orthonormalization
U v1 v2 v3 v M 1 v M 1 vM
v1
Step 1: v 1
v1
v 2 v 2 v 1 v 1 This algorithm essentially just
Step 2: v 2
v 2 v 2 v 1 v 1 removes the components of the
previous vectors and then
v 3 v 3 v 2 v 2 v 3 v 1 v 1
Step 3: v 3 normalizes the amplitude.
v 3 v 3 v 2 v 2 v 3 v 1 v 1
46
46
23
8/25/2019
Ax λBx
K x r 1 K x K y r 1 K y E Mode
A 1 1
K x r K x K y r K y H Mode
E Mode
B r
r H Mode
47
47
Step 5: Reduce Matrix Size by Expanding into Bloch Modes as the Basis
Perform a linear transformation that expresses the field in terms of the new basis formed
from the reduced set of Bloch modes.
This dramatically reduces the size of the matrices while retaining excellent accuracy
because those Bloch modes more efficiently describe the fields in the structure.
H AU
A U
H BU
B U
A UH
A U
48
48
24
8/25/2019
U
V UV H
49
49
50
50
25
8/25/2019
Dashboard
Block Diagram of RBME
Build Unit Cell
Gram‐Schmidt
51
51
Generalized Symmetry
Slide 52
52
26
8/25/2019
r 1
Γ M K Γ
53
Slide 54
54
27
8/25/2019
The Fix
The fix is to construct the convolution matrices for the general
symmetry case.
The standard FFT can no longer be used and this process is more
numerically intensive.
A
a p,q e a p,q f x , y e dA
p q A
55
28