0% found this document useful (0 votes)
74 views25 pages

Grade 7 Revision Memorandum

Uploaded by

goddessthoriso
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
74 views25 pages

Grade 7 Revision Memorandum

Uploaded by

goddessthoriso
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 25

Grade 7 Revision Memorandum– CAPS

Section 1: Numbers, Operations and Relationships.

1.1 Whole Numbers:

1. 1.e 2.g 3.a 4.f 5.d 6.b 7.c

2. a) 285 348 + 136 581 b) 256 841 – 85 654


+1 +1 +1 1 1 7 13 1
2 8 5 3 4 8 2 5 6 8 4 1
+ 1 3 6 5 8 1 - 8 5 6 5 4
= 4 2 1 9 2 9 = 1 7 1 1 8 7

c) 284 968 + 613 750 d) 210 400 - 172 528


+1 +1 1 10 9 13 9
2 8 4 9 6 8 2 1 10 4 0 10
+ 6 1 3 7 5 0 - 1 7 2 5 2 8
= 8 9 8 7 1 8 = ∙ 3 7 8 7 2

e) 2 825 x 16 f) 1 293 ÷ 26

4 1 3 ∙ ∙ 4 9 r 1 9
2 8 2 5 2 6 1 2 9 3
x 1 6 - 1 0 4
45 13
11 16 19 5 0 ∙ 2
+ 2 8 2 5 0 - 2 3 4
4 5 2 0 0 ∙ 1 9
Page |2

g) 95 711 x 86 h) 81 037 ÷ 31

4 5
∙ 2 6 1 4 r 3
3 4 78 11
3 1 0 3 7
9 5 7 1 1
- 6 2
x 8 6 89 10
1 15 17 14 12
1
6 6 - 1 8 6
+ 7 6 5 6 8 8 0 ∙ ∙ 4 3
8 2 3 1 1 4 6 3 1
1 2 7
- 1 2 4
∙ ∙ 3
3.
a) 37 = 37, 74, 111, 148, 185 b) 122 = 122, 244, 366, 488, 610
c) 768 = 1 536, 2 304, 3 072, 3 840, 4 608
d) 791 = 791, 1 582, 2 373, 3 164, 3 955

4. a) 891 = (1, 3, 9, 11, 27, 33, 81, 99, 297, 891)


b) 274 = (1, 2, 137, 274)
c) 630 = (1, 2,3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105,
126, 210, 315, 630)
d) 558 = (1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558)

5. a) 578 = 2 x 17 x 17 b) 132 = 2 x 2 x 3 x 11
c) 600 = 2 x 2 x 2 x 3 x 5 x 5 d) 234 = 2 x 3 x 3 x 13

6. a) 48 and 972
Factors of 48 = 2 x 2 x 2 x 2 x 3
Factors of 972 = 2 x 2 x 3 x 3 x 3 x 3 x 3
Highest common factor = 2 x 2 x 3 = 12
Lowest common multiple = 2 x 2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 = 3 888

b) 175 and 255


Factors of 175 = 5 x 5 x 7
Factors of 255 = 3 x 5 x 17

Available from www.mathsatsharp.co.za


Page |3

Highest common factor = 5


Lowest common multiple = 5 x 5 x 7 x 3 x 17 = 8 925

c) 41 and 100
Factors of 41 = 41
Factors of 100 = 2 x 2 x 5 x 5
Highest common factor = 1
Lowest common multiple = 41 x 2 x 2 x 5 x 5 = 4 100

d) 333 and 666


Factors of 333 = 3 x 3 x 37
Factors of 666 = 2 x 3 x 3 x 37
Highest common factor = 3 x 3 x 37 = 333
Lowest common multiple = 2 x 3 x 3 x 37 = 666

1.2. Exponents

1. a) 92 = 81 b) 82 = 64
c) 33 = 27 d) 63 = 216

e) √9 = 3 f) √144 = 12
3 3
g) √125 = 5 h) √27 = 3

2. a) 43 = 4 x 4 x 4 b) 102 = 10 x 10
c) 119 = 11 x 11 x 11 x 11 x 11 x 11 x 11 x 11 x 11
d) b7 = b x b x b x b x b x b x b

3 3 3 2
3. a) 52 + √16 + 9 b) ( √27 + √9) + ( √125 + √49)

= 25 + √25 = (3 + 3)3 + (5 + 7)2


= 25 + 5 = (6)3 + (12)2
= 30 = 216 + 144 = 360

Available from www.mathsatsharp.co.za


Page |4

3 2
c) 10 × (√36 + √64) d) (33 + 23 ) − (32 + 22 )

= 10 × (6 + 4)2 = (27 + 8) − (9 + 4)
= 10 × (10)2 = 35 − 13
= 10 × 100 = 22
= 1 000

1.3. Integers

1. a) -10 < 10 b) 2 x 5 ____ (- 2) x (- 5)


10 = 10
c) 12 – 3 ____ -12 + 3 d) 18 ÷ 2 ____ -18 ÷ 2
9 > -9 9 > -9

2. a) -70 – (-8) + 16 b) -5 x -8 + 90 x -1 – (-34)


= -70 + 8 + 16 = 40 – 90 + 34
= - 46 = - 16

c) 3 x 7 + (6 x -10) d) 80 ÷ (-10) + (-13) – (- 15)


= 21 + (-60) = -8 – 13 +15
= -39 = -6

1.4. Common Fractions

1 1 1 2
1. a) 32 + 15 b) 23 4 − 4 5
7 6 93 22
=2+5 = −
4 5
35 12 465 88
= + 10 = − 20
10 20
47 7 377 17
= 10 = 4 10 = = 18 20
20

Available from www.mathsatsharp.co.za


Page |5

3 7
c) 𝑜𝑓 60 d) 𝑜𝑓 88
4 8
3 60 15 7 88 11
=4 × =8 ×
1 1
3 15 7 11
=1 × =1 ×
1 1

= 45 = 77

5 4 1 2
e) 58 × 45 f) 14 4 × 10 3
9 45 24 3 19 57 32 8
= × = ×
8 5 4 3
9 3 19 8
=1 ×1 = ×1
1

= 27 = 152

85÷5 17 65 ÷5 13
2. a) = b) = 12
15÷5 3 60÷5
36 ÷36 1 49 ÷7 7
c) =2 d) = 11
72 ÷36 77÷7

78 1 93 5
3. a) = 1 77 b) = 8 11
77 11
63 3 16 1
c) = 4 15 d) = 53
15 3

1.5. Decimal Fractions

1. a) 0,495 = 0,50 b) 0,673 = 0,67


c) 0,759 = 0,76 d) 0,133 = 0,13

2. a) 7,11 + 0,941 b) 2,491 + 2,564


71 , 1 1 21 , 41 9 1
+ 0 , 9 4 1 + 2 , 5 6 4
= 8 , 0 5 1 = 5 , 0 5 5

Available from www.mathsatsharp.co.za


Page |6

c) 3,321 – 2,291 d) 5,070 – 4,135


3 , 3 2 1 4 6
- 2 , 2 9 1 5 , 10 7 10

= 1 , 0 3 0 - 4 , 1 3 5
= 0 , 9 3 5

e) 6,43 x 5 f) 8,819 x 2
2 1 1 1
6 , 4 3 8 , 8 1 9
x 5 x 2
32 , 1 5 17 , 6 3 8

g) 1,23 x 0,6 h) 8,77 x 0,7

5 4
1 1
1 , 2 3 8 , 7 7
x 6 x 7
7 , 3 8 61 , 3 9

7,38 ÷ 10 = 0,738 61,39 ÷ 10 = 6,139


Divide by 10 for one decimal place. Divide by 10 for one decimal place.

i) 7,280 ÷ 0,5 j) 9,32 ÷ 0,9

1 , 4 5 6 1 , 0 3 5
5 7 , 2 8 0 9 9 , 3 2 0
- 5 - 9
2 , 2 0 , 3
- 2 , 0 - 0 , 0
0 , 2 8 0 , 3 2
- 0, , 2 5 0 , 2 7
0 , 0 3 0 0 , 0 5 0
- 0 , 0 3 0 0, - 0 4 5
0 , 0 0 0 5 0 etc

1,456 × 10 = 14,56 1,0355555 x 10 = 10,3555555


Remembering it is recurring because
of the division by 9 which always
gives recurring numbers.

Available from www.mathsatsharp.co.za


Page |7

3. a) 0,166666 ≈ 0,17 b) 16,66666% ≈ 17%


84 21
c) = 25 d) 84 %
100
45 9
e) = 20 f) 0,45
100

g) 0,375 h) 37,5%
98 49
i) = 50 j) 98%
100
2 1
k) = 50 l) 0,02
100

m) 0,8 n) 80%
11
o) p) 11%
100
38 19
q) = 50 r) 0,38
100

4. a) 45% of 90 b) 95% of 200


45 90 95 200
= 100 × = 100 ×
1 1
45 9 95 2
= 10 × 1 = ×1
1
405
= = 40,5 = 190
10

c) 32% of 3 700 d) 15% of 3 210


32 3 700 15 3 210
= 100 × = 100 ×
1 1
32 37 15 321
= × = 10 ×
1 1 1
3 321
= 1 184 =2 × 1
963 1
= = 481,5 𝑜𝑟 481 2
2

5. a) from 94 to 90 b) from 20 to 50
𝑏𝑖𝑔−𝑠𝑚𝑎𝑙𝑙 𝑏𝑖𝑔−𝑠𝑚𝑎𝑙𝑙
dec = × 100 inc = × 100
𝑏𝑖𝑔 𝑠𝑚𝑎𝑙𝑙

94−90 50−20
dec = × 100 inc = × 100
94 20

dec = 4,26% inc = 150%

Available from www.mathsatsharp.co.za


Page |8

c) from 42 to 50 d) from 70 to 52
𝑏𝑖𝑔−𝑠𝑚𝑎𝑙𝑙 𝑏𝑖𝑔−𝑠𝑚𝑎𝑙𝑙
inc = × 100 dec = × 100
𝑠𝑚𝑎𝑙𝑙 𝑏𝑖𝑔

50−42 70−52
inc = × 100 dec = × 100
42 70

inc = 19,05% dec = 25,71%

Section 2: Patterns, functions and Algebra

2.1 Numeric and Geometric Patterns

1. a) 4, 6, 8, … b) 7, 10, 13, …
i) 10 12 14 i) 16 19 22
ii) add 2 to the next term ii) add 3 to the next term
iii) T = 2 + 2n iii) T = 4 + 3n
iv) T10 = 2+ 2(10) = 22 iv) T10 = 4 + 3(10) = 34

c) 4, 12, 36, … d) 1, 4, 9, …
i) 108 324 972 i) 16 25 36
ii) multiply the previous term by 3 ii) square the position
4
iii) 𝑇 = 3 × 3𝑛 iii) T = n2
4
iv) 𝑇 = 3 × 310 = 78 732 iv) T = 102 = 100

e) 100, 94, 88, … f) 200, 100, 50 …


1 1
i) 82 76 70 i) 25 12 2 64

ii) subtract 6 from the last term ii) divide the last term by 2
iii) T = 106 – 6n iii) T = 400 ÷ 2n
25
iv) T = 106 – 6(10) = 46 iv) 𝑇 = 400 ÷ 210 = 64 = 0,390625

Available from www.mathsatsharp.co.za


Page |9

g) i) Pattern in table:
Position 1 2 3 4 5 6 7
Number
of 1 3 5 7 9 11 13
crayons

ii) add 2 more crayons to the previous pattern


iii) T = 2n – 1
iv) T = 2(10) – 1 = 19

h) i) Pattern in table form:


Position 1 2 3 4 5 6
Number
1 4 7 10 13 16
of leaves
ii) Add three leaves to the previous pattern
iii) T = 3n – 2
iv) T = 3(10) – 2 = 28

i) i) Pattern in table form:


Position 1 2 3 4 5 6 7
Number
of lego 1 2 4 8 16 32 64
tips
ii) Double the previous blocks number of lego tips
1
iii) 𝑇 = 2 × 2𝑛
1
iv) 𝑇 = 2 × 210 = 512

j) i) Pattern in table form:


Position 1 2 3 4 5 6 7
Number
8 7 6 5 4 3 2
of petals
ii) Subtract one petal from the previous flower
iii) T=9–n

Available from www.mathsatsharp.co.za


P a g e | 10

iv) T = 9 – 10 = -1 So this flower doesn’t exist and the pattern ends at


position 9 with no petals on the flower.

2.2. Functions and Relationships

1. a) i) 15 ii) 10 iii) 16 iv) 25

b) i) 29 ii) 29 iii) 0 iv) 53

c) i) 18 ii) 10 iii) 108 iv) 6

d) i) 2 ii) 55 iii) 11 iv) 143

e) i) 165 ii) 5 iii) 41 iv) 3

2. a) i) -18 ii) 12 iii) 21


iv) 51 v) 𝑦 = 3𝑥 − 9

b) i) 24 ii) 8 iii) 24
iv) 99 v) T = n2 – 1

c) i) 14 ii) -10 iii) -26


iv) -58 v) T = 2 – 4n

d) i) -35 ii) 28 iii) 55


iv) 109 v) T = 9n + 1

e) i) -15 ii) -7 iii) -2


iv) 5 v) T = n – 10

3. a) 𝑦 = 3𝑥 + 7
i) y = 3(3) + 7 = 16 ii) y = 3(7) + 7 = 28

Available from www.mathsatsharp.co.za


P a g e | 11

iii) y = 3(-3) + 7 = -2 iv) -5 = 3x + 7


-12 = 3x
-4 = x
v) y = 22 = 3x + 7 vi) y = 40 = 3x + 7
15 = 3x 33 = 3x
5=x 11 = x

b) 𝑦 = 𝑥2 + 2
i) y = 32 + 2 = 11 ii) y = 02 + 2 = 2
iii) y = (-5)2 + 2 = 27 iv) y = 6 = x2 +2
4 = x2
x=±2

v) y = 38 = x2 + 2 vi) y = 102 = x2 + 2
36 = x2 100 = x2
x=±6 x = ± 10

c) 𝑦 = −5𝑥 + 1
i) y = -5(0) +1 = 1 ii) y = -5(4) + 1 = -19
iii) y = -5(-5) + 1 = 26 iv) y = -49 = -5x + 1
-50 = -5x
x = 10

v) y = 11 = -5x + 1 vi) y = -99 = -5x + 1


10 = -5x -100 = -5x
-2 = x 20 = x

d) 𝑦 = 𝑥2 + 𝑥
i) y = 02 + 0 = 0 ii) y = 32 + 3 = 12
iii) y = (-6)2 – 6 = 30

Available from www.mathsatsharp.co.za


P a g e | 12

2.3 Algebraic Expressions

1. a) 𝑥 3 + 4𝑥 2 − 9𝑥 + 12 b) 3𝑚 + 𝑚3 − 12
Variable = x variable = m
Constant = 12 constant = -12

c) 𝑡 5 − 100𝑡 d) 𝑝6 − 78𝑝 + 3
Variable = t Variable = p
Constant = 0 Constant = 3

2. a) Sam buys 4 candy bars and 12 packets of chips for a total of R100.
100 = 4 x cb + 12 x ch
b) There are 3 times as many girls in the class as there are boys.
Class = 3 x g + 1 x b
c) A Honda uses twice as much petrol as a Ford does.
Honda = 2 x petrol
d) A dog and a cat eat 40kg of food per month. The dog eats twice as much as
the cat.
40 = dog + cat and dog = 2 x cat so
40 = 2 x cat + cat
40 = 3 x cat
e) A tree grows 15cm each year
height = start + 15 x number of years.

2.4. Algebraic Equations

1. a) 3𝑥 = 30 b) 7 + 𝑥 = 10
x = 10 x=3

c) 45 = 5 + 2𝑥 d) 8 ÷𝑥 =2
40 = 2x x=4
x = 20

Available from www.mathsatsharp.co.za


P a g e | 13

e) 40 ÷ 𝑥 + 5 = 10 f) 20 + 𝑥 = 2𝑥 + 12
40 ÷ x = 5 20 – 12 = 2x - x
x=8 8=x

2. a) ab + c b) a2 – 3d
= (3) x (7) + 0 = (3)2 – 3 x -1
= 21 =9+3
= 12

c) ac – bd d) d3 – a3 +3b – 3c
= (3) x (0) – (7) x (-1) = (-1)3 –(3)3 +3 x 7 – 3 x 0
=0+7 = -1 – 27 + 21 – 0
=7 = -7

e) 7b – 3ad f) 45 – ab + ad – ac
= 7 x 7 – 3 x 3 x (-1) = 45 – 3 x 7 + 3 x (-1) – 3 x 0
= 49 + 9 = 45 – 21 – 3 – 0
= 58 = 21

2.5. Graphs

1. a) i) non-linear b) i) non-linear
ii) increasing ii) decreasing

c) i) linear i) linear
ii) increasing ii) increasing

e) i) linear
ii) decreasing

Available from www.mathsatsharp.co.za


P a g e | 14

2. a) A car travels at exactly 100km/h for 1 hour.

b) A car accelerates smoothly to 100km/h

c) A car has to do an emergency stop.

d) A sales graph for the year, where November, December and January have
high sales, February, March and April have low sales, and May – October
have medium sales.

Available from www.mathsatsharp.co.za


P a g e | 15

e) The amount of data used over the course of one month, if 1GB is purchased
on the first, and a second GB is purchased in the middle of the month.

Section 3: Space and Shape (Geometry)

3.1 Geometry of 2D Shapes

1. a) Equilateral triangle b) square


c) rhombus d) trapezium
e) isosceles triangle f) rectangle
g) kite h) paralelogram
i) right-angled triangle j) heptagon

Available from www.mathsatsharp.co.za


P a g e | 16

2.

3. a) congruent b) similar
c) neither d) congruent
e) similar

3.2. Geometry of 3D Objects

1. a) cube b) rectangular prism


i) 6 faces i) 6 faces
ii) 8 vertices ii) 8 vertices
iii) 12 edges iii) 12 edges

c) triangular prism d) square-based pyramid


i) 5 faces i) 5 faces
ii) 6 vertices ii) 5 vertices
iii) 9 edges iii) 8 edges

Available from www.mathsatsharp.co.za


P a g e | 17

e) triangular-based pyramid f) cylinder


i) 4 faces i) 3 faces
ii) 4 vertices ii) no vertices
iii) 6 edges iii) 2 edges

2. a) a cube

b) a rectangular prism.

3.3. Geometry of Straight Lines

1. a) line segment b) ray


one end point to another one end point to a continued point
point.

c) line d) parallel lines


continuous on both ends equally distant from each other for
every point.

Available from www.mathsatsharp.co.za


P a g e | 18

e) perpendicular lines
intersect each other at a right angle.

3.4. Transformation Geometry

1. a) translation – move a point or shape a certain distance up or down, and left or


right.
b) reflection – mirror the point or shape around a line
c) rotation – shift the shape around a certain point.
d) line of symmetry – the line that creates a mirror image within the shape.
e) enlargement - making the shape bigger by a certain factor
f) reduction – making the shape smaller by a certain factor.

2. a) either reflection or translation b) enlargement


c) translation d) rotation
e) reduction or enlargement

3. a) correct b) incorrect
c) correct d) incorrect

Available from www.mathsatsharp.co.za


P a g e | 19

Section 4: Measurement

4.1 Area and Perimeter of 2D Shapes

1. a) Perimeter = AB + BC + CD + DE + EA All sides are equal to each


= 6cm + 6cm + 6cm + 6cm + 6cm other, and given as 6cm
= 30cm

b) Perimeter = AB + BC + CA
= 8.48km + 7.98 km + 8.54 km
= 25km

c) Perimeter = AB + BC + CD + DE + EF + FA
= 0,61m + 0,76m + 0,59m + 0,63m + 0,85m +1,09m
= 4,53m

d) Perimeter = AB + BC + CD + DE + EF + FG + GH + HA
= 28,26mm + 22,43mm + 35,42mm + 39,57mm + 43,05mm + 34,8mm
+ 29,32 mm + 24,17mm
= 257,02mm

2. a) area of a square = 𝑙 × 𝑙 = 𝑙 2
b) perimeter of a square = 𝑙 + 𝑙 + 𝑙 + 𝑙 = 4𝑙
c) area of a rectangle = 𝑙 × 𝑏
d) perimeter of a rectangle = 𝑙 + 𝑙 + 𝑏 + 𝑏 = 2𝑙 + 2𝑏
1
e) area of a triangle = ×𝑏 ×⊥ℎ
2

f) perimeter of a triangle. = 𝑠𝑖𝑑𝑒 1 + 𝑠𝑖𝑑𝑒 2 + 𝑠𝑖𝑑𝑒 3

Available from www.mathsatsharp.co.za


P a g e | 20

3. a) Perimeter = 4𝑙 b) Perimeter = 2𝑙 + 2𝑏
= 4 × 120𝑐𝑚 = 2 × 40𝑚 + 2 × 20𝑚
= 480𝑐𝑚 = 120 𝑚

Area = 𝑙 2 Area = 𝑙 × 𝑏
= (120𝑐𝑚)2 = 40𝑚 × 20𝑚
= 14 400𝑐𝑚2 = 800𝑚2

c) Perimeter = 𝑠1 + 𝑠2 + 𝑠3 Perimeter = 𝑠1 + 𝑠2 + 𝑠3
= 15𝑐𝑚 + 25𝑐𝑚 + 29,15𝑐𝑚 = 125,24𝑐𝑚 + 127,58𝑐𝑚 + 117,61𝑐𝑚
= 69,15𝑐𝑚 = 370,43𝑐𝑚

1 1
Area = 2 × 𝑏 ×⊥ ℎ Area = 2 × 𝑏 ×⊥ ℎ
1 1
= 2 × 25𝑐𝑚 × 15𝑐𝑚 = 2 × 127,58𝑐𝑚 × 103,14𝑐𝑚

= 187,5𝑐𝑚2 = 6 579,3𝑐𝑚2

4.2. Surface Area and Volume of 3D Objects

1. a) Surface area of a cube ∴ 𝑆𝐴 = 6𝑙 2


b) Surface area of a rectangular prism ∴ 𝑆𝐴 = 2𝑙𝑏 + 2𝑙ℎ + 2𝑏ℎ
c) Volume of a cube ∴ 𝑉𝑜𝑙 = 𝑙 × 𝑙 × 𝑙 = 𝑙 3
d) Volume of a rectangular prism. ∴ 𝑉𝑜𝑙 = 𝑙 × 𝑏 × ℎ

2. Find the surface area and volume for each of these shapes:
a) 𝑆𝐴 = 2𝑙𝑏 + 2𝑙ℎ + 2ℎ𝑏
∴ 𝑆𝐴 = 2 × 30𝑐𝑚 × 20𝑐𝑚 + 2 × 30𝑐𝑚 × 25𝑐𝑚 + 2 × 25𝑐𝑚 × 20𝑐𝑚
∴ 𝑆𝐴 = 1 200𝑐𝑚2 + 1 500𝑐𝑚2 + 1 000𝑐𝑚2
∴ 𝑆𝐴 = 3 700𝑐𝑚2

Available from www.mathsatsharp.co.za


P a g e | 21

𝑉𝑜𝑙 = 𝑙 × 𝑏 × ℎ
∴ 𝑉𝑜𝑙 = 30𝑐𝑚 × 20𝑐𝑚 × 25𝑐𝑚
∴ 𝑉𝑜𝑙 = 15 000 𝑐𝑚3

b) 𝑆𝐴 = 6𝑙 2
∴ 𝑆𝐴 = 6 × 7𝑚 × 7𝑚 = 6 × (7𝑚)2
∴ 𝑆𝐴 = 294 𝑚2

𝑉𝑜𝑙 = 𝑙 3
∴ 𝑉𝑜𝑙 = 7𝑚 × 7𝑚 × 7𝑚 = (7𝑚)3
∴ 𝑉𝑜𝑙 = 343 𝑚3

c) 𝑆𝐴 = 2𝑙𝑏 + 2𝑙ℎ + 2ℎ𝑏


∴ 𝑆𝐴 = 2 × 19𝑚𝑚 × 15𝑚𝑚 + 2 × 19𝑚𝑚 × 17𝑚𝑚 + 2 × 17𝑚𝑚 × 15𝑚𝑚
∴ 𝑆𝐴 = 570𝑚𝑚2 + 646𝑚𝑚2 + 510𝑚𝑚2
∴ 𝑆𝐴 = 1 726 𝑚𝑚2

𝑉𝑜𝑙 = 𝑙 × 𝑏 × ℎ
∴ 𝑉𝑜𝑙 = 19𝑚𝑚 × 17𝑚𝑚 × 15𝑚𝑚
∴ 𝑉𝑜𝑙 = 4 845 𝑚𝑚3

d) 𝑆𝐴 = 2𝑙𝑏 + 2𝑙ℎ + 2ℎ𝑏


∴ 𝑆𝐴 = 2 × 5𝑐𝑚 × 5𝑐𝑚 + 2 × 5𝑐𝑚 × 20𝑐𝑚 + 2 × 20𝑐𝑚 × 5𝑐𝑚
∴ 𝑆𝐴 = 50𝑐𝑚2 + 200𝑐𝑚2 + 200𝑐𝑚2
∴ 𝑆𝐴 = 450𝑐𝑚2

𝑉𝑜𝑙 = 𝑙 × 𝑏 × ℎ
∴ 𝑉𝑜𝑙 = 5𝑐𝑚 × 5𝑐𝑚 × 20𝑐𝑚
∴ 𝑉𝑜𝑙 = 500𝑐𝑚3

Available from www.mathsatsharp.co.za


P a g e | 22

Section 5: Data Handling

5.1 Collect, Organise and Summarize Data

1. A sample is a small set/group taken from a larger set or group – usually randomly.
A population is the entire group with a specific characteristic.

2. a)
Intervals Tally Marks Frequency
10 – 19 || 2
20 – 29 || 2
30 – 39 |||| 5
40 – 49 |||| ||| 8
50 – 59 |||| 4

b) 5 1, 5, 6, 9
4 1, 2, 2, 3, 6, 6, 6, 8,
3 0, 2, 7, 8, 9
2 0, 5
1 6, 8

c) You could do intervals of 5, i.e. 15 – 19, 20 – 24, 25 – 29 and so on


You could also do intervals of 6 or 7 as well.

𝑠𝑢𝑚
d) Average = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
16+18+20+25+30+32+37+38+39+41+42+42+43+46+46+46+48+51+55+56+59
Average = 21
830
Average = 21

Average = 39,52
e) Median = 42
f) Mode = 46
g) Maximum = 59
h) Minimum = 16

Available from www.mathsatsharp.co.za


P a g e | 23

i) Range = 59 – 16 = 43
j) Only certain how-to videos could have been sampled.
A non-random group of people were asked.
The sample is too small.
Any other relevant answer.

5.2. Representing data

1. a) a histogram, because the data is grouped into continuous intervals.


b)

Histogram of frequency of minute intervals of


YouTube videos watched
9
8
7
6
Frequency

5
4
3
2
1
0
0-9 10 – 19 20 – 29 30 – 39 40 – 49 50 – 59
Intervals of minutes

Available from www.mathsatsharp.co.za


P a g e | 24

Colours

5 13
10

32

50

Green Red Blue Yellow Pink


2.
Calculations:
Total observations = 13 + 32 + 50 + 10 + 5 = 110
13 13
Green angle = 110 × 360° = 43° Green %age = 110 × 100 = 12%

(Rounding to the nearest unit)


32 32
Red angle = 110 × 360° = 105° Red %age = 110 × 100 = 29%
50 50
Blue angle = 110 × 360° = 164° Blue %age = 110 × 100 = 45%
10 10
Yellow angle = 110 × 360° = 33° Yellow %age = 110 × 100 = 9%
5 5
Pink angle = 110 × 360° = 16° Pink %age = 110 × 100 = 5%

5.3. Interpret, Analyse and Report Data

1. a) Meat lover
b) Vegan
c) Pizza = 1 + 5 + 9 = 15 Pasta = 2 + 4+ 8 = 14
Burger = 3 + 3 +12 = 18 Salads = 4 + 7 + 5 = 16
Therefore, the burger is the most popular choice for all the diets.
d) Salads
e) Burgers

Available from www.mathsatsharp.co.za


P a g e | 25

f) Total = all pizza + all pasta + all burger + all salads


= 15 + 14 + 18 + 16
= 63 people were interviewed.

2. a) Nuts
b) Glazed
c) 30 people = 30% of total
By inspection we can see that 100 people were interviewed.
Or we could say 30 ÷ 30% = 100 people.
d) 150 x 18% = 27 people liked glazed doughnuts.

5.4 Probability

1 1
1. a) b)
6 6
1
c) 0 d) 6

1 1
2. a) b)
4 4
1
c) 0 d) 4

3. Possible outcomes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
1
Probability of each: 10 for each one.

Available from www.mathsatsharp.co.za

You might also like