0% found this document useful (0 votes)
74 views7 pages

Mathematics

The document contains instructions for a mathematics examination paper. It is divided into two sections with multiple questions in each section. Candidates must attempt five questions total, with at least one question from each section. Several questions involve solving differential equations and finding properties of linear maps and matrices.

Uploaded by

Angel Verma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
74 views7 pages

Mathematics

The document contains instructions for a mathematics examination paper. It is divided into two sections with multiple questions in each section. Candidates must attempt five questions total, with at least one question from each section. Several questions involve solving differential equations and finding properties of linear maps and matrices.

Uploaded by

Angel Verma
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

2022

Mathematics

Time: 3 hours Maximum Marks: 200

IIqq: 3 Eit srEonq oio: zoo


Question paper specific instructions
c{rtr dfufrRrE3[fcI
i. This paper is divided into two Sections, Section-A and Section-B.

i crtqe d {dd n ffl{rfud t, t s-A sitt Eis-B

ii. Each Section contains four (4) questions.

c-&6 {rs t qn crq tt


iii. Candidate has to attempt five questions in all.

cfieilpf 6.r ciq csit 6I rfl fuqcr tt

iv. Question Nos. 1 and 5 are compulsory and out ofthe remaining, TIIREE questiors are to be

attempted choosing at least OIYE question from each Secti'on.

crr €€qr r silr s 3rM t 3ik nrs crif n t Rtd d-r iD'I stn fusnr t rS6 ds t go c{r 6} Ef,
orcr t r

v. Word limit in questions, where specified, should be adhered to.

crS i yr< frqr, sd f4frfre i, in sgstq fuqr qnr qGc t

rri. The number ofmarks carried by a question/part is indicated against it.

rd6 crHlqr.r d ffrc trTd oi6 ssd qrqi ftc .rc t t

vii. Questions are printed in English & Hindi languages. In case of any ambiguity in
trarslation of any question, English version shall be treated as final.
c-d6 q:rc f.q 3ilr 3iffi +it.TNI3il i oqr tt c{.if d $gql< d ftffi erssar
d fufr n.3iffi ss-rq d A ortdq qnr qrgrn I

1
SECTIONA(qsE-A)

Q 1. Write answers of the following questions.


ffiR+aqeilbufifrfus
l(a) State differential equation oforbit in a central force two body problem. Find the (8)
forcelaw for the orbit givenby r: e0 .

\1o. &-fi
q ild d trfi rq' q{qr i aeff 6-t er+o-e qfro-rq sdTt( I . : e gm d rr€ offt ]-
"
6qwftqq{rdaltrst
l(b) Is the set [(1,1,1 ,7) ,(1,2,7,2) ] linearly independent in lR{? Justifu' Extend the given (8)
set into a basis for IRa.

arr m4 t vgan {( I,l, l, I ), (t J,r l) } tfttr6-d, wi7 er .:ifurq qod r EV sgau+l na

be{ftrroqrffid6tl
1(c) (8)
Find complete solution ofx2fi +2x9= logx-

,'oj+zro]= lrer61qf 6e tfrdt

1(d) Find the area above the z -axis bounded by y2 = 4.x and the line : +y : 3' (8)

yz = 4r,t€t, * y : 23fu ,- qUfr qfr{dEot &*d$t

1(e) Identiry the following surfaces and find their intersection. (8)

xz+yz+22-2x+22:7 and xz + yz + 22 *2x -22 --7


ffi Ed e-rd 61 qrqri ofc{tr E{o.r ctr#fi {rd t

xz + yz + z2 -zx +22:7 8Rx2+y2+22+2x-22:7

Q 2. Write anslyers of the following questions.

ffiRaqfrbEflfrtus
2(a) A bullet is fired at an angle of60o with an initial velocity of200 meters/sec. For how (10)
long it remains in the air? What is the maximum height it reaches?

\rm ffi zoo fdv+irs b qr{ff 6 trr t 60" t olut q{ Tdr{ slfi e I 116 fu -ilfi tt il6
6qr fr T{fr A qE s{fuo-ilq frtfrfi iffi do. qf{fi il

2
(15)
2(b) Findgeneralsolutionofrs - @x-t)fl+('-
1)v: 0providedv = e* isone
solution of given equation'

t) ! t" - 1)v : o 6'I qlq6' sqlqFl dfr ffisot q(r- qclqH


, ! - {2, - +
y: e' dl

(1s)
I: R3 be linear map defined by
2(c) Let R{ -+
: (1,-1'1)'?(0'0'1'0) : (1'o'0) and
r(1,0,0,0) = (1,1,1), r(0,1,0,0)
?(0,0,0,1) : (1,0,1)' Find rank and Nullity of
"'
qH dfrg r, R4 -+ R3 qftqTfrdlRff crqffiGtero t ffieh Erir

: 3ln
?(1,0,0,0) (1,1,1), ?(0,1,0,0) = (1' -1'1)',r(0o'r'o) = (1',0',0)

r(0,0,0, rF(1,0, r o1 olE cllt {qar qn at t


1 ).

Q 3. Write answers of the


following questions'

ffituaqfrils{rRfrs (10)
3(a) For what values ofzl the equations
x*Y*z=L
x *3Y l9z : A
x*9Y*1.8z:72
in each case'
have a solution and solve them completely

rtat{t{dfifrqqffi
x*y*z:l
x *3y *92: I
r*9y1l8z:12
6.r qqFlr{ A 3{tr e-ed crcd fr s€ qfr a-re t us of t

3
30) Using Laplace transform, find the solution ofthe initial value problem (lS)
dry
Trztl: stttx, y(o) = o:y'(o)

ilqrs Fqi6q 6'r gqfr'r 6-{b, sRftIfi qs qII*II 6r qqrEH E+q


dzv
On*Y= sinx, y(0) = 0:y'(0)

3(c) Find the characteristic roots and characteristic vectors ofthe matrix (1s)
12023 1 1 r
,q=l o zozz o l.
Io o 2oz7]

on-qodftr)A =['T'
lo
rin I la.,u"un*woirqnffiq{Fmqfrqr
o zozi
tfrSr

Q 4. Write answers of the following questions.

frsfrBdcfrbts-f,rfrEs
4(a) Find the directional derivative of f(x,y,z) = xzyzz2 at the point (1,1,
-1) in the (15)
direction of tangent to the curve r : et,f :2sint * l,z:t- costatt:0.
tlfi x: et,y=Zsint *I,z: t-costq6f t: o]fVfftOf61RCfffrfr-g
( l, l, - I ) Tr f (r, \ z) = x2 I z2 Or E{ -er+oe-q W olfuqt
4(b) 11p: (2xz - * zxyj - ar2fi, then evaluate I I Iua*
4z)i Fdv, whercv is (15)
bounded by the planes r: O,y: O,z: 0,r ly + z= L.

u6 p :
- 4z)i + zxyj - a:r[, d qsio-r o\ [ [ [, aio Fdy, q6i v qffird
(zr,
r= 0,y: O,z=O,x*y*z: rtqffefltt
4(c) Find the maximum and minimum of f(r,y,z) = 4y - 2z srtbject to the constraints (10)
2x- y -z:2andx2 I y2: !.

4
SECTION B (qus- B)

Q 5. Write answers of the following questions.

ffifuocfrt ts-f,rftTEs

5(a) If 6 is a group in which for all @,0 E 6with(ai)i: aiE', where


i: 2O21,2O22,2023. Show that G is abelian group.

qE c rto qW t ftrsfr qrfi a, E e 6 t. fr( (aD)i : a' ai t, q6i r : 2o2t,2o22loB A | (s)


Mtuconifrs{d tr

5(b) LetU,V are ideal ofR. l-etU +V *{u*vzuEll,ueV},W:{uv:ueU,veV} (8)


and U UV : { r e U tll x € Vl. Are U + V,W and U U I/ ideal of p? Justift.

rnin&'enqqf u,v trcIil&'


U * V : {u * t z u e U,e eY},W : {uv z u E U, v e Iz} Oilt
u uv : {rt x E U or .r € y}. iFrr u+vuv .rilq uuv n} strdsf A .lilfuecartr

5(c) Let/: *, -r R be tunction satisfuing f(r * y) : f(x)f(y),vr,y € lR and (8)


h*-o.f (r) : 1. Then prove that f(r) : f (1)E ,Vr € R.
qHdfuqrfurcitRr{)f:R -+ 4 f@+y): f(x)f(1r),vr,y E R.o{tt

lim.-o /(r) = 1 a1 €qg 6{t t r fu-r erkd 6t fu f (') : f (I )., vx € R..

5(d) Prove that there does not exist an entire function g, such that g(O) : 1 and (8)
ls(z)l < .-zt't,lzl 22.
sTfud 6't fu tfi €qlf q-{E?GtNn s +{d =rfr t, q6 .e (0) = I Gtt{

lg(')l < e-2t"1 ,bl > 2

5(e) Find partial differential equation by eliminating arbitrary function 6 from equation (8)
e (x + y,x -,l-r):0, where z = z(x,y).
qfiq;tul c(r + y , * - 'l-r): 0, q6i z : z(x,y) t rDcFI c a1ffiqT 6-tb qiRr6
er*osqftorqdsr

5
Q 6. Write answers of the following questions.

ffifuaqfrbEf,rftRs
6(a) Obtain Hamilton's equations of motion for the Lagrangian (15)
L :'; (e' + sinz e i2) + (ri, + O co s0)2 - msl cosg, where rr, Ir, m, s and I
|
are constants.

AilFqqr b frq efu€q o1 rrfr b ed-s-rur qrq 6t


L :'; (e' + sir,z e $2) +
I (ri, + i cos0)2 - mg t cosl,fldl I r, Iz, m,g olf{ t or+t

tt
6(b) Find singularities e1::t(tn 66 trence find residues at these singularities. (1s)

'"5d 61 fudqlrdnt dS orti qsfds q+ fuoerurdroil qr orq*q dS r

6(c) Find the general solution of :G2 + yz)p + xyq - f,@ + y)z : o. (10)

){,'+ f)r+ ,aa- }{,+r), : sE'Iqrqrqqm-6.dfrt


Q 7. Write answers of the following questions.

ffiffiicfrilrtrrfrEs
7 (a) For a steady flow under pressure ofviscous fluid through a cylinder ofradius 'a' (15)
obtain the velocity in the form rr, : L 1az - 12) .

E-qr,
"'
& qs Rrfi -sr b crqc t EqErE a{e } rsrd fr RR rsrd t, fr s fu r
o,= fi{"' -r'z) t'wfrurratr
7(b) Find the complete integral of ff * ,#,* '# : ,"'* . (15)

afi :
# *, #, t xe' +r orEf 66 sq +lfrv

5
7(c) Using the bisection method, find an approximate root of the equation .trrr:1, that (r0)
lies between r=l and x: I.S (measured in radians). Carry out computations up to
the 7th stage.
Ertro-r Efu or sqftr ort gq. sfi-6-rq 16, = 1 q;y 3qqfr6 qo cfrd. d *: I ettt *=
r.s ttBqr fr cT qr qqn & d-s tr zd qtur ilo,.runrtotI

Q 8. Write answers of the following questions.

ffifuas?if &udrfrEs

8(a) Classi! the partial differential equation, r - 2t :0 and convert it into the canonical (15)
form.

o{iRr', i.*6E qfi -6-rur, r - 2t : o sn ErfE-d 6t .r}i gS Etra sq fr qffia of r

S(b) Let f,.: R -+ R be a sequence of functions with


/,, + f uniformly on R- prove or (15)
disprove the following:
(i) f is bounded, if each f" is bonded on R
(ii) h"...-.(./" (x)dx = fif(r)dr,orovided each f. is integrable over R-

un fr o1 egmu t/") t, qO f", n * n t efu f" r / \,rr.wrn R q{ t ffifuo +i


f

ft-gqrqfuaot'
(D f qfws e qtrffi5 4 qfrq6 s qq I I

(iD lrm [/"(r) dr: [rf(r)dr,wAq-&6f"qqrfi-mfiqnqrt r

8(c) kt p be a prime. Prove that every group of order p? is abelian. (f 0)


qFr dfug p eFrq t r fusolfuq fr. ot p2 or u-&o qg6 endft t I

You might also like