FRVT 1N Report 2022 12 18
FRVT 1N Report 2022 12 18
Face Recognition
Vendor Test (FRVT)
Part 2: Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Patrick Grother
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory
2022/12/18
NISTIR 8271 DRAFT SUPPLEMENT
Face Recognition
Vendor Test (FRVT)
Part 2: Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Patrick Grother
Mei Ngan
Kayee Hanaoka
Information Access Division
Information Technology Laboratory
November 2022
RELEASE NOTES
. This document is the nineteenth draft update to NIST Interagency Report 8271. It contains results for
one first-time participant: First Credit Bureau Kazakhstan.
. The document also includes results for algorithms from five returning developers: Gorilla Technology,
Pangiam, Qnap Scurity, SQIsoft, Vixvizion (formerly known as Imagus).
. This document is the nineteenth draft update to NIST Interagency Report 8271. It contains results for
four first-time participant: Mukh, Turing Technology VIP, Verijelas and Verihubs Inteligensia
. The document also includes results for algorithms from two returning developers: Maxvision and
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Samsung S1.
. This document is the eighteenth draft update to NIST Interagency Report 8271. It contains results for
two first-time participants: Intema-LGL Group and T4iSB.
. The document also includes results for algorithms from two returning developers: Cloudwalk - Moon-
time Smart Technology, Dermalog, Griaule, Hangzhuo AIlu Network Information Technology, Intel-
livision, Line Corporation, NEC, Sensetime Group, Realnetworks Inc and Vietnam Posts and Telecom-
munications Group.
. This document is the seventeenth draft update to NIST Interagency Report 8271. It contains results for
one first-time participant: Maxvision.
. The document also includes results for algorithms from two returning developers: Rank One Com-
puting, and Viettel Group.
. We have replaced the probe set used in the visa-border benchmark. It was previously comprised of
80 000 images; it now has size 1 212 892 - see amended entries in Table 1. False negative identification
rates have increased.
. We have added images to the probe set used in the visa-kiosk benchmark. It was previously comprised
of 21 016 mates and the same number of non-mates; it now has 31 579 mates and 45 460 non-mates -
see amended and entries in Table 1. False negative identification rates are improved (reduced) slightly.
. This document is the seventeenth draft update to NIST Interagency Report 8271. It includes results for
algorithms submitted by three first-time participants: Digidata, DiluSense Technology, and Vietnam
Posts and Telecommunications Group.
. The document also includes results for algorithms from five returning developers: Canon Inc, Imagus
Technology, Neurotechnology, Thales, and Samsung S1.
. This document is the sixteenth draft update to NIST Interagency Report 8271. It includes results for
algorithms submitted by one first-time participants: Hangzhuo AIlu Network Information Technology.
. The document also includes results for algorithms from three returning developers: HyperVerge Inc,
Qnap Security, and Realnetworks Inc.
. The 1:N results page has been updated.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 2
. This document is the sixteenth draft update to NIST Interagency Report 8271. It includes results for
algorithms submitted by two first-time participants: Intellivision, and Pangiam.
. The document also includes results for algorithms from three returning developers: Fujitsu Research
and Development Center, Idemia, and Gorilla Technology.
. The 1:N results page has been updated.
. This document is the fifteenth draft update to NIST Interagency Report 8271. It includes results for al-
gorithms submitted by four first-time participants: Cloudwalk - Moontime Smart Technology, Decatur
Industries Inc, NotionTag Technologies Private Limited, and Reveal Media Ltd.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
. The document also includes results for algorithms from three returning developers: Cognitec Systems
GmbH, Sensetime Group, and Viettel Group
. The 1:N results page has been updated.
. This document is the fourteenth draft update to NIST Interagency Report 8271. It includes results for
algorithms recently submitted by two first-time participants: Daon and SQIsoft.
. The document also includes results for algorithms from five returning developers: Cyberlink Corp,
NEC, Neurotechnology, Paravision, and Rank One Computing.
. The 1:N results page has been updated.
. This document is the thirteenth draft update to NIST Interagency Report 8271. It includes results for
algorithms from six returning developers: Dahua Technology, Imagus Technology, Line Corporation,
N-Tech Lab, Qnap Security, and Realnetworks Inc.
. The 1:N results page has been updated.
. This document is the twelfth draft update to NIST Interagency Report 8271. It includes results for algo-
rithms recently submitted by three first-time participants Clearview AI, Griaule, and Mantra Softech
India.
. This document and the 1:N results page also include results for algorithms from six returning devel-
opers: Acer Incorporated, Canon, Dermalog, Samsung S1, VisionLabs, and Veridas Digital Authenti-
cation.
. This document is the eleventh draft update to NIST Interagency Report 8271. It includes results for
algorithms recently submitted by three first-time participants (20Face, Fujitsu Research and Develop-
ment Center, and Vision-Box), and five returning participants (Alchera, Gorilla Technology, Tevian,
Thales-Cogent, and Visidon). Visidon
. Both the main 1:N results page and the small-gallery paperless travel page have been updated.
2021-09-21: The 1:N track of the FRVT remains open. Three news items:
. This document is the tenth draft update to NIST Interagency Report 8271. It includes results for al-
gorithms recently submitted by six first-time developers: Cubox, Fincore, HyperVerge, Qnap Security,
Staqu Technologies, and Tripleize (Aize, 3-ize).
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 3
. It includes results also for four returning developers: Cognitec Systems, Incode Technologies, Inno-
vatrics, Neurotechnology, and Rank One Computing.
2021-08-02: The 1:N track of the FRVT remains open. Three news items:
. This document is the nineth draft update to NIST Interagency Report 8271. It includes results for
algorithms recently submitted by eight participants: Cyberlink Corp, NEC Corp, N-Tech Lab, Realnet-
works Inc., Sensetime Group, Veridas Digital, Viettel Group, and Vigilant Solutions.
. Algorithms submitted since July 24 will be included in the next update scheduled for September 9,
2021.
. A new report, NIST Interagency Report 8381 - FRVT Part 7: Identification for Paperless Travel and Im-
migration, has been released [PDF, webpage]. It documents the use of FRVT 1:N algorithms in positive
access control and immigration status update travel applications where the enrolled population size
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
is as low as 420 people for aircraft boarding, and 42 000 for an airport security line. These population
sizes are much smaller than those used in the main 1:N evaluation. Going forward, we will update the
report and webpage with results for new algorithms.
2021-07-07: The 1:N track of the FRVT remains open. One update:
. This document is the eighth draft update to NIST Interagency Report 8271. It include results for an
algorithm from one participant: Kakao Enterprises.
2021-06-22: The 1:N track of the FRVT remains open. Three updates:
. This is the seventh draft of the update to NIST Interagency Report 8271. It includes results for algo-
rithms from three new participants: Line Corporation, Rendip, and Samsung S1 Corp.
. We have also added results for algorithms from five returning developers: Imagus Technology, Kneron,
Tevian, Visidon, and Xforward AI Technology.
. The algorithm-specific report cards (examples: 1, 2, and 3) now include figures showing how low
threshold values can be used to reduce candidate list lengths for human review, while (usually) elevat-
ing miss rates (FNIR) only modestly. The reports also feature some minor additions and clarifications.
2021-03-26: The 1:N track of the FRVT remains open. Three updates:
. This is the sixth draft of the update to NIST Interagency Report 8271. It includes results for algorithms
from three returning developers: Neurotechnology, Guangzhou Pixel Solutions, and Tech5 SA.
. We have added results on the webpage and in the report for a new ageing dataset in which border
crossing photos are searched against a gallery of border crossing photos collected between 10 and 15
years prior to the mated search photos. See section 2 for a description of the images. Table 1 has a new
entry describing the experiment.
. We will mostly discontinue running the mugshot ageing test, reserving it for algorithms that show
high accuracy on the new border-crossing set.
2021-03-26: Regarding the fifth draft of the update to NIST Interagency Report 8271:
. In addition have added results for first algorithms from two new participants: Viettel Group and
Veridas Digital Authentication Solutions.
. We have added results for algorithms from two returning developers: Idemia and Cognitec Systems.
. In addition to the report, the results page and its hyperlinked report cards have been updated.
2021-02-08: Regarding the fourth draft of the update to NIST Interagency Report 8271:
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 4
. We have added results for eight algorithms submitted by eight developers: Cyberlink, Dermalog,
Imagus, Paravision, Sensetime, Trueface, Vigilant Solutions, and X-Forward AI. With the exception of
Trueface, all of these developers have participated previously.
. We anticipate updating this report again in the first week of March 2021.
. The main results page has been revised with tabs for the investigative and lights-out identification
tables, and a new tab dedicated to speed and resource consumption.
. The report cards (example here) hyperlinked from the results page have been revised to improve con-
tent and format.
2020-12-14: Regarding third draft of the update to NIST Interagency Report 8271:
. We have added results for fifteen algorithms submitted by thirteen developers. The four first-time
participants are: Acer, Akurat Satu Indonesia, Canon, and Xforward AI Technology. The ten return-
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
ing developers are: AllGoVision, Cyberlink Corp, Dahua Technology, Deepglint, Guangzhou Pixel
Solutions, IIT Vision, Innovatrics, Rank One Computing, Scanovate, Sensetime Group, Synesis, and
VisionLabs.
. We have added two new datasets to the evaluation: First a set of “visa-border” photos, representing
search of an airport immigration lane photo against a database of closely ISO standard portraits; sec-
ond a “visa-kiosk” set representing search of a photo collected in a registered traveller kiosk against
the same ISO portrait gallery. The images are described in section 2.1.
. As in previous reports, we include results for searching mugshots against a mugshot gallery containing
a single image of each of 12 million people. However we have suspending running searches against
a gallery in which multiple lifetime photos per person are present, because this is computationally
expensive. We retain a N = 3 million search test dedicated to ageing in which mugshots taken up to 18
years after the first photograph are searched - see Table 7.
. Tables containing computational resource information, Table 2. . ., now include duration of the final-
ization step, in which search algorithms can, at their option, build fast-search data structures.
. We have linked revised per-algorithm PDF report cards from the main results page.
. We have regenerated all figures and tables to drop algorithms submitted before June 2018. Results for
prior algorithms appear in archived editions of this report.
. Going forward, we anticipate producing more frequent updates to this report. Developers may submit
one algorithm to this evaluation every four calendar months.
2020-03-24: Regarding the second draft of the update to NIST Interagency Report 8271:
. Adds results for three algorithms from three developers, Dermalog, Innovatrics, and Synesis.
. Adds Table 7 on ageing showing the increase in false negative rates with time elapsed between two
photos. Some of the results were contained in graphs in prior editions of this report, but the table adds
results for some newly submitted algorithms.
. Adjusts frontal mugshot results (for recent and lifetime consolidated galleries) to include the effect
of removing some images that should not have been included in image test sets. These images were
mostly profile views, images of tattoos containing faces, images of faces on tee shirts, and images of
photographs on walls behind the intended subject. This affects many tables and reduces false negative
identification rates for all algorithms. The reduction is larger for “recent” enrollments than for “lifetime
consolidated” ones with the consequence that accuracy on recent images is now superior.
2020-02-26: Regarding the first draft of the update to NIST Interagency Report 8271:
. Adds results for 38 algorithms from 31 different developers, eleven of whom are entirely new to the
1:N track of FRVT. These are Allgovision, Cyberlink, Deepsea Tencent, Farbar F8, Imperial College
London, Intsys MSU, Kedacom, Kneron, Pixelall, and Scanovate.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 5
DISCLAIMER
Specific hardware and software products identified in this report were used in order to perform the evalua-
tions described in this document. In no case does identification of any commercial product, trade name, or
vendor, imply recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the products and equipment identified are necessarily the best available for the purpose.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
ACKNOWLEDGMENTS
The authors are grateful for the support and collaboration of the the Department of Homeland Security’s
Science & Technology Directorate (S&T), Office of Biometric Identity Management (OBIM), and Customs
and Border Protection (CBP).
Additionally, the authors are grateful to staff in the NIST Biometrics Research Laboratory for infrastructure
supporting rapid evaluation of algorithms.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 6
Executive Summary
This document is a draft revision of the September 2019 report NIST Interagency Report 8271. That report gave ex-
tensive documentation of face recognition applied to mugshots. This report extends that by adding more two more
challenging datasets containing images with serious departures from canonical frontal image standards. The report
also adds results for algorithms submitted to NIST since in 2019 and 2020. The algorithms, which implement one-to-
many identification of faces appearing in two-dimensional images, are prototypes from the research and development
laboratories of mostly commercial suppliers, and are submitted to NIST as compiled black-box libraries implementing
a NIST-specified C++ test interface. The report therefore does not describe how algorithms operate. The report lists
accuracy results alongside developer names and will therefore be useful for comparison of face recognition algorithms
and assessment of absolute capability. The report is accompanied by a webpage with sortable results.
The evaluation uses six datasets: frontal mugshots, profile view mugshots, desktop webcam photos, visa-like immigra-
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
tion application photos, immigration lane photos, and registered traveler kiosk photos. These datasets are sequestered
at NIST, meaning that developers do not have access to them for training or testing. This aspect is important because
face recognition algorithms are very often deployed without the developer having access to the customers image data.
A possible exception to this would be in a cloud-based application where the operational image data is uploaded to a
cloud operated by a face recognition developer.
The major result in NIST IR 8271 was that massive gains in accuracy have been achieved in the years 2013 to 2018
and these far exceed improvements made in the prior period, 2010 to 2013. While the industry gains were broad - at
least 30 developers’ algorithms outperformed the most accurate algorithm from late 2013, there remains a wide range of
capability. While this report shows accuracy gains only over the period 2018-2020, the most accurate algorithm reported
here is substantially more accurate than anything reported in NIST IR 8271. This is evidence that face recognition
development continues apace, and that FRVT reports are but a snapshot of contemporary capability.
From discussion with developers, the accuracy gains stem from the adoption of deep convolutional neural networks.
As such, face recognition has undergone an industrial revolution, with algorithms increasingly tolerant of poorly illu-
minated and other low quality images, and poorly posed subjects. One related result is that a few algorithms correctly
match side-view photographs to galleries of frontal photos, with search accuracy approaching that of the best c. 2010
algorithms operating on purely frontal images. The capability to recognize under a 90-degree change in viewpoint -
pose invariance - has been a long-sought milestone in face recognition research.
With good quality portrait photos, the most accurate algorithms will find matching entries, when present, in galleries
containing 12 million individuals, with rank one miss rates of approaching 0.1%. The remaining errors are in large
part attributable to long-run ageing, facial injury and poor image quality. Given this impressive achievement - close to
perfect recognition - an advocate might claim that cooperative face recognition is a solved problem, a statement that
can be refuted with the following context and caveats:
. Mugshots vs. less constrained captures: The low error rates reported here are attained using mostly excel-
lent cooperative live-capture mugshot images collected with an attendant present. Recognition in other circum-
stances, particularly those without a dedicated photographic environment and human or automated quality con-
trol checks, will lead to declines in accuracy. This is documented here for side-view images, poorer quality we-
bcam images, and, particularly, for newly introduced ATM-style kiosk photos that were not originally intended
for automated face recognition. In this case, recognition error rates are much higher, often in excess of 20% even
with the more accurate algorithms which variously remain intolerant of face cropping (at image edge) and of
large downward head pitch.
. Algorithm accuracy spectrum: Recognition accuracy is very strongly dependent on the algorithm and, more
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 7
Same
photo
under
0.300
two IDs Algorithm
cloudwalk_mt_000
Same
dahua_004
0.200 person
deepglint_001
under
idemia_009
two IDs
innovatrics_007
microsoft_6
nec_005
0.100 neurotechnology_010
ntechlab_010
paravision_009
0.070 rankone_012
Twins
sensetime_007
visionlabs_011
0.050
False negative identification rate, FNIR(T)
xforwardai_002
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.040 yitu_5
0.030
Siblings
0.020
innovatrics_007
yitu_5
0.010
neurotechnology_010
Lookalikes
0.007
dahua_004
visionlabs_011
0.005
rankone_012
0.004
deepglint_001
microsoft_6
0.003
xforwardai_002
nec_005 cloudwalk_mt_000
0.002
idemia_009
sensetime_007 ntechlab_010
paravision_009
0.001
Identification seldom Investigational always
uses human review uses human review
Figure 1: Identification miss rates across the false positive range. N = 12 million individuals are enrolled with one recent image.
generally, on the developer of the algorithm. False negative error rates in a particular scenario range from a few
tenths of one percent to beyond fifty percent. This is tabulated exhaustively later: For example Table 11 shows
accuracy across datasets. Figure 1 here compares algorithms on mugshot searches in a consolidated gallery of
12 million subjects and 12 million photos. Many algorithms do not achieve the low error rates noted above, and
while many of those may still be useful and valuable to end-users, only the most accurate excel on poor quality
images and those collected long after the initial enrollment sample.
. Versioning: While results for up to ten algorithms from each developer are reported here, the intra-provider
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 8
accuracy variations are usually smaller than the inter-provider variations. That said different versions give an
order of magnitude fewer misses. Some developers demonstrate speed-accuracy tradeoffs1 . See Figs. 18, 19.
. Low similarity scores: In thousands of mugshot cases the correct gallery image is returned at rank 1 but its
similarity score is nevertheless low, below some operationally required score threshold. This is not so important
when face recognition is used for “lead generation” in investigational applications because human reviewers are
specifically required to review potentially long candidate lists and the threshold is effectively 0. In applications
where search volumes are higher and labor is not available to review the results from searches, a higher threshold
must be applied. This reduces the length of candidate lists and false positive identification rates at the expense
of increased false negative miss rates. The tradeoff between the two error rates is reported extensively later.
. Population size: As the number of enrolled subjects grows, some mates are displaced from rank one, decreasing
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
accuracy. As tabulated later for N up to 12 million, false negative rates generally rise slowly with population
size. This enables use of face recognition in very large populations. However in most positive and negative
identification applications2 , a score threshold is set to limit the rate at which non-mate searches produce false
positives. This has the consequence that some mated searches will report the mate below threshold, i.e. a miss,
even if it is at rank 1. The utility of this is that many non-mated searches will return no candidate identities at
all. As the error-tradeoff characteristic shows, investigational miss rates on the right side are very low but then
rise steadily (in the center region) as threshold is increased to support “lights-out” applications, and ultimately
rise quickly (left side) as discussed below. Thus, if we demand that just one in one thousand non-mate searches
produce any false positives, the most accurate algorithms there (Sensetime-004 and NEC-3) would fail on between
3 and 5% of mated searches. Even though the graph shows results for the most accurate algorithms, all but two
would fail to find the mate in more than 8% of mated searches. While the two most accurate algorithms produce
a relatively flat error tradeoff until the threshold is raised to limit false positives to about 1 in 400 non-mated
searches3
Thereafter, as the threshold is raised to further reduce false positives, miss rates rise rapidly. This means that low
false positive identification rates are inaccesible with these algorithms, a result that does not apply for ten-finger
identification algorithms. The rapid rise occurs because the lower mate scores are mixed with very high non-mate
scores, the low scores from poor image quality and ageing, the high non-mates from the presence of lookalikes
persons (doppelgangers), twins (discussed next) and, ultimately, the presence of a few unconsolidated subjects
i.e. persons present under multiple IDs.
. False negatives from ageing: A large source of error in long-run applications where subjects are not re-enrolled
on a set schedule is ageing. Changes in facial appearance increase with the time elapsed between photographs.
These will depress similarity scores and eventually cause false negatives. All faces age and while this usually
proceeds in a graceful and progressive manner, drug use can accelerate this [28]. Elective surgery may be effective
in delaying it although this has not been formally quantified with face recognition. As ageing is essentially
unavoidable, it can only be mitigated by scheduled re-capture, as in passport re-issuance. To quantify ageing
effects, we used the more accurate algorithms to enroll the earliest image of 3.1 million adults and then search
1 For example, NEC-0 prepares templates much faster than NEC-2 but gives twenty times more misses. Dermalog-5 executes a template search much
more quickly than Dermalog-6 but is also much less accurate.
2 In a positive identification application such as a registered traveler system, a user is making an implicit claim to be enrolled in the system - most
users will be. In a negative application, such as with deportees, the implicit claim is that the subejct is not enrolled - most will not be.
3 The gallery size here is 12 million people, one image per person. Given 331 201 non-mated searches, an exhaustive implementation of one-too-many
search would execute almost 4 trillion comparisons. At a false positive identification rate of 0.0025 the number of false positives is, to first order,
828 corresponding to single-comparison false match rate of 828 / 4 trillion = 2.1 10−10 i.e. about 1 in 5 billion. Strictly this FMR computation is
meaningful only for algorithms that implement 1:N search using N 1:1 comparisons, which is not always the case.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 9
with 10.3 million newer photos taken up to 18 years after the the initial enrollment photo. Figure 2 puts ageing
into context by contrasting it with the increase in false negatives that occurs when the number of individuals in
an enrollment database becomes larger and the chance of a false positive increases such that higher thresholds
may become necessary4 .
The Figure shows, from to bottom, increases in false negative identification rates (FNIR) with the algorithm
being tested. This applies to increases due to N on the left side, and increases due to ageing on the right side.
The relative spacing of the dots shows that for all algorithms the dependency of FNIR on N (up to 12 million) is
considerably less than on ∆T (up to 18 years).
In the inset table, accuracy is seen to degrade progressively with time, as mate scores decline and non-mates dis-
place mates from rank 1 position. More accurate algorithms tend to be less sensitive to ageing. The more accurate
algorithms give fewer errors after 18 years of ageing than middle tier algorithms give after four. Note also we do
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
not quantify an ageing rate - more formal methods [2] borrowed from the longitudinal analysis literature have
been published for doing so (given suitable repeated measures data). See Figures 60, 88 and 102.
4 Some
algorithms implement stragegies to automatically adjust scores to account for increased population size. This relieves the system owner of
having to increase thresholds as N increases.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 10
realnetworks_003
dermalog_007
gorilla_005
incode_004
dermalog_008
veridas_001
ntechlab_007
idemia_4
ntechlab_008
innovatrics_005
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
gorilla_007
cognitec_004
imperial_000
rankone_009
pixelall_003
rankone_007
yitu_5
imagus_005
idemia_007
fujitsulab_001 Degrader
Years Lapsed (0,2]
trueface_000
Years Lapsed (10,12]
dahua_003 Years Lapsed (12,14]
cogent_004 Years Lapsed (14,18]
Years Lapsed (2,4]
realnetworks_006
Years Lapsed (4,6]
visionlabs_008 Years Lapsed (6,8]
Algorithm
neurotechnology_010
cognitec_006
N
ntechlab_009
N=00640000
canon_001 N=01600000
rankone_011 N=03000000
N=03068801
pangiam_000
N=06000000
ntechlab_011 N=12000000
rankone_012
paravision_005
visionlabs_010
xforwardai_001
deepglint_001
paravision_007
Effect of population Effect of time lapse
visionlabs_011
size, N (increasing left). 1 < DT < 18 years
paravision_009
Mean time lapse is increasing right.
nec_3
sensetime_006
4.5 years. N is fixed at 3068801
cubox_000 Num probes is 154K
sensetime_004
idemia_008
nec_004
sensetime_007
cloudwalk_hr_000
idemia_009
nec_005
cloudwalk_mt_000
0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
False negative identification rate (FNIR) at false positive identification rate (FPIR) = 0.01
Figure 2: Identification miss rates as a function of enrolled population size, N , and time-lapse, ∆T .
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 11
17.0
16.5
TVAL
Similarity Score
FPIR = 0.001
16.0
FPIR = 0.003
FPIR = 0.010
15.5
FPIR = 0.030
15.0
AA AA AB AB AB
fraternal identical fraternal fraternal identical
SameSex SameSex DifferentSex SameSex SameSex
Gallery: Twin A; Probe: Twin A or B; Type of Twin
Figure 3: Intra- and inter-twin scores
. False positives from twins: By enrolling 640 000 mugshots, adding photos of one twin, and then searching photos
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
of those subjects and their twin the inset figure shows, for one typical algorithm, the similarity is generally greater
when searching twins against themselves (A) than when searching twins against their sibling (B) but very often
still above even stringent thresholds i.e. those corresponding to one in one thousand searches producing a false
positive. Thus twins will very often produce a high-scoring non-match on a candidate list and a false alarm in
an online identification system. The plot of Fig. 3 shows that fraternal twins are sometimes correctly rejected at
those thresholds - including most different sex twins (at center). Figure ?? shows substantially similar behavior
for all algorithms tested. In an investigative search, a twin would typically appear at rank 1, or rank 2 if their
sibling happened to also be the gallery. Twins (and triplets etc.) constituted 3.3% of all live births [17] in recent
years5 , and because that number is higher today than when the individuals in current adult databases were born,
the false positives that arise from twins are now, and will increasingly be, an operational problem. Relative to the
United States, twins are born with considerable regional variation. For example they are much less common in
East Asia, and much more common in Sub-Saharan Africa [21].
The presence of twins in the mugshot database is inevitable given its size, around 12.3 million people. As this
is not an insignificant sample of the domestic United States population, people with other familial ties will be
present also. The data was collected over an extended period and because location information is not available,
we are unable to estimate the proportion of the domestic population that is present in the dataset. However, if
we assume twins are neither more or less disposed to arrest than the general population, we can estimate that
hundreds of thousands of individuals in the dataset are twins. This will affect false positive rates because we
randomly set aside 331 201 individuals for nonmate searches, and some proportion of those will be twins with
siblings in the gallery.
. Database integrity: An operational error rate should be added to all false negative rates in this report reflecting
the proportion of images in a real database that are un-matchable. Such anomalies arise from images that: do not
contain a face; include multiple persons; cannot be decoded; are rotated by 90◦ or 180◦ ; depict a face on clothing;
and others introduced by a long tail of various clerical errors. While the mugshot trials in this report have been
constructed to minimize such effects, they are a real problem in actual operations.
This report is being updated continuously as new algorithms are submitted to FRVT, and run on new datasets. Par-
ticipation in the one-to-many identification track is independent of participation in the one-to-one verification track of
FRVT.
5 See the CDC’s National Vital Statistics Report for 2017: https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67 08-508.pdf
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 12
Demographics: In December 2019, NIST published a first report on demographic dependencies in face recognition,
NIST Interagency Report 8280 that documented age, sex and race differentials in one-to-one and one-to-many false
positive and false negative rates.
Scope: NIST IR 8271 documented recognition results for four databases containing in excess of 30.2 million still pho-
tographs of 14.4 million individuals. That constituted the largest public and independent evaluation of face recognition
ever conducted. It includes results for accuracy, speed, investigative vs. identification applications, scalability to large
populations, use of multiple images per person, images of cooperative and non-cooperative subjects.
The report also includes results for ageing, recognition of twins, and recognition of profile-view images against frontal
galleries. It otherwise does not address causes of recognition failure, neither image-specific problems nor subject-
specific factors including demographics. Separate reports on demographic dependencies in face recognition will be
published in the future. Additionally out of scope are: performance of live human-in-the-loop transactional systems
like automated border control gates; human recognition accuracy as used in forensic applications; and recognition of
persons in video sequences (which NIST evaluated separately [9]). Some of those applications share core matching
technologies that are tested in this report.
Images: Five kinds of images are employed; these are either compared with images of the same kind, or against others
from different capture environments as follows. The primary dataset is a set of law enforcement mugshot images (Fig.
5) which are enrolled and then searched with three kinds of images: other mugshots (i.e. within-domain); profile-
view photographs (90 degree cross-view); and lower quality webcam images (Fig. 6) collected in similar detention
operations (cross-domain). Additionally we compare high quality visa-like photos collected in immigration offices,
with: medium quality border crossing images collected in primary immigration lanes; poor quality images collected in
ATM-like registered traveller kiosks.
Participation and industry coverage: The report includes performance figures for prototype algorithms from the re-
search laboratories of commercial developers and a few universities. This represents a substantial majority of the face
recognition industry, but only a tiny minority of the academic community. Participation was open worldwide. While
there is no charge for participation, developers incur some software engineering expense in implementing their algo-
rithms behind the NIST application programming interface (API). The test is a black-box test where the function of the
algorithm, and the intellectual property associated with it, is hidden inside pre-compiled libraries.
Recent technology development: Most face recognition research with deep convolutional neural networks (CNNs) has
been aimed at achieving invariance to pose, illumination and expression variations that characterize photojournalism
and social media images. The initial research [18, 22] employed large numbers of images of relatively few (∼ 104 )
individuals to learn invariance. Inevitably much larger populations (∼ 107 ) were employed for training [11, 20] but
the benchmark, Labeled Faces in the Wild with (essentially) an equal error rate metric [12], represents an easy task,
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 13
one-to-one verification at very high false match rates. While a larger scale identification benchmark duly followed,
Megaface [15], its primary metric, rank one hit rate, contrasts with the high threshold discrimination task required
in most large-population applications of face recognition, namely credential de-duplication, and background checks.
There, identification in galleries containing up to 108 individuals must be performed using a) very few images per
individual and b) stringent thresholds to afford very low false positive identification rates. This track of FRVT was
launched to measure the capability of the new technologies, including in these two cases. FRVT has included open-set
identification tests since 2002, reporting both false negative and positive identification rates [7].
Search Photo
Alice
Bob
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Ben Automated
Detection and
localization face
Eve Feature extraction recognition
The enrollment Dawn e.g. CNN model engine
database
Sam Feature extraction evaluated as
consists of
e.g. CNN model black box.
images and Alex
any biographic Eva This grey box
data. Enrolled database: Search Algorithm
Pat is the scope of
Array, tree, index or e.g. N comparisons NIST’s
Jack other data structure
evaluation.
The algorithm Jill
is given the
Bill
images and Output is a candidate list. It’s length is determined by preset configuration of
and a pointer Zeke rank and threshold, and these are set to implement objectives.
to the record Zack
Example Access to a gym or cruise ship Watchlist e.g. Detection of deportee or Crime scene photos, or of detainee
duplicate drivers license applications without ID documents.
Claim of identity Implicit claim to be enrolled Implicit claim to not be enrolled No claim: Inquiry
Threshold High, to implement security High, to limit false positives Zero
objective
Num. candidates 1 0 L, set by request to algorithm
Human role Review candidate to assist user in Review candidate to determine false Review multiple candidates, refer
resolution of false negatives, or to positive or correct hit possible hits to examiners see [26]
detect impostor
Intended human Rare – approx. the false negative Rare – approx. the false positive Always
involvement identification rate plus prior identification rate plus prior probability
frequency probability of impostor of an actual mate
Performance FNIR at low FPIR. See sec. 3.1, 3.2 FNIR at low FPIR. See sec. 3.1, 3.2 and FNIR at ranks 1... 50, say. FPIR = 1.
metric of interest and Tables 10, 19 Tables 10, 19 See sec. 3.2 and Table 12, 14, 16
Performance metrics for applications: This report documents the performance of one-to-many face recognition algo-
rithms. The word ”performance” here refers to recognition accuracy and computational resource usage, as measured
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 14
positives must be limited to satisfy reviewer labor availability or a security objective, higher false negative rates are
implied. This report includes extensive quantification of this threshold-based tradeoff. See Sec. 3
Template diversity: The FRVT is designed to evaluate black-box technologies with the consequence that the templates
that hold features extracted from face images are entirely proprietary opaque binary data that embed considerable
intellectual property of the developer. Despite migration to CNN-based technologies there is no consensus on the
optimal feature vector dimension. This is evidenced by template sizes ranging from below 100 bytes to more than four
kilobytes. This diversity of approaches, suggests there is no prospect of a standard template something that would
require a common feature set to be extracted from faces. Interoperability in automated face recognition remains solidly
based on images and documentary standards for those, in particular the ICAO portrait [27] specification deriving from
the ISO/IEC 19794-5 Token frontal [24] standard, which are similar to certain ANSI/NIST Type 10 [26] formats.
Training: The algorithms submitted to NIST have been developed using image datasets that developers do not disclose.
The development will often include application of machine learning techniques and will additionally involve iterative
training and testing cycles. NIST itself does not perform any training and does not refine or alter the algorithm in
any way. Thus the model, data files, and libraries that define an algorithm are fixed for the duration of the tests. This
reflects typical operational reality where recognition software, once installed, is fixed and constant until upgraded.
This situation persists because on-site training of algorithms on customer data is atypical essentially because training
is not a turnkey process.
Automated search and human review: Virtually all applications using automated face search require human review of
the outputs at some frequency: Always for investigational applications; rarely in positive identification applications,
after rejection (false or otherwise); and rarely in negative identification applications, after an alarm (false or otherwise).
The human role is usually to compare a reference image with the query image or the live-subject if present, to render
either a definitive decision on “exclusion” (different subjects), or “identification” (same subject), or a declaration that
one or both images have “no value” and that no decision can be made. Note that automated face recognition algorithms
are not built to do exclusion - low scores from a face comparison arise from different faces and poor quality images of
the same face.
Human reviewers make recognition errors [5, 19, 25] and are sensitive to image acquisition and quality. Accurate
human review is supported by high resolution - as specified in the Type 50, 51 acquisition profiles of the ANSI/NIST
Type 10 record [26], and by multiple non-frontal views as specified in the same standard. These often afford views
of the ear. Organizations involved in image collection should consider supporting human adjudication by collecting
high-resolution frontal and non-frontal views, preparing low resolution versions for automated face recognition [24],
and retaining both for any subsequent resolution of candidate matches. Along these lines, the ISO/IEC Joint Technical
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 15
Committee 1 subcommittee 37 on biometrics has just initiated projects on image quality assessment and face-aware
capture.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 16
Release Notes
FRVT Activities: Since February 2017, NIST has been evaluating one-to-one verification algorithms on an ongoing
basis. NIST then restarted FRVT’s one-to-many track in February 2018, inviting participants to send up to prototype
algorithms. Both tracks allows developers to submit updated algorithms to NIST at any time but no more frequently
than four calendar months. This more closely aligns development and evaluation schedules. Results are posted to the
web within a few weeks of submission. Details and full report are linked from the Ongoing FRVT site.
FRVT Reports: The results of the FRVT appear in the series NIST Interagency Reports tabulated below. The reports
were developed separately and released on different schedules. In prior years NIST has mostly reported FRVT results
as a single report; this had the disadvantage that results from completed sub-studies were not published until all other
studies were complete.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 17
Contents
Release Notes 1
Disclaimer 5
Acknowledgments 5
Executive Summary 6
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Release Notes 16
1 Introduction 18
2 Evaluation datasets 19
3 Performance metrics 25
4 Results 41
Appendices 82
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 18
1 Introduction
One-to-many identification represents the largest market for face recognition technology. Algorithms are used across
the world in a diverse range of biometric applications: detection of duplicates in databases, detection of fraudulent
applications for credentials such as passports and driving licenses, token-less access control, surveillance, social media
tagging, lookalike discovery, criminal investigation, and forensic clustering.
This report contains a breadth of performance measurements relevant to many applications. Performance here refers
to accuracy and resource consumption. In most applications, the core accuracy of a facial recognition algorithm is
the most important performance variable. Resource consumption will be important also as it drives the amount of
hardware, power, and cooling necessary to accommodate high volume workflows. Algorithms consume processing
time, they require computer memory, and their static template data requires storage space. This report documents
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
these variables.
FRVT tested open-set identification algorithms. Real-world applications are almost always “open-set”, meaning that
some searches have an enrolled mate, but some do not. For example, some subjects have truly not been issued a visa
or drivers license before; some law enforcement searches are from first-time arrestees6 . In an “open-set” application,
algorithms make no prior assumption about whether or not to return a high-scoring result, and for a mated search, the
ideal behaviour is that the search produces the correct mate at high score and first rank. For a non-mate search, the
ideal behavior is that the search produces zero high-scoring candidates.
Many academic benchmarks execute only closed-set searches. The proportion of mates found in the rank one position
is the default accuracy metric. This hit rate metric ignores the score with which a mate is found; weak hits count
as much as strong hits. This ignores the real-world imperative that in many applications it is necessary to elevate a
threshold to reduce the number of false positives.
6 Operationally closed-set applications are rare because it is usually not the case that all searches have an enrolled mate. One counter-example,
however, is a cruise ship in which all passengers are enrolled and all searches should produce exactly one identity. Another example is forensic
identification of dental records from an aircraft crash.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 19
2 Evaluation datasets
This report documents accuracy for four kinds of images - mugshots, webcam, profiles and wild - as described in the
following sections.
This report includes benchmark tests sharing a common enrollment of high quality frontal portrait images collected
while subject make applications for various immigration benefits. We then search that with two kinds of images,
webcam images collected during in-bound immigration and also images collected from registered travelers using a
ATM-style kiosk. These are described below and depicted in Figure 4.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
. Application reference photos: The images are collected in an attended interview setting using dedicated capture
equipment and lighting. The images, at size 300x300 pixels, are smaller than normally indicated by ISO. The
images are all high-quality frontal portraits collected in immigration offices and with a white background. As
such, potential quality related drivers of high false match rates (such as blur) can be expected to be absent. The
images are encoded as ISO/IEC 10918-1 i.e. JPEG. Older images had a compression ration of about 16:1, while
newer images, since 2010, are more lightly compressed at 4:1. When these images are provided as input into the
algorithm, they are labeled with the type “iso”. This report enrols 1 600 000 application images, one per person.
. Border crossing photos: Most images are have width 320 and height 240 pixels. They are JPEG compressed at
16:1 i.e. filesize just below 15KB. The images present challenges for face recognition in that subjects often exhibit
non-zero yaw and pitch (associated with the rotational degrees of freedom of the camera mount), low contrast
(due to varying and intense background lights), and poor spatial resolution (due to inexpensive cameras). There
are often subjects standing in the background, usually at very low resolution (see Figure 4b). In such cases,
algorithms should detect all faces and determine which is the largest and most centered. When these images are
provided as input into the algorithm, they are labeled with the type “wild”.
. Kiosk photos: These photos were collected from subjects whose attention was focused on interaction with an
immigration kiosk. They images were not intended for use with automated face recognition. The camera is situ-
ated above a display which the user touches, and is triggered either without directing the subject to look at it, or
without waiting for the subject to comply. The images are therefore characterized by pitch-down pose, sometimes
exceeding 45 degrees, as in Figure 4c. Yaw-angle variation is mild, with most images close to frontal. The images
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 20
have width 320 pixels and height 240 pixels and therefore tall individuals are sometimes cropped. This is often
just above the eyes and can occur at the nose or mouth. Conversely, short individuals are sometimes cropped
such that only the top part of the face is visible. In a quite small number of cases, there other subjects standing
just behind the primary subject such that algoriths should detect all faces and determine which is the largest and
most centered. Background ceiling lighting is often visible and this sometimes leads to under-exposure of the
face When these images are provided as input into the algorithm, they are labeled with the type “wild”.
The main mugshot dataset used is referred to as the FRVT 2018 set. This set was collected over the period 2002 to 2017
in routine United States law enforcement operations. This set yields three subsets
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
. Mugshots: Mugshots comprise about 86% of the database. They have reasonable compliance with the ANSI / NIST
ITL 1-2011 Type 10 standard’s subject acquisition profiles levels 10-20 for frontal images [26]. The most common
departure from the standard’s requirements is the presence of mild pose variations around frontal - the images
of Figure 5 are typical. The images vary in size, with many being 480x600 pixels with JPEG compression applied
to produce filesizes of between 18 and 36KB with many images outside this range, implying that about 0.5 bits
are being encoded per pixel. When these images are provided as input into the algorithm, they are labeled with
the type “mugshot”. Example images appear in Fig. 5
NIST Interagency Report 8238 includes a comparison of this set of mugshots with the smaller and easier sets of
mugshots used in tests run in 2010 and 2014.
. Profile images: Profile-view images have been collected in law enforcement for more than 100 years, as human
capability is improved with orthogonal information. The profile images used in this report were collected during
the same session as the frontal mugshot photograph, in the same standardized photographic setup. These would
not therefore be used with automated face recognition. A small subset, 200 000 images, were set aside for testing.
When these images are provided as input into the algorithm, they are labeled with the type “wild”. Example
images appear in Fig. 7
. Webcam images: The remaining 14% of the images were collected using an inexpensive webcam attached to a
flexible operator-directed mount. These images are all of size 240x240 pixels, that are in considerable violation of
most quality-related clauses of all face recognition standards. As evident in the figure, the most common defects
are non-frontal pose (associated with the rotational degrees of freedom of the camera mount), low contrast (due
to varying and intense background lights), and poor spatial resolution (due to inexpensive camera optics) - see
examples in Fig 6. The images are overly JPEG compressed, to between 4 and 7KB, implying that only 0.5 to 1 bits
are being encoded per color pixel. When these images are provided as input into the algorithm, they are labeled
with the type “wild”. Example images appear in Fig. 6
These are drawn from NIST Special Database 32 which may be downloaded here.
These images were partitioned in galleries and probesets for the various experiment listed in Table 1.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 21
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Figure 5: Six mated mugshot pairs representative of the FRVT-2014 (LEO) and FRVT-2018 datasets. The images are collected live,
i.e. not scanned from paper. Image source: NIST Special Database 32 the Multiple Encounter Deceased Subjects dataset.
Figure 6: Twelve webcam images representative of probes against the FRVT-2018 mugshot gallery. The first eight images are four
mated pairs. Such images present challenges to recognition including pose, non-uniform illumination, low contrast, compression,
cropping, and low spatial sampling rate. Image source: NIST Special Database 32 the Multiple Encounter Deceased Subjects dataset.
Figure 7: [Profile views] The three images are a frontal enrollment, subsequent frontal probe, and same-session ninety degree profile
view. While collection of both frontal and profile views has been typical in law enforcement for more than a century, the recognition
of profile to frontal views has essentially been impossible. However, reasonbly high accuracy results is now possible - see section E.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 22
Image
Encounter 1 ... Ki − 1 Ki
Capture Time T1 ... TKi −1 TKi
Role RECENT Not used Not used Enrolled Search
Role LIFETIME Enrolled Enrolled Enrolled Search
Figure 8: Depiction of the “recent” and “lifetime” enrollment types. Image source: NIST Special Database 32
Many operational applications include collection and enrollment of biometric data from subjects on more than one
occasion. This might be done on a regular basis, as might occur in credential (re-)issuance, or irregularly, as might
happen in a criminal recidivist situation [4]. The number of images per person will depend on the application area.
In civil identity credentialing (e.g. passports, driver’s licenses), the images will be acquired approximately uniformly
over time (e.g. ten years for a passport). While the distribution of dates for such images of a person might be assumed
uniform, a number of factors might undermine this assumption7 . In criminal applications, the number of images
would depend on the number of arrests. The distribution of dates for arrest records for a person (i.e. the recidivism
distribution) has been modeled using the exponential distribution but is recognized to be more complicated8 .
In any case, the 2010 NIST evaluation of face recognition showed that considerable accuracy benefits accrue with
retention and use of all historical images [6].
To this end, the FRVT API document provides K ≥ 1 images of an individual to the enrollment software. The software
is tasked with producing a single proprietary undocumented “black-box” template9 from the K images. This affords
the algorithm an ability to generate a model of the individual, rather than to simply extract features from each image on
a sequential basis.
As depicted in Figure 8, the i-th individual in the FRVT 2018 dataset has Ki images. These are labelled as xk for
k = 1 . . . Ki in chronological order of capture date. To measure the utility of having multiple enrollment images, this
report evaluates three kinds of enrollment:
. Recent: Only the second most recent image, xKi −1 is enrolled. This strategy of enrollment mimics the operational
policy of retaining the imagery from the most recent encounter. This might be done operationally to ameliorate
the effects of face ageing. Obviously retaining only the most recent image should only be done if the identity
of the person is trusted to be correct. For example, in an access control situation retention of the most recent
successful authentication image would be hazardous if it could be a false positive.
. Lifetime-consolidated: All but the most recent image are enrolled, x1 . . . xKi −1 . This subject-centric strategy
might be adopted if quality variations exist where an older image might be more suitable for matching, despite
the ageing effect.
7 For example, a person might skip applying for a passport for one cycle, letting it expire. In addition, a person might submit identical images (from
the same photography session) to consecutive passport applications at five year intervals.
8 A number of distributions have been considered to model recidivism, see for example [3].
9 There are no formal face template standards. Template standards only exist for fingerprint minutiae - see ISO/IEC 19794-2:2011.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 23
For each of N enrollees, the For each enrollee, the algorithm is For each of N enrollees, the
algorithm is given only the most given all photos from all historical algorithm is given all photos from
recent photo. encounters. The algorithm is able all historical encounters but as
to fuse information from all images separate images, so that the
of a person algorithm is not aware that some
images are of the same ID.
Accuracy computation: False negative unless the enrolled mate is returned Accuracy computation: False
within top R ranks and at or above threshold. negative unless any of the enrolled
mates are returned within top R
ranks and at or above threshold.
Figure 9: Enrollment strategies. The figure shows the three kinds of enrollment databases examined in this report. Image source:
NIST Special Database 32
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 24
ENROLLMENT SEARCH
TYPE SEE POPULATION MATE NON - MATE
SECTION 2.3 FILTER N - SUBJECTS N - IMAGES N - SUBJECTS N - IMAGES N - SUBJECTS N - IMAGES
Mugshot trials from enrollment of single images
1 RECENT NATURAL 640 000 640 000 154 549 154 549 331 254 331 254
2 RECENT NATURAL 1 600 000 1 600 000
3 RECENT NATURAL 3 000 000 3 000 000
4 RECENT NATURAL 6 000 000 6 000 000
5 RECENT NATURAL 12 000 000 12 000 000
Cross-domain
13 MUGSHOTS AS ON ROW 2 82 106 82 106 331 254 331 254
WEBCAM WEBCAM WEBCAM WEBCAM
Cross-view
14 MUGSHOTS AS ON ROW 2 100 000 100 000 100 000 100 000
PROFILE PROFILE PROFILE PROFILE
Mugshot ageing
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
17 OLDEST NATURAL 3 068 801 3 068 801 2 853 221 10 951 064 0 0
Border crossing ageing
18 OLDEST NATURAL 1 600 000 1 600 000 903 655 1 922 393 1 393 076 1 680 000
Visa-border
19 PRIOR NATURAL 1 600 000 1 600 000 577 444 1 212 892 79 769 80 000
VISA VISA BORDER BORDER BORDER BORDER
20 VISA AS ON ROW 18 14 004 31 579 42 474 45 460
BORDER BORDER BORDER BORDER
Table 1: Enrollment and search sets. Each row summarizes one identification trial. Unless stated otherwise, all entries refer to
mugshot images. The term “natural” means that subjects were selected without heed to demographics, i.e. in the distribution native
to this dataset. The probe images were collected in a different calendar year to the enrollment image. Missing values in rows 2-12
are the same as in row 1.
. Lifetime-unconsolidated: Again all but the most recent image are enrolled x1 . . . xKi −1 but now separately, with
different identifiers, such that the algorithm is not aware that the images are from the same face. This kind of
event- or encounter-centric enrollment is very common when operational constraints preclude reliable consolida-
tion of the historical encounters into a single identity. This aspect also prevents the recognition algorithm from a)
building a holistic model of identity (as is common in speaker recognition systems) and b) implementing fusion,
for example template-level fusion of feature vectors, or post-search score-level fusion. The result is that searches
will typically yield more than one image of a person in the top ranks. This has consequences for appropriate
metrics, as detailed in section 3.2.1
NIST first evaluated this kind of enrollment in mid 2018, and the results tables include some comparison of
accuracy available from all three enrollment styles.
In all cases, the most recent image, xKi , is reserved as the search image. For the 1.6 million subject enrollment partition
of the FRVT 2018 data, 1 ≤ Ki ≤ 33 with Ki = 1 in 80.1% of the individuals, Ki = 2 in 13.4%, Ki = 3 in 3.7%, Ki = 4 in
1.4%, Ki = 5 in 0.6%, Ki = 6 in 0.3%, and Ki > 6 is 0.2% for everyone else. This distribution is substantially dependent
on United States recidivism rates.
We did not evaluate the case of retaining only the highest quality image, since automated quality assessment is out
of scope for this report. We do not anticipate that such strategies will prove beneficial when the quality assessment
apparatus is imperfect and unvalidated.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 25
3 Performance metrics
This section gives specific definitions for accuracy and timing metrics. Tests of open-set biometric algorithms must
quantify frequency of two error conditions:
. False positives: Type I errors occur when search data from a person who has never been seen before is incorrectly
associated with one or more enrollees’ data.
. Misses: Type II errors arise when a search of an enrolled person’s biometric does not return the correct identity.
Many practitioners prefer to talk about “hit rates” instead of “miss rates” - the first is simply one minus the other as
detailed below. Sections 3.1 and 3.2 define metrics for the Type I and Type II performance variables.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Additionally, because recognition algorithms sometimes fail to produce a template from an image, or fail to execute a
one-to-many search, the occurrence of such events must be recorded. Further because algorithms might elect to not
produce a template from, for example, a poor quality image, these failure rates must be combined with the recognition
error rates to support algorithm comparison. This is addressed in section 3.5.
Finally, section 3.7 discusses measurement of computation duration, and section 3.8 addresses the uncertainty associ-
ated with various measurements. Template size measurement is included with the results.
It is typical for a search to be conducted into an enrolled population of N identities, and for the algorithm to be
configured to return the closest L candidate identities. These candidates are ranked by their score, in descending order,
with all scores required to be greater than or equal to zero. A human analyst might examine either all L candidates, or
just the top R ≤ L identities, or only those with score greater than threshold, T . The workload associated with such
examination is discussed later, in 3.6.
False alarm performance is quantified in two related ways. These express how many searches produces false positives,
and then, how many false positives are produced in a search.
False positive identification rate: The first quantity, FPIR, is the proportion of non-mate searches that produce an
adverse outcome:
Num. non-mate searches where one or more enrolled candidates are returned with score at or above threshold
FPIR(N, T ) =
Num. non-mate searches attempted.
(1)
Under this definition, FPIR can be computed from the highest non-mate candidate produced in a search - it is not
necessary to consider candidates at rank 2 and above. FPIR is the primary measure of Type I errors in this report.
Selectivity: However, note that in any given search, several non-mate may be returned above threshold. In order to
quantify such events, a second quantity, selectivity (SEL), is defined as the number of non-mates returned on a candidate
list, averaged over all searches.
where 0 ≤ SEL(N, T) ≤L. Both of these metrics are useful operationally. FPIR is useful for targeting how often an
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 26
adverse false positive outcome can occur, while SEL as a number is related to workload associated with adjudicating
candidate lists. The relationship between the two quantities is complicated - it depends on whether an algorithm
concentrates the false alarms in the results of a few searches or whether it disburses them across many. This was
detailed in FRVT 2014, NISTIR 8009. It has not yet been detailed in FRVT 2018.
If L candidates are returned in a search, a shorter candidate list can be prepared by taking the top R ≤ L candidates for
which the score is above some threshold, T ≥ 0. This reduction of the candidate list is done because thresholds may be
applied, and only short lists might be reviewed (according to policy or labor availability, for example). It is useful then
to state accuracy in terms of R and T , so we define a “miss rate” with the general name false negative identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Num. mate searches with enrolled mate found outside top R ranks or score below threshold
FNIR(N, R, T ) = (3)
Num. mate searches attempted.
This formulation is simple for evaluation in that it does not distinguish between causes of misses. Thus a mate that is
not reported on a candidate list is treated the same as a miss arising from face finding failure, algorithm intolerance
of poor quality, or software crashes. Thus if the algorithm fails to produce a candidate list, either because the search
failed, or because a search template was not made, the result is regarded as a miss, adding to FNIR.
Hit rates, and true positive identification rates: While FNIR states the “miss rate” as how often the correct candidate is
either not above threshold or not at good rank, many communities prefer to talk of “hit rates”. This is simply the true
positive identification rate(TPIR) which is the complement of FNIR giving a positive statement of how often mated
searches are successful:
TPIR(N, R, T ) = 1 − FNIR(N, R, T ) (4)
This report does not report true positive “hit” rates, preferring false negative miss rates for two reasons. First, costs
rise linearly with error rates. For example, if we double FNIR in an access control system, then we double user incon-
venience and delay. If we express that as decrease of TPIR from, say 98.5% to 97%, then we mentally have to invert the
scale to see a doubling in costs. More subtly, readers don’t perceive differences in numbers near 100% well, becoming
inured to the “high nineties” effect where numbers close to 100 are perceived indifferently.
Reliability is a corresponding term, typically being identical to TPIR, and often cited in automated (fingerprint) iden-
tification system (AFIS) evaluations.
An important special case is the cumulative match characteristic(CMC) which summarizes accuracy of mated-searches
only. It ignores similarity scores by relaxing the threshold requirement, and just reports the fraction of mated searches
returning the mate at rank R or better.
CMC(N, R) = 1 − FNIR(N, R, 0) (5)
We primarily cite the complement of this quantity, FNIR(N, R, 0), the fraction of mates not in the top R ranks.
The rank one hit rate is the fraction of mated searches yielding the correct candidate at best rank, i.e. CMC(N, 1). While
this quantity is the most common summary indicator of an algorithm’s efficacy, it is not dependent on similarity scores,
so it does not distinguish between strong (high scoring) and weak hits. It also ignores that an adjudicating reviewer is
often willing to look at many candidates.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 27
As detailed in section 2.3 a common type of gallery, here referred to as the lifetime unconsolidate type, is populated
with all images of an individual without any association between them. That is, the gallery construction algorithm is
not provided with any ID labels that would support processing of a person’s images jointly. This constrasts with the
lifetime consolidate type where an algorithm may explicitly fuse features from multiple images of a person, or select
a best image. In such cases, where the number of enrolled images is a random variable, we define two false negative
rates as follows.
The first demands that the algorithm place any of the Ki mates in the top R ≥ 1 ranks. The proportion of searches for
which this does not occur forms a false negative identification rate:
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Num. mate searches where any enrolled mate is found in the top R ranks and at-or-above threshold
FNIRany (N, R, T ) = 1−
Num. mate searches attempted.
(6)
The second demands that the algorithm place all Ki mates in the top R ≥ Ki ranks. The proportion of searches for
which this does not occur forms a false negative identification rate:
Num. mate searches where all enrolled mates are found in the top R ranks and at-or-above threshold
FNIRall (N, R, T ) = 1−
Num. mate searches attempted.
(7)
Placing all mates in the top ranks is a more difficult task than correctly retrieving any image, so it holds that: FNIRall ≥
FNIRany . This is evident in the results presented for November 2018 algorithms in Tables starting at ??.
The information retrieval community might prefer to compute and plot precision and recall; this is a valid approach, but
we advance the two metrics above because they relate to our normal definition of consolidated FNIR, and they cover
the two extreme use-cases of wanting any hit vs. all hits.
In biometrics, a false negative occurs when an algorithm fails to match two samples of one person – a Type II error.
Correspondingly, a false positive occurs when samples from two persons are improperly associated – a Type I error.
Matches are declared by a biometric system when the native comparison score from the recognition algorithm meets
some threshold. Comparison scores can be either similarity scores, in which case higher values indicate that the sam-
ples are more likely to come from the same person, or dissimilarity scores, in which case higher values indicate different
people. Similarity scores are traditionally computed by fingerprint and face recognition algorithms, while dissimilari-
ties are used in iris recognition. In some cases, the dissimilarity score is a distance possessing metric properties. In any
case, scores can be either mate scores, coming from a comparison of one person’s samples, or nonmate scores, coming
from comparison of different persons’ samples.
The words ”genuine” or ”authentic” are synonyms for mate, and the word ”impostor” is used as a synonym for non-
mate. The words ”mate” and ”nonmate” are traditionally used in identification applications (such as law enforcement
search, or background checks) while genuine and impostor are used in verification applications (such as access control).
An error tradeoff characteristic represents the tradeoff between Type II and Type I classification errors. For identifica-
tion this plots false negative vs. false positive identification rates i.e. FNIR vs. FPIR parametrically with T. Such plots
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 28
are often called detection error tradeoff (DET) characteristics or receiver operating characteristic (ROC). These serve
the same function − to show error tradeoff − but differ, for example, in plotting the complement of an error rate (e.g.
TPIR = 1 − FNIR) and in transforming the axes, most commonly using logarithms, to show multiple decades of FPIR.
More rarely, the function might be the inverse of the Gaussian cumulative distribution function.
The slides of Figures 10 through 15 discuss presentation and interpretation of DETs used in this document for reporting
face identification accuracy. Further detail is provided in formal biometrics testing standards, see the various parts of
ISO/IEC 19795 Biometrics Testing and Reporting. More terms, including and beyond those to do with accuracy, appear
in ISO/IEC 2382-37 Information technology – Vocabulary – Part 37: Harmonized biometric vocabulary.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
1:N FNIR.
Proportion of
mate searches DET Properties and Interpretation 1 :: Error
not yielding Rates, Metrics, Comparison of algorithms
mate above
threshold, T. Type I Errors (Incorrect association of people)
1:1 matching FMR = False Match Rate
See ISO/IEC 1:1 transactional FAR = False Accept Rate
FNIR(N, R, T) =
FRVT
1:1 transactional FRR = False Rejection Rate
“miss rate”; the
Two typical biometric 1:N matching FNIR = False Negative Identification Rate
complement,
-
False pos. identification rate
False neg. identification rate
systems: B is more
Log-scale is Algorithm B
R = Num. candidates examined
N = Num. enrolled subjects
typical to show
both small and
large numbers,
e.g. from strong
and weak
-
IDENTIFICATION
algorithms.
T = Threshold
Algorithm C
Flat DET is desirable – false positive rate can be set Excellent biometric, but only after
arbitrarily low without increase in false negatives fraction, y, of mate transactions
y
fail due to failure to make
template or abject quality.
T > 0 → Identification
T = 0 → Investigation
The perfect biometric: Zero Low FPIR values achieved with more Log-scale is almost always required because FPIR. Proportion of non-mated searches
errors. Practically this is stringent, thresholds. low FPIR values are operationally yielding any candidates above threshold, T.
unusual and occurs only with important. See ISO/IEC 19795-1
small or pristine datasets.
29
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1:N FNIR.
11:12:06
2022/12/18
Proportion of
mate searches DET Properties and Interpretation 2 ::
not yielding Operational uses-cases drive threshold policy
mate above
threshold, T.
E: High threshold " false positives are rare F: Low Threshold " false positives are
See ISO/IEC System configured so that it is almost a “lights out” common, and candidate lists are long
19795-1 system, i.e. action is implied if a search returns a hit.
System configured assuming and requiring
FNIR(N, R, T) =
FRVT
“miss rate” Misses and false alarms
-
False pos. identification rate
False neg. identification rate
-
to review all
IDENTIFICATION
Toward lights out Review candidate lists
T = Threshold
High search volume and/or low Low search volume and/or high
examiner labor availability + cost labor availability + cost
Low FPIR values achieved with more stringent, thresholds. 1:N FPIR “false alarm rate” FPIR. Proportion of non-mated searches yielding any
candidates above threshold, T.
30
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1:N FNIR.
11:12:06
2022/12/18
Proportion of
mate searches DET Properties and Interpretation 3 ::
not yielding Algorithm accuracy interpretation
mate above
threshold, T.
See ISO/IEC
19795-1
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
-
False pos. identification rate
False neg. identification rate
rate, TPIR.
the tails of the non-mated
distribution.
-
IDENTIFICATION
Log-scale is
Two typical biometric
typical to
systems: B is more
show small
accurate than A at low
numbers.
FPIR but not at high FPIR.
T = Threshold
Low FPIR values achieved with more Log-scale is almost always required because FPIR. Proportion of non-mated searches
T > 0 → Identification
T = 0 → Investigation
stringent, thresholds. low FPIR values are operationally relevant. yielding any candidates above threshold, T.
See ISO/IEC 19795-1
31
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
(0,1)
1. With ΔTime = 2 years, capable DET Properties and Interpretation 4 ::
algorithms will return this mated pair with Drivers of FNIR
1:N FNIR. a high score. It will only contribute to FNIR
Proportion of T = High at very high T. In children, growth is rapid
mate searches and this will not hold +. The progressive rise in the DET, i.e. increasing FNIR, occurs when a search of a probe sample does not
not yielding correctly return the enrolled mate. Leading causes of this are:
mate above
threshold, T. 1. Ageing: Given sufficient time-lapse, the appearance of a face will change. This is a gradual
FNIR(N, R, T) =
process affecting all human faces and, absent surgical intervention, is essentially irreversible over
long time-scales. Ageing increases false negative rates. In some applications ageing effects are
FPIR(N, T) =
See ISO/IEC
19795-1 avoided by policy: faces are re-enrolled periodically. In other applications, this is not possible.
FRVT
2. Image quality: The leading cause of false negative recognition failure is that either or both
images are in some sense defective. Quality can be degraded due to imaging problems (poor
illumination, mis-focus etc.), mis-handling (cropping, (re-)compression) or resolution change) and
-
False pos. identification rate
False neg. identification rate
-
at low T.
IDENTIFICATION
capable algorithms will return this
mated pair with a moderate score.
It will only contribute to FNIR at
moderate T.
T = Threshold
T = Low T=0
Low FPIR values achieved + D. Michalski et al. The Impact of Ageing on Facial Comparisons with Images FPIR. Proportion of non-mated searches (1,0)
T > 0 → Identification
T = 0 → Investigation
with higher, i.e. more of Children conducted by Humans and Automated Systems January 2017 yielding any candidates above threshold, T.
stringent thresholds. Proc. Soc. for Applied Research in Memory and Cognition, Sydney, Aus. See ISO/IEC 19795-1
32
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
x
11:12:06
2022/12/18
Source: ND Twins
1. Ground truth errors are present: Instances of a person being present in the
FPIR(N, T) =
See ISO/IEC
dataset under different IDs. This leads to high non-mate scores that are actually
19795-1 mate-scores.
FRVT
2. Twins: For a genetically linked biometric trait such as face shape, very similar
facial appearance in two individuals will lead to high non-mate scores+.
-
False pos. identification rate
False neg. identification rate
rate, TPIR.
-
T = Low
IDENTIFICATION
T=0
Look-alikes
T = Threshold
Parent-Child
Source: MEDS
NIST Special
Database 32
33
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
FRVT
Condition 2
(FNIR) only. Two cases concerning population size are shown below
(A and B), for the blue curves.
-
False pos. identification rate
False neg. identification rate
rate, TPIR.
Log-scale is
typical to Algorithm Y,
show small Condition 2
-
IDENTIFICATION
numbers.
T = Threshold
Low FPIR values achieved with higher, Log-scale is often required because low FPIR. Proportion of non-mated searches
T > 0 → Identification
T = 0 → Investigation
i.e. more stringent, thresholds. FPIR values are operationally relevant. yielding any candidates above threshold, T.
See ISO/IEC 19795-1
34
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
FRVT
-
False pos. identification rate
False neg. identification rate
rate, TPIR.
Log-scale is
typical to
-
B: Special case: An enrollment database is not just a linear data structure, it could be an
IDENTIFICATION
show small
index, or tree, then search is not simply N 1:1 comparisons and a sort. In that case:
numbers.
Mate scores become dependent on the enrollment data, either its size or actual content,
then generally FNIR(T, N) ǂ FNIR(T, 1).
T = Threshold
Non-mate scores are normally no longer just the highest 1:1 comparison score. Instead,
for example, scores may be normalized as the implementation attempts to make FPIR
independent of N will yield the vertical line linking points of equal threshold.
Low FPIR values achieved with higher, Log-scale is often required because low FPIR. Proportion of non-mated searches
T > 0 → Identification
T = 0 → Investigation
i.e. more stringent, thresholds. FPIR values are operationally important. yielding any candidates above threshold, T.
See ISO/IEC 19795-1
35
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
See ISO/IEC
19795-1
FRVT
All DETs pass through points
(0,1) and (1,0) corresponding
-
False pos. identification rate
False neg. identification rate
1-FNIR is the
“hit rate” or
For systems that produce a
true positive
limited number of comparison
identification
scores, e.g. one configured
rate, TPIR.
-
with three “high”, “medium”
IDENTIFICATION
and “low” security settings, the
Log-scale is DET has three points.
typical to
show small
numbers. A stepped DET occurs at the ends of the score ranges
when FNM and FPIR estimates are made from very
T = Threshold
Low FPIR values achieved Log-scale is often required because low FPIR. Proportion of non-mated searches (1,0)
T > 0 → Identification
T = 0 → Investigation
with higher, i.e. more FPIR values are operationally relevant. yielding any candidates above threshold, T.
stringent thresholds. See ISO/IEC 19795-1
36
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 37
3.4 Best practice testing requires execution of searches with and without mates
FRVT embeds 1:N searches of two kinds: Those for which there is an enrolled mate, and those for which there is not.
The respective numbers for these types of searches appear in Table 1. However, it is common to conduct only mated
searches10 . The cumulative match characteristic is computed from candidate lists produced in mated searches. Even if
the CMC is the only metric of interest, the actual trials executed in a test should nevertheless include searches for which
no mate exists. As detailed in Table 1 the FRVT reserved disjoint populations of subjects for executing true non-mate
searches.
During enrollment some algorithms fail to convert a face image to a template. The proportion of failures is the failure-
to-enroll rate, denoted by FTE. Similarly, some search images are not converted to templates. The corresponding
proportion is termed failure-to-extract, denoted by FTX.
We do not report FTX because we assume that the same underlying algorithm is used for template generation for
enrollment and search.
Failure to extract rates are incorporated into FNIR and FPIR measurements as follows.
. Enrollment templates: Any failed enrollment is regarded as producing a zero length template. Algorithms are
required by the API [10] to transparently process zero length templates. The effect of template generation failure
on search accuracy depends on whether subsequent searches are mated, or non-mated: Mated searches will fail
giving elevated FNIR; non-mated searches will not produce false positives so, to first order, FPIR will be reduced
by a factor of 1−FTE.
. Search templates and 1:N search: In cases where the algorithm fails to produce a search template from input
imagery, the result is taken to be a candidate list whose entries have no hypothesized identities and zero score.
The effect of template generation failure on search accuracy depends on whether searches are mated, or non-
mated: Mated searches will fail giving elevated FNIR; Non-mated searches will not produce false positives, so
FPIR will be reduced. Thus given a measurement of false negative and positive rates made over only those
where failures-to-extract did not occur, those rates - call them FNIR† and FPIR† - could be adjusted by an explicit
measurement of FTX as follows
FNIR = FTX + (1 − FTX)FNIR† (8)
This approach is the correct treatment for positive-identification applications such as access control where cooperative
users are enrolled and make attempts at recognition. This approach is not appropriate to negative identification ap-
plications, such as visa fraud detection, in which hostile individuals may attempt to evade detection by submitting
poor quality samples. In those cases, template generation failures should be investigated as though a false alarm had
occurred.
10 Forexample, the Megaface benchmark. This is bad practice for several reasons: First, if a developer knows, or can reasonably assume, that a mate
always exists, then unrealistic gaming of the test is possible. A second reason is that it does not put FPIR on equal footing with FNIR and that
matters because in most applications, not all searches have mates - not everyone has been previously enrolled in a driving license issuance or a
criminal justice system - so addressing between-class separation becomes necessary.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 38
Suppose an automated face identification algorithm returns L candidates, and a human reviewer is retained to examine
up to R candidates, where R ≤ L might be set by policy, preference or labor availability. For now, assume also that
the reviewer is not provided with, or ignores, similarity scores, and thresholds are not applied. Given the algorithm
typically places mates at low (good) ranks, the number of candidates a reviewer can be expected to review can be
derived as follows. Note that the reviewer will:
. Then inspect those candidates where mate not confirmed at rank 1 Frac. reviewed = 1-CMC(1)
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
. Then inspect those candidates where mate not confirmed at rank 1 or 2 Frac. reviewed = 1-CMC(2)
etc. Thus if the reviewer will stop after a maximum of R candidates, the expected number of candidate reviews is
A recognition algorithm that front-loads the cumulative match characteristic will offer reduced workload for the re-
viewer. This workload is defined only over the searches for which a mate exists. In the cases where there truly is no
mate, the reviewer would review all R candidates. Thus, if the proportion of searches for which a mate does exist is β,
which in the law enforcement context would be the recidivism rate [3], the full expression for workload becomes:
R−1
!
X
M (R) = β R− CM C(r) + (1 − β)R (12)
r=1
R−1
X
=R−β CM C(r) (13)
r=1
Algorithms were submitted to NIST as implementations of the application programming interface(API) specified by
NIST in the Evaluation Plan [10]. The API includes functions for initialization, template generation, finalization, search,
gallery insert, and gallery delete. Two template generation functions are required, one for the preparation of an enroll-
ment template, and one for a search template.
In NIST’s test harness, all functions were wrapped by calls to the C++ std::chrono::high resolution clock which on the
dedicated timing machine counts 1ns clock ticks. Precision is somewhat worse than that however.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 39
This study leverages operational datasets for measurement of recognition error rates. This affords several advantages.
First, large numbers of searches are conducted (see Table 1) giving precision to the measurements. Moreover, for the
two mugshot datasets, these do not involve reuse of individuals so binomial statistics can be expected to apply to
recognition error counts. In that case, an observed count of a particular recognition outcome (i.e. a false negative or
false positive) in M trials will sustain 95% confidence that the actual error rate is no larger than some value.
As an example, the minimum number of mugshot searches conducted in this report is M =154 549, and for an observed
FNIR around 0.002, the measurement supports a conclusion that the actual FNIR is no higher than 0.00228 at 99%
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
confidence level. On the false positive side, we tabulate FNIR at FPIR values as low as 0.001. Given estimates based
on 331 254 non-mate trials, the actual FPIR values will be below 0.00115 at 99% confidence. In conclusion, large scale
evaluation, without reuse of subjects, supports tight uncertainty bounds on the measured error rates.
The FRVT 2018 dataset includes anomalies discovered as a result of inspecting images involved in recognition failures
from the most accurate algorithms. Two kinds of failure occur: False negatives (which, for the purpose here, include
failures to make templates) and false positives.
False negative errors: We reviewed 600 false negative pairs for which either or both of the leading two algorithms did
not put the correct mate in the top 50 candidates. Given 154 549 searches, this number represents 0.39% of the total,
resulting in FNIR ∼ 0.0039. Of the 600 pairs:
. A: Poor quality: About 20% of the pairs included images of very low quality, often greyscale, low resolution,
blurred, low contrast, partially cropped, interlaced, or noisy scans of paper images. Additionally, in a few cases,
the face is injured or occluded by bandages or heavy cosmetics.
. B: Ground truth identity label bugs: About 15% of the pairs are not actually mated. We only assigned this
outcome when a pair is clearly not mated.
. C: Profile views: About 35% included an image of a profile (side) view of the face, or, more rarely, an image that
was rotated 90 degrees in-plane (roll).
. D: Tattoos: About 30% included an image of a tattoo that contained a face image. These arise from mis-labelling
in the parent dataset metadata.
All these estimates are approximate. Of these, the tattoo and mislabled images can never be matched. These constitute
an accuracy floor in the sample implying that FNIR cannot be below 0.001811 . The profile-views, low-quality images,
and images with considerable ageing can, in principle, be successfully matched - indeed some algorithms do so - so
are not part of the accuracy floor.
11 This value is the sum of two partial false negative rates: FNIRB = 0.15 * 0.0039 plus FNIRD = 0.3 * 0.0039
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 40
For the microsoft-4 algorithm the lowest miss rate from (recent entry in Table 26) is FNIR(640 000, 50, 0) = 0.0018. This
is close to the value estimated from the inspection of misses. It is below the 0.0039 figure because the algorithm does
match some profile and poor quality images, that the yitu-2 algorithm does not.
For many tables (e.g. Table 26), the FNIR values obtained for the FRVT-2018 mugshots could be corrected by reducing
them by 0.0018. The best values would then be indistinct from zero. The results in this report were not adjusted to
account for this systematic error.
False positive errors: As shown in Figure 1 and discussed in Figure 14 many of the DET characteristics in this report
exhibit a pronounced turn upward at low false positive rates. The shape can be caused by identity labelling errors in
the ground truth of a dataset, specifically persons present in the database under two IDs such that some proportion of
non-mate pairs are actually mated. To look for such possibilities, we merged the highest 1000 non-mate pairs produced
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
by three different algorithms which resulted in 1839 unique pairs. This constitutes 0.56% of all non-mate searches.
We assert that it is very difficult for human reviewers to assign the pairs into the following three categories: twins;
doppelgangers; or ground-truth errors (instances of the same person under two IDs). Given this difficulty we made no
attempt to correct any possible ground truth errors except by removing 57 pairs in the following categories:
. A: Profile views: Thirteen pairs included one or two profile-view images. As described in Figure 145, these can
cause false positives.
. B: Same-session photographs: For twelve pairs, the images were identical or trivially altered (e.g. cropped)
versions of the same photo. These were present under a different ID likely due to some clerical or procedural
mistake.
. C: Tattoos of faces: There were fourteen instances of tattoo photographs that contained faces causing false
matches.
. D: T-shirt faces: There were six instances of T-shirt photographs (of Bob Marley and Che Guevara) being detected
instead of the face and causing false positives.
. E: Background faces: There were twelve instances of one subject appearing in the background of two otherwise
correct portrait photos.
Note we did not remove any images where there was a chance that the pair was actually a different person.
In any case, the results in this report have not been adjusted for this systematic error.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 41
4 Results
This section gives extensive results for algorithms submitted to FRVT 2018. Three page “report cards” for each algo-
rithm are contained in a separate supplement. Performance metrics were described in section 3. The main results are
summarized in tabular form with more exhaustive data included as DET, CMC and related graphs in appendices as
follows:
. The three tables 2-4 list algorithms alongside full developer names, acceptance date, size of the provided config-
uration data, template size and generation time, and search duration data.
– The template generation duration is most important to applications that require fast response. For example,
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
an eGate taking more than two seconds to produce a template might be unacceptable. Note that GPUs may
be of utility in expediting this operation for some algorithms, though at additional expense. Two additional
factors should be considered1213 .
– The search duration is the time taken for a search of a search template into a gallery of N enrollment tem-
plates. This performance variable, together with the volume of searches, is influential on the amount of
hardware needed to sustain an operational deployment. This is measured here with the algorithm run-
ning on a single core of a contemporary CPU. Search is most simply implemented as N computations of
a distance metric followed by a sort operation to find the closest enrollments. However, considerable opti-
mization of this process is possible, up to and including fast-search algorithms that, by various means, avoid
computation of all N distances.
– The template size is the size of the extracted feature vector (or vectors) and any needed header information.
Large template sizes may be influential on bus or network bandwidth, storage requirements, and on search
duration. While the template itself is an opaque data blob, the feature dimensionality might be estimated by
assuming a four-bytes-per-float encoding. There is a wide range of encodings. For the more accurate algo-
rithm, sizes range from 256 bytes to about 2KB bytes, indicating essentially no consensus on face modeling
and template design.
– The template size multiplier column shows how, given k input images, the size of the template grows.
Most implementations internally extract features from each image and concatenate them, and implement
some score-level fusion logic during search. Other implementations, including many of the most accurate
algorithms, produce templates whose size does not grow with k. This could be achieved via selection of
the best quality image - but this is not optimal in handling ageing where the oldest image could be the best
quality. Another mechanism would be feature-level fusion where information is fused from all k inputs. In
any case, as a black-box test, the fusion scheme is proprietary and unknown.
– The size of the configuration data is the total size of all files resident in a vendor-provided directory that
contains arbitrary read-only files such as parameters, recognition models (e.g caffe). Generally a large value
for this quantity may prohibit the use of the algorithm on a resource-constrained device.
12 The FRVT 2018 API prohibited threading, so some gains from parallelism may be available on multiple-cores or multiple processors, if the feature
extraction code could be distributed across them.
13 Note also that factors of two or more may be realizable by exploiting modern vector processing instructions on CPUs. It is not clear in our
measurements whether all developers exploited Intel’s AVX2 instructions, for example. Our machine was so equipped, but we insisted that the
same compiled library should also run on older machines lacking that instruction. The more sophisticated implementations may have detected
AVX2 presence and branched accordingly. The less sophisticated may be defaulted to the reduced instruction set. Readers should see the FRVT
2018 API document for the specific chip details.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 42
. Tables 26-27 report core rank-based accuracy for mugshot images. The population size is limited to N = 1.6 million
identities because this is the largest gallery size on which all algorithms were executed. Notable observations
from these tables are as follows:
– Accuracy gains since 2018: NIST Interagency Report 8238 documented massive gains over those reported in
the FRVT 2014 report, NIST Interagency Report 8009. Further gains are documented in this report. Compar-
ing the most accurate algorithm in November 2018, NEC-3, the value of FNIR(N, L, T) reduced from 0.0031
to 0.0024 for the Sensetime-004 algorithm with N = 12 million recent images. The tables show broader gains:
many developers have made advances since 2018 with between two and five-fold reduction in errors.
– Wide range in accuracy: The rank-1 miss rates vary from FNIR(N, 1, 0) = 0.0012 for sensetime-004 up to
about 0.5 for the very fast but inaccurate microfocus-x algorithms. Among the developers who are superior
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
to NEC in 2013, the range is from 0.002 to 0.035 for camvi-3. This large accuracy range is consistent with the
buyer-beware maxim, and indicates that face recognition software is far from being commoditized.
. Tables 31-32 report threshold-based error rates, FNIR(N, L, T), for N = 1.6 million for mugshot-mugshot accuracy
on FRVT 2014, FRVT 2018, and also (in pink) mugshot-webcam accuracy using FRVT 2018 enrollments. Notable
observations from these tables are as follows:
– Order of magnitude accuracy gains since 2014: As with rank-based results, the gains in accuracy are sub-
stantial, though somewhat reduced. At FPIR = 0.01, the best improvement over NEC in 2014 is a 27 fold
reduction in FNIR using the NEC 2 algorithm. At FPIR = 0.001, the largest gain is a six-fold reduction in
FNIR via the NEC 3 algorithm.
– Broad gains across the industry: About 19 companies realize accuracy better than the NEC benchmark from
2014. This is somewhat lower than the 28 developers who succeeded on the rank-1 metric. This may be due
to the ubiquity of, and emphasis on, the rank-1 metric in many published algorithm development papers.
– Webcam images: Searches of webcam images give FNIR(N, T) values around 2 to 3 times higher than
mugshot searches. Notably the leading developers with mugshots are approximately the same with poorer
quality webcams. But some developers e.g. Camvi, Megvii, TongYi, and Neurotechnology do improve their
relative rankings on webcams, perhaps indicating their algorithms were tailored to less constrained images.
. Tables 18, 22, 23 and show, respectively, high-threshold, rank 1, and rank 50 FNIR values for all algorithms
performing searches into five different gallery sizes, N = 640 000, N = 1 600 000, N = 3 000 000, N = 6 000 000 and
12 000 000. The FPIR = 0.001 table is included to inform high-volume duplicate detection applications. The Rank-1
table is included as a primary accuracy indicator. The Rank-50 table is included to inform agencies who routinely
produce 50 candidates for human-review. The notable results are:
– Slow growth in rank-based miss rates: FNIR(N, R) generally grows as a power law, aN b . From the straight
lines of many graphs of Figure 20 this is clearly a reasonable model for most, but not all, algorithms. The
coefficient a can be interpreted as FNIR in a gallery of size 1. The more important coefficient b indicates
scalability, and often, b 1, implies very benign growth in FNIR. The coefficients of the models appear in
the Tables 22 and 23.
– Slow growth in threshold-based miss rates: FNIR(N, T) also generally grows as a power law, aN b except at
the high threshold values corresponding to low FPIR values. This is visible in the plots of Figure 36 which
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 43
show straight lines except for FPIR = 0.001, which increase more rapidly with N above 3 000 000. Each trace
in those figures shows FNIR(N, T) at fixed FPIR with both N and T varying. Thus at large N, it is usually
necessary to elevate T to maintain fixed FPIR. This causes increased FNIR. Why that would no-longer obey a
power-law is not known. However, if we expect large galleries to contain individuals with familial relations
to the non-mate search images - in the most extreme case, twins - then suppression of false positives becomes
more difficult. This is discussed in the Figures starting at Fig. 10
. Figure ?? shows false positives from twins against their enrolled siblings, broken out by type of twin: fraternal
or identical. The Figure is based on the enrollment of 104 single images on one of a pair of twins, and then
the search of 2354 second images. Note that the dataset is heavily skewed towards identical twins which is not
representative of the true population. There is also a skew towards same sex fraternal twin pairs compared to
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
different sex fraternal twin pairs again not representative of the true population.
The notable results are:
– For all algorithms tested, the 1087 mated searches (Twin A vs. Twin A) produce scores almost always above
typical operational thresholds, with (not shown) matches at rank 1. The images are of good quality, so this
is the result expected from the rest of this report.
– For the 1066 identical twin searches (AB), almost all produce the twin at rank 1, with a few producing the
mate at further down the candidate lists rank and low score.
– For the 169 fraternal searches (AB) from same sex pairs, most algorithms give a large number of very high
scores, implying false positives at all thresholds. However, there there are long tails containing lower scores
that are correctly below threshold. In general, scores that are higher in this distribution are all rank 1 whereas
the lower scores have much higher ranks.
– (Not shown) Of the 169, there are 24 fraternal searches (AB) involving different sex twins. Here most al-
gorithms correctly report scores well below the lowest threshold, and usually not on the candidate list at
all.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.150
11:12:06
2022/12/18
0.120
ntech−5 ntech−4
ranko−5 neuro−4
0.100
cogni−1
0.090
cogen−2
0.070 ntech−6
0.060
idemi−3
neuro−7
micro−3
FNIR(N, R, T) =
0.050 cogni−4
FPIR(N, T) =
FRVT
a cib
idemi−4
0.030
a cogent
truef−0 a cognitec
ranko−9
False negative identification rate, FNIR(T)
-
False pos. identification rate
False neg. identification rate
a deepglint
cogni−5
R = Num. candidates examined
N = Num. enrolled subjects
0.009
cogni−6
tsize
0.007 parav−5 2000
ntech−9
4000
0.006
6000
-
IDENTIFICATION
0.005 ntech−11 8000
visio−9
nec−3
0.003
nec−2
T = Threshold
0.002 idemi−8
sense−4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T > 0 → Identification
T = 0 → Investigation
Figure 18: [Mugshot Dataset] Speed-accuracy tradeoff. For developers of the more accurate algorithms the plot shows the tradeoff of high-threshold recognition miss-
rates, FNIR(N, N, T) for FPIR(N, T) = 0.003, and template generation time. Developers are coded by color. Template size is encoded by the size of the circle. Some labels
are quite distant from the respective point, to avoid superposing text. Without any other influences, the assumption would be that taking time to localize the face, and
extract features, would lead to better accuracy. The most notable result, for NEC, is that their slower algorithms are much more accurate than the version that extract
features in fewer than 90 milliseconds.
44
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.020
0.017
0.015
FRVT
a cib
a cogent
idemi−7
cogen−3 a cognitec
False negative identification rate, FNIR(T)
0.007
-
False pos. identification rate
False neg. identification rate
a deepglint
yitu−4
0.003 ntech−8
tsize
ranko−10 truef−0 2000
micro−3
4000
yitu−2
6000
-
IDENTIFICATION
8000
0.002
xforw−2
visio−8 cogni−5
cogni−6
T = Threshold
idemi−8
visio−9
0.001
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T > 0 → Identification
T = 0 → Investigation
Figure 19: [Mugshot Dataset] Speed-accuracy tradeoff. For developers of the more accurate algorithms the plot shows the tradeoff of rank-one recognition miss-rates,
FNIR(N, 1, 0), and template generation time. Developers are coded by color. Template size is encoded by the size of the circle. Some labels are quite distant from the
respective point, to avoid superposing text. Without any other influences, the assumption would be that taking time to localize the face, and extract features, would lead
to better accuracy. This occurs for NEC with their slower algorithm being much accurate than the version that extract features in fewer than 90 milliseconds.
45
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1 1 2 5
DEVELOPER SHORT SEQ . VALIDATION CONFIG LIB TEMPLATE GENERATION FINALIZE SEARCH DURATION MILLISEC
11:12:06
2022/12/18
3 4
FULL NAME NAME NUM . DATE DATA ( MB ) DATA ( MB ) SIZE ( B ) MULT TIME ( MS ) TIME ( S ) L =1 L =50 L =50 L =50 L =50 POWER LAW
N =1.6 M N =1.6 M N =1.6 M N =3 M N =6 M N =12 M (µs)
176 21 72 (237) (239)
1 20Face 20face 000 2021-10-01 112 319 2048 - 236 9 6355 6341 - - -
2 3Divi 3divi 5 2018-10-26 186 51 234
4096 k 120
638 199
28 (107)
538 (107)
537 (99)
1377 (95)
2614 (89)
5530 171
0.07N 1.1
42 121 30 (16) (15)
3 3Divi 3divi 6 2018-10-26 187 51 528 k 640 5 33 33 - - -
4 Acer Incorporated acer 000 2020-08-12 35 67 37
512 - 16
198 20
4 (69)
295 (67)
295 (57)
623 (88)
2302 (81)
4915 205
0.00N 1.3
147 12 69 (121) (116)
5 Acer Incorporated acer 001 2021-11-08 42 610 2048 - 184 9 619 575 - - -
6 Akurat Satu Indonesia ptakuratsatu 000 2020-10-23 0 572 45
538 - 230
905 254
28633 (8)
15 (6)
16 (6)
17 (5)
17 (4)
17 3
6827.74N 0.1
151 6 231 (212) (215)
7 Alchera Inc alchera 2 2018-10-30 7 14 2048 k 114 63 2923 2929 - - -
8 Alchera Inc alchera 3 2018-10-30 251 14 167
2048 k 94
531 232
63 (213)
2955 (216)
2956 (186)
6546 (187)
15013 (187)
35262 200
0.10N 1.2
145 204 214 (238) (245)
9 Alchera Inc alchera 004 2021-09-17 476 24 2048 - 853 35 6657 6851 - - -
10 Alivia / Innovation Sys isystems 3 2018-10-30 350 784 127
2048 1 194
825 162
16 (82)
385 (86)
389 (79)
979 (75)
1822 (121)
9348 206
0.00N 1.3
FNIR(N, R, T) =
FRVT
15 Anke Investments anke 002 2019-06-27 341 401 2056 k 623 13 624 682 1306 2403 5082
16 Aware aware 5 2018-10-30 368 27 226
3100 k 182
792 211
34 (21)
95 (26)
98 (24)
203 (21)
371 (14)
252 15
4.13N 0.7
2 181 4 (38) (38)
17 Aware aware 6 2018-10-30 368 27 124 k 789 2 158 162 - - -
-
False pos. identification rate
False neg. identification rate
69 2 95 (65) (63)
18 Ayonix ayonix 1 2018-10-29 74 2 1036 k 12 11 279 279 - - -
-
196 63 200 (127) (125) (98) (145) (147) 204
0.00N 1.3
IDENTIFICATION
36 Cyberlink Corp cyberlink 001 2019-10-07 459 102 2052 1 423 28 698 700 1350 5524 12031
37 Cyberlink Corp cyberlink 002 2020-07-31 333 109 246
4140 - 157
724 244
6875 (171)
1353 (220)
3198 (185)
6138 (181)
12205 (154)
13106 19
16.71N 0.8
38 Cyberlink Corp cyberlink 003 2021-01-05 333 100 252
6212 - 144
691 216
35 (98)
488 (127)
723 (103)
1415 (102)
2886 (91)
5643 155
0.12N 1.1
39 Cyberlink Corp cyberlink 004 2021-07-16 371 100 250
6212 - 159
728 189
23 (100)
492 (104)
504 (76)
923 (62)
1448 (68)
3350 24
0.73N 0.9
40 Cyberlink Corp cyberlink 005 2022-01-07 371 100 251
6212 - 161
733 206
30 (102)
501 (99)
498 (92)
1193 (97)
2672 (93)
5693 195
0.03N 1.2
41 DAON daon 000 2021-12-23 274 2 213
2069 - 102
583 52
8 (106)
524 (120)
625 (104)
1454 (107)
3097 (103)
6316 196
0.03N 1.2
97 48 187 (59)
42 Dahua Technology Co Ltd dahua 0 2018-10-29 276 167 2048 k 374 22 - 258 - - -
43 Dahua Technology Co Ltd dahua 1 2018-10-29 276 167 138
2048 k 44
369 196
28 - (57)
257 (55)
602 (52)
1202 (61)
3007 182
0.02N 1.2
T = Threshold
46
Table 2: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations,
denoted by “-”, are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes
an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1 1 2 5
DEVELOPER SHORT SEQ . VALIDATION CONFIG LIB TEMPLATE GENERATION FINALIZE SEARCH DURATION MILLISEC
11:12:06
2022/12/18
3 4
FULL NAME NAME NUM . DATE DATA ( MB ) DATA ( MB ) SIZE ( B ) MULT TIME ( MS ) TIME ( S ) L =1 L =50 L =50 L =50 L =50 POWER LAW
N =1.6 M N =1.6 M N =1.6 M N =3 M N =6 M N =12 M (µs)
53 Dermalog dermalog 009 2021-11-09 0 318 34
512 - 39
347 16
3 (56)
253 (52)
246 (40)
461 (40)
923 (38)
1846 38
0.16N 1.0
54 Dermalog dermalog 010 2022-07-25 0 514 35
512 - 116
633 18
3 (50)
241 (50)
242 (39)
454 (39)
910 (37)
1823 41
0.15N 1.0
179 97 241 (2) (21)
55 Digidata digidata 000 2022-06-03 248 33 2048 - 560 2444 0 95 - - -
56 DiluSense Technology dilusense 000 2022-05-26 311 56 172
2048 - 24
247 193
26 (192)
1904 (192)
1898 (163)
3597 (158)
7256 (161)
14689 91
0.88N 1.0
177 188 132
57 FarBar Inc f8 001 2019-10-03 266 19 2048 k 810 14 - - - - -
106 81 63 (115) (112)
58 Fincore Ltd fincore 000 2021-08-18 250 224 2048 - 475 9 562 560 - - -
59 First Credit Bureau Kazakhstan firstcreditkz 001 2022-11-22 548 24 21
288 - 185
799 5
2 (19)
46 (17)
46 (15)
87 (15)
179 (15)
354 61
0.03N 1.0
60 Fujitsu Research and Development Center fujitsulab 000 2021-10-12 497 337 61
1032 - 244
945 32
5 (183)
1668 (182)
1657 (155)
3140 (152)
6320 (151)
12723 89
0.78N 1.0
61 Fujitsu Research and Development Center fujitsulab 001 2022-03-15 675 386 64
1032 - 218
882 64
9 (190)
1854 (191)
1817 (159)
3451 (157)
6986 (158)
14166 109
0.72N 1.0
62 Gorilla Technology gorilla 2 2018-10-29 91 1252 77
1132 k 38
338 191
24 (36)
145 (36)
146 (30)
293 (29)
612 (31)
1509 161
0.02N 1.1
FNIR(N, R, T) =
FRVT
254 92 236 (132) (129) (102) (101) (94) 69
67 Gorilla Technology gorilla 007 2022-02-16 392 322 6290 - 526 89 765 745 1408 2823 5764
68 Gorilla Technology gorilla 008 2022-10-31 321 290 247
4242 - 241
938 227
54 (104)
513 (100)
500 (77)
949 (90)
2402 (97)
6006 189
0.03N 1.2
69 Griaule griaule 000 2021-11-01 0 584 184
2052 - 62
417 46
8 (232)
5827 (236)
6150 (197)
11473 (195)
22952 (192)
46070 35
3.89N 1.0
-
False pos. identification rate
False neg. identification rate
-
0.16N 1.0
IDENTIFICATION
171 108 58 (48) (49) (38) (38) (36) 30
88 Imagus Technology Pty Ltd imagus 007 2021-11-16 248 366 2048 - 609 9 234 238 442 881 1765
148 67 168 (113) (115)
89 Imagus Technology Pty Ltd imagus 008 2022-05-26 204 335 2048 - 445 17 560 565 - - -
90 Imperial College London imperial 000 2019-08-28 461 15 109
2048 1 101
577 108
13 (79)
360 (85)
379 (112)
1626 (117)
4057 (138)
10291 211
0.00N 1.5
150 31 154 (89) (87)
91 Incode Technologies Inc incode 2 2018-10-29 71 31 2048 1 289 15 411 404 - - -
92 Incode Technologies Inc incode 3 2018-10-29 133 31 123
2048 1 147
697 144
15 (88)
408 (91)
412 (69)
847 (68)
1608 (79)
4486 165
0.05N 1.1
93 Incode Technologies Inc incode 004 2019-06-24 254 50 135
2048 1 80
475 99
12 (80)
365 (84)
378 (105)
1482 (70)
1660 (60)
2954 138
0.12N 1.1
94 Incode Technologies Inc incode 005 2021-07-29 259 21 166
2048 - 86
500 82
10 (72)
316 (96)
454 (74)
890 (76)
1843 (71)
3640 154
0.07N 1.1
95 Innovatrics innovatrics 4 2018-10-30 0 400 73
1076 k 53
399 245
10902 (7)
8 (4)
8 (4)
11 (2)
9 (3)
13 9
668.38N 0.2
T = Threshold
47
numerically.
Table 3: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations,
denoted by “-”, are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes
an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1 1 2 5
DEVELOPER SHORT SEQ . VALIDATION CONFIG LIB TEMPLATE GENERATION FINALIZE SEARCH DURATION MILLISEC
11:12:06
2022/12/18
3 4
FULL NAME NAME NUM . DATE DATA ( MB ) DATA ( MB ) SIZE ( B ) MULT TIME ( MS ) TIME ( S ) L =1 L =50 L =50 L =50 L =50 POWER LAW
N =1.6 M N =1.6 M N =1.6 M N =3 M N =6 M N =12 M (µs)
115 Maxvision maxvision 000 2022-06-17 167 60 2048 - 183 - 5044 5188 9663 19358 39552
116 Maxvision maxvision 001 2022-10-28 228 63 168
2048 - 72
457 116
13 (159)
1173 (159)
1177 (128)
2233 (127)
4589 (123)
9371 73
0.65N 1.0
117 Megvii/Face++ megvii 1 2018-10-28 1703 41 239
4096 1 114
631 210
32 (110)
552 (113)
561 (94)
1222 (89)
2321 (96)
5968 164
0.08N 1.1
240 118 208 (111) (110)
118 Megvii/Face++ megvii 2 2018-10-28 1735 42 4096 1 635 31 553 558 - - -
FRVT
119 MicroFocus microfocus 5 2018-10-29 94 26 8
256 k 26
262 10
2 (43)
182 (42)
186 (33)
354 (33)
708 (29)
1425 64
0.11N 1.0
10 25 12 (44) (41)
120 MicroFocus microfocus 6 2018-10-29 94 26 256 k 262 2 183 186 - - -
121 Microsoft microsoft 5 2018-10-29 381 155 55
1024 1 126
658 96
11 (176)
1606 (183)
1673 (154)
3076 (151)
6302 (155)
13160 86
0.79N 1.0
-
False pos. identification rate
False neg. identification rate
-
139 Neurotechnology neurotechnology 008 2021-03-22 355 49 514 - 800 4 1167 1149 2266 4573 9586
IDENTIFICATION
140 Neurotechnology neurotechnology 009 2021-09-01 246 82 40
513 - 138
683 13
3 (152)
1035 (152)
1049 (122)
1977 (119)
4270 (115)
8756 132
0.32N 1.1
141 Neurotechnology neurotechnology 010 2022-01-07 247 83 11
256 - 127
661 3
2 (148)
988 (146)
984 (117)
1897 (116)
3977 (111)
8048 123
0.36N 1.0
142 Neurotechnology neurotechnology 012 2022-06-07 247 84 15
256 - 140
686 14
3 (153)
1036 (154)
1063 (123)
2046 (118)
4179 (114)
8624 119
0.41N 1.0
143 Newland Computer Co Ltd newland 2 2018-10-30 96 27 174
2048 - 206
855 150
15 (244)
8741 (249)
8854 (211)
17892 (209)
39356 - 162
1.32N 1.1
129 18 146 (166) (163)
144 Noblis noblis 1 2018-10-30 114 176 2048 1 206 15 1273 1272 - - -
145 Noblis noblis 2 2018-10-30 153 176 248
6144 1 90
517 220
43 (207)
2513 (212)
2522 (182)
5649 (183)
12432 (191)
44262 201
0.04N 1.3
146 NotionTag Technologies Private Limited notiontag 000 2022-01-14 265 945 218
2120 - 71
453 85
10 (243)
8619 (248)
8705 (210)
16652 (208)
38794 (205)
90607 166
1.15N 1.1
0.18N 1.0
T = Threshold
155 Qnap Security qnap 000 2021-07-28 182 15 2048 - 457 9 1231 1763 - - -
156 Qnap Security qnap 001 2021-12-09 191 13 155
2048 - 109
613 49
8 (182)
1666 (174)
1429 (160)
3472 (163)
7375 (166)
15159 184
0.11N 1.2
Notes
1 Configuration size does not capture static data present in libraries. Libraries are included but the size also includes any ancillary libraries for image processing (e.g. openCV) or numerical computation (e.g. blas).
2 Finalization is the processing of converting N = 1600000 templates into a searchable data structure an operation which can be a simple copy, or the building of an index or tree, for example. The duration of the
operation may be data dependent, and may not be linear in the number of input templates.
3 This multiplier expresses the increase in template size when k images are passed to the template generation function.
4 All durations are measured on Intel®Xeon®CPU E5-2630 v4 @ 2.20GHz processors. Estimates are made by wrapping the API function call in calls to std::chrono::high resolution clock which on the machine in (3)
counts 1ns clock ticks. Precision is somewhat worse than that however.
5 Search durations are measured as in the prior note. The power-law model in the final column mostly fits the empirical results in Figure 146. However in certain cases the model is not correct and should not be used
48
numerically.
Table 4: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations,
denoted by “-”, are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes
an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1 1 2 5
DEVELOPER SHORT SEQ . VALIDATION CONFIG LIB TEMPLATE GENERATION FINALIZE SEARCH DURATION MILLISEC
11:12:06
2022/12/18
3 4
FULL NAME NAME NUM . DATE DATA ( MB ) DATA ( MB ) SIZE ( B ) MULT TIME ( MS ) TIME ( S ) L =1 L =50 L =50 L =50 L =50 POWER LAW
N =1.6 M N =1.6 M N =1.6 M N =3 M N =6 M N =12 M (µs)
157 Qnap Security qnap 002 2022-04-15 338 32 128
2048 - 192
822 166
17 (146)
958 (160)
1179 (131)
2312 (130)
4789 (135)
9791 148
0.24N 1.1
158 Qnap Security qnap 003 2022-12-09 239 60 100
2048 - 51
387 126
13 (184)
1671 (172)
1396 (162)
3567 (162)
7350 (164)
15014 192
0.09N 1.2
149 50 34 (246) (251) (208) (171)
159 Quantasoft quantasoft 1 2018-10-30 276 452 2048 k 385 6 15422 14858 14717 - 18323
160 Rank One Computing rankone 4 2018-10-09 0 101 1
85 k 3
36 38
7 (28)
101 (29)
101 (23)
190 - - 31
0.07N 1.0
161 Rank One Computing rankone 5 2018-10-24 0 101 5
133 k 4
92 39
7 (34)
140 (34)
144 (28)
266 (27)
525 (26)
1049 28
0.11N 1.0
6 23 47
162 Rank One Computing rankone 006 2019-06-03 0 133 165 k 245 8 - - - - -
163 Rank One Computing rankone 007 2019-11-12 0 137 7
165 k 27
272 42
7 (30)
116 (30)
115 (25)
215 (25)
439 (23)
877 63
0.07N 1.0
164 Rank One Computing rankone 009 2020-06-26 0 105 16
260 k 13
185 92
11 (22)
95 (25)
96 (19)
181 (19)
362 (20)
727 42
0.06N 1.0
165 Rank One Computing rankone 010 2020-11-05 0 135 17
261 - 17
198 86
10 (23)
95 (20)
95 (17)
178 (17)
357 (18)
714 37
0.06N 1.0
166 Rank One Computing rankone 011 2021-08-27 0 175 18
261 - 99
566 55
8 (25)
96 (22)
95 (20)
183 (20)
370 (17)
714 51
0.06N 1.0
FNIR(N, R, T) =
FRVT
171 Realnetworks Inc realnetworks 004 2019-10-17 94 102 1848 1 171 11 1143 1137 2149 4740 9693
172 Realnetworks Inc realnetworks 005 2021-06-23 168 209 210
2056 - 35
332 61
9 (181)
1654 (180)
1616 (153)
3030 (149)
6068 (148)
12134 47
1.01N 1.0
173 Realnetworks Inc realnetworks 006 2021-12-02 250 56 201
2056 - 40
348 50
8 (109)
543 (106)
531 (81)
996 (81)
1998 (75)
3991 45
0.33N 1.0
-
False pos. identification rate
False neg. identification rate
-
204 233 177 (224) (229) (201) (198) (195) 169
0.67N 1.1
IDENTIFICATION
192 Sensetime Group sensetime 003 2019-12-02 769 76 2056 1 910 19 4885 4989 12325 24712 49445
193 Sensetime Group sensetime 004 2020-08-10 456 29 67
1032 - 143
690 105
12 (206)
2490 (206)
2477 (177)
4654 (176)
9402 (179)
19651 84
1.22N 1.0
194 Sensetime Group sensetime 005 2020-12-17 631 39 60
1032 - 255
980 90
11 (202)
2459 (222)
3939 (188)
7398 (186)
14768 (177)
19016 20
14.03N 0.9
195 Sensetime Group sensetime 006 2021-07-26 526 54 62
1032 - 235
929 43
7 (198)
2414 (205)
2422 (174)
4527 (172)
9128 (172)
18640 70
1.35N 1.0
196 Sensetime Group sensetime 007 2022-01-15 526 37 59
1032 - 238
935 57
8 (200)
2432 (203)
2406 (172)
4513 (170)
8998 (175)
18796 76
1.28N 1.0
197 Sensetime Group sensetime 008 2022-08-17 567 37 65
1032 - 240
937 67
9 (201)
2444 (204)
2419 (173)
4525 (171)
9114 (170)
18279 58
1.43N 1.0
178 152 139 (119) (118)
198 Shaman Software shaman 6 2018-10-26 0 200 2048 k 706 14 603 612 - - -
199 Shaman Software shaman 7 2018-10-26 0 200 104
2048 k 153
707 142
14 (118)
602 (119)
614 (89)
1187 (93)
2448 (87)
5083 111
0.25N 1.0
T = Threshold
49
Table 5: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations,
denoted by “-”, are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes
an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1 1 2 5
DEVELOPER SHORT SEQ . VALIDATION CONFIG LIB TEMPLATE GENERATION FINALIZE SEARCH DURATION MILLISEC
11:12:06
2022/12/18
3 4
FULL NAME NAME NUM . DATE DATA ( MB ) DATA ( MB ) SIZE ( B ) MULT TIME ( MS ) TIME ( S ) L =1 L =50 L =50 L =50 L =50 POWER LAW
N =1.6 M N =1.6 M N =1.6 M N =3 M N =6 M N =12 M (µs)
219 Thales cogent 006 2022-05-14 508 70 550 - 843 8 587 820 1564 3173 8290
220 TigerIT Americas LLC tiger 2 2018-10-29 416 518 193
2052 k 75
461 151
15 (189)
1816 (194)
1921 (168)
3833 (165)
7526 (162)
14820 103
0.83N 1.0
194 74 256 (45) (43)
221 TigerIT Americas LLC tiger 3 2018-10-30 416 518 2052 k 461 37431 191 189 - - -
222 Toshiba toshiba 0 2018-10-30 961 105 89
1548 k 216
876 97
12 (236)
6153 (238)
6236 (200)
12221 (200)
25355 (196)
49448 185
0.36N 1.2
FRVT
212 215 257 (235) (240)
223 Toshiba toshiba 1 2018-10-30 961 105 2060 k 875 44701 6007 6355 - - -
160 54 66 (214) (217)
224 Tripleize aize 001 2021-08-06 262 150 2048 - 402 9 3087 3080 - - -
225 Trueface.ai trueface 000 2021-01-27 247 119 96
2000 - 41
363 110
13 (58)
271 (76)
327 (56)
614 (54)
1239 (50)
2678 93
0.15N 1.0
-
False pos. identification rate
False neg. identification rate
-
IDENTIFICATION
244 Visiob-Box visionbox 000 2021-09-17 252 274 211
2059 - 83
481 163
16 (90)
422 (79)
359 (71)
855 (30)
631 (43)
2096 18
2.46N 0.8
245 VisionLabs visionlabs 6 2018-10-30 360 17 31
512 1 30
289 253
20290 (18)
36 (16)
36 (13)
39 (11)
44 (9)
53 8
3211.93N 0.2
246 VisionLabs visionlabs 7 2018-10-30 360 17 36
512 1 29
289 255
34666 (20)
63 (18)
63 (14)
72 (14)
80 (12)
115 10
2076.32N 0.2
247 VisionLabs visionlabs 008 2019-06-18 348 17 27
512 1 28
272 250
12747 (12)
23 (8)
24 (7)
26 (6)
29 (5)
33 6
2539.61N 0.2
248 VisionLabs visionlabs 009 2020-08-04 689 20 38
512 - 78
467 251
13245 (13)
23 (10)
29 (9)
34 (13)
61 (13)
145 13
8.88N 0.6
249 VisionLabs visionlabs 010 2021-02-05 1042 20 30
512 - 160
731 246
11837 (10)
21 (13)
32 (11)
36 (8)
39 (6)
43 7
3183.79N 0.2
250 VisionLabs visionlabs 011 2021-10-20 1042 20 33
512 - 162
735 249
12255 (11)
21 (7)
23 (8)
26 (7)
34 (8)
51 12
301.26N 0.3
126 232 127 (84) (70) (65) (65) (63) 183
0.02N 1.2
T = Threshold
251 Vixvizon vixvizion 009 2022-11-28 580 460 2048 - 907 14 389 312 714 1530 3105
252 Vocord vocord 5 2018-10-30 1035 185 50
768 k 178
780 41
7 (39)
158 (44)
204 (34)
383 (35)
767 (30)
1466 53
0.12N 1.0
257 179 239 (40) (47)
253 Vocord vocord 6 2018-10-30 1035 185 10240 k 785 243 170 216 - - -
254 Xforward AI Technology xforwardai 000 2020-07-24 236 171 159
2048 - 167
753 122
13 (222)
4603 (247)
7647 (209)
15723 (197)
23900 (199)
53729 174
0.56N 1.1
255 Xforward AI Technology xforwardai 001 2021-01-21 332 50 112
2048 - 136
677 161
16 (234)
5887 (225)
4384 (193)
8798 (192)
18553 (194)
48993 181
0.32N 1.1
256 Xforward AI Technology xforwardai 002 2021-05-24 691 50 233
4096 - 236
930 174
18 (241)
6957 (241)
6400 (204)
12659 (205)
31077 (203)
65158 179
0.52N 1.1
257 verihubs-inteligensia verihubs-inteligensia 000 2022-09-29 204 75 124
2048 - 100
575 137
14 (245)
9715 (250)
9670 (212)
18711 (207)
38110 (204)
79675 87
4.77N 1.0
Notes
T > 0 → Identification
T = 0 → Investigation
1 Configuration size does not capture static data present in libraries. Libraries are included but the size also includes any ancillary libraries for image processing (e.g. openCV) or numerical computation (e.g. blas).
2 Finalization is the processing of converting N = 1600000 templates into a searchable data structure an operation which can be a simple copy, or the building of an index or tree, for example. The duration of the
operation may be data dependent, and may not be linear in the number of input templates.
3 This multiplier expresses the increase in template size when k images are passed to the template generation function.
4 All durations are measured on Intel®Xeon®CPU E5-2630 v4 @ 2.20GHz processors. Estimates are made by wrapping the API function call in calls to std::chrono::high resolution clock which on the machine in (3)
counts 1ns clock ticks. Precision is somewhat worse than that however.
5 Search durations are measured as in the prior note. The power-law model in the final column mostly fits the empirical results in Figure 146. However in certain cases the model is not correct and should not be used
numerically.
Table 6: Summary of algorithms and properties included in this report. The blue superscripts give ranking for the quantity in that column. Missing search durations,
50
denoted by “-”, are absent because those runs were not executed, usually because we did not run on the larger galleries. Caution: The power-law model is sometimes
an incorrect model. It is included here only to show broad sublinear behavior, which is flagged in green. The models should not be used for prediction.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
# ALGORITHM (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18] (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18]
98 97 97 97 97 139 139 140 101 98 98 98 98 137 138 136
1 3 DIVI -005 0.0207 0.0304 0.0415 0.0533 0.0646 0.0735 0.0884 0.1148 0.1580 0.2316 0.3033 0.3740 0.4285 0.4742 0.5329 0.5975
95 95 95 95 95 137 137 136 96 96 96 96 95 134 134 134
2 ANKE -000 0.0162 0.0245 0.0333 0.0428 0.0515 0.0615 0.0780 0.1028 0.1132 0.1761 0.2402 0.3057 0.3640 0.4200 0.4928 0.5680
49 50 50 49 48 88 87 86 54 54 56 57 57 95 96 95
3 ANKE -002 0.0055 0.0074 0.0090 0.0103 0.0116 0.0135 0.0162 0.0202 0.0329 0.0560 0.0843 0.1169 0.1481 0.1820 0.2280 0.2831
106 106 106 104 104 146 146 147 106 107 107 107 108 147 147 148
4 AWARE -005 0.0328 0.0519 0.0712 0.0910 0.1078 0.1235 0.1457 0.1831 0.3605 0.4949 0.5948 0.6783 0.7393 0.7905 0.8408 0.8831
110 110 110 110 110 155 154 154
5 AWARE -006 0.0702 0.1110 0.1502 0.1899 0.2253 0.2614 0.3045 0.3659
113 114 114 114 114 158 158 159 110 111 111 111 111 152 152 152
6 AYONIX -002 0.3360 0.4389 0.5144 0.5814 0.6340 0.6818 0.7297 0.7774 0.8288 0.9013 0.9375 0.9603 0.9744 0.9837 0.9893 0.9927
109 109 109 109 108 152 152 150 91 91 88 88 88 125 124 120
7 CAMVI -004 0.0623 0.0944 0.1243 0.1548 0.1812 0.2056 0.2344 0.2672 0.0810 0.1267 0.1721 0.2203 0.2619 0.3040 0.3543 0.4124
111 111 111 111 111 154 153 153
8 CAMVI -005 0.0849 0.1255 0.1631 0.1989 0.2298 0.2585 0.2915 0.3246
36 35 29 41 41 43
9 CANON -001 0.0052 0.0057 0.0042 0.0491 0.0606 0.0826
49 48 47 39 39 41
10 CANON -002 0.0062 0.0070 0.0070 0.0472 0.0582 0.0792
14 14 15 15 17 45 46 46 25 26 27 28 28 57 58 58
11 CIB -000 0.0022 0.0030 0.0037 0.0044 0.0049 0.0057 0.0069 0.0062 0.0139 0.0240 0.0373 0.0525 0.0689 0.0859 0.1109 0.1454
FNIR(N, R, T) =
4 4 4 9 11 27 34 37 16 18 18 19 19 42 46 46
12 CLEARVIEWAI -000 0.0017 0.0023 0.0028 0.0034 0.0039 0.0046 0.0056 0.0047 0.0066 0.0121 0.0194 0.0287 0.0385 0.0493 0.0662 0.0873
8 7 8 6 5 6 7 5 1 1 1 1 2 6 6 6
FPIR(N, T) =
13 CLOUDWALK - HR -000 0.0019 0.0024 0.0029 0.0032 0.0032 0.0036 0.0041 0.0020 0.0029 0.0041 0.0054 0.0064 0.0073 0.0085 0.0102 0.0112
9 3 2 3 3 3
14 CLOUDWALK - MT-000 0.0037 0.0038 0.0013 0.0065 0.0072 0.0075
7 1 1 2 2 2
15 CLOUDWALK - MT-001 0.0037 0.0037 0.0012 0.0045 0.0051 0.0042
91 90 93 92 92 132 131 129 77 79 77 77 75 113 113 117
16 COGENT-000 0.0128 0.0184 0.0250 0.0327 0.0407 0.0488 0.0611 0.0794 0.0559 0.0923 0.1342 0.1812 0.2243 0.2675 0.3240 0.3992
FRVT
90 91 92 93 93 131 130 130 78 78 76 76 76 114 112 116
17 COGENT-001 0.0128 0.0184 0.0250 0.0327 0.0407 0.0488 0.0611 0.0794 0.0559 0.0923 0.1342 0.1812 0.2243 0.2675 0.3240 0.3992
69 66 63 64 62 102 100 100 69 68 67 67 67 105 106 107
18 COGENT-002 0.0081 0.0105 0.0123 0.0137 0.0157 0.0175 0.0215 0.0280 0.0499 0.0827 0.1207 0.1639 0.2037 0.2432 0.2972 0.3638
71 67 65 67 66 108 109 106 80 80 80 80 80 120 122 123
19 COGENT-003 0.0082 0.0108 0.0128 0.0145 0.0168 0.0191 0.0239 0.0312 0.0582 0.0971 0.1417 0.1918 0.2380 0.2836 0.3440 0.4207
-
False pos. identification rate
False neg. identification rate
17 16 14 13 13 32 40 39 12 10 11 11 11 22 22 23
33 DEEPGLINT-001 0.0024 0.0032 0.0037 0.0040 0.0043 0.0049 0.0060 0.0052 0.0058 0.0087 0.0119 0.0155 0.0199 0.0249 0.0338 0.0463
70 70 73 76 76 119 121 121 66 66 64 63 63 102 102 101
34 DEEPSEA -001 0.0081 0.0116 0.0149 0.0182 0.0216 0.0260 0.0332 0.0432 0.0458 0.0752 0.1086 0.1460 0.1812 0.2186 0.2663 0.3213
82 82 78 77 74 113 111 109 75 73 73 72 70 109 108 108
35 DERMALOG -006 0.0113 0.0142 0.0163 0.0183 0.0200 0.0218 0.0251 0.0329 0.0545 0.0889 0.1271 0.1697 0.2090 0.2498 0.3028 0.3670
88 88 88 88 87 126 127 127 92 92 92 92 92 131 130 131
36 DERMALOG -007 0.0125 0.0170 0.0214 0.0264 0.0309 0.0356 0.0432 0.0579 0.0910 0.1453 0.2009 0.2602 0.3134 0.3649 0.4289 0.5007
52 52 54 54 53 94 93 94 70 69 70 71 72 110 110 110
37 DERMALOG -008 0.0057 0.0077 0.0095 0.0110 0.0128 0.0148 0.0180 0.0223 0.0501 0.0850 0.1247 0.1692 0.2105 0.2541 0.3102 0.3762
41 38 30 45 45 45
38 DERMALOG -010 0.0056 0.0059 0.0043 0.0519 0.0643 0.0843
-
79 78 82 94 90 87
IDENTIFICATION
39 DILUSENSE -000 0.0123 0.0146 0.0180 0.1814 0.2149 0.2644
43 43 43 21 20 20
40 FIRSTCREDITKZ -001 0.0057 0.0066 0.0055 0.0240 0.0284 0.0368
65 63 65 75 74 72
41 FUJITSULAB -001 0.0089 0.0098 0.0111 0.1403 0.1723 0.2165
100 100 101 102 103 145 145 145 103 104 104 104 104 141 141 141
42 GORILLA -002 0.0213 0.0359 0.0528 0.0716 0.0895 0.1088 0.1367 0.1765 0.1828 0.2787 0.3654 0.4485 0.5168 0.5823 0.6508 0.7180
38 47 58 62 67 111 114 116 79 81 82 81 81 122 121 121
43 GORILLA -005 0.0044 0.0070 0.0102 0.0136 0.0170 0.0204 0.0272 0.0373 0.0566 0.0973 0.1432 0.1937 0.2398 0.2862 0.3437 0.4150
76 73 71 97 95 91
44 GORILLA -007 0.0108 0.0128 0.0145 0.1862 0.2198 0.2716
Table 7: Accuracy for the FRVT 2018 mugshot sets under ageing. The second row shows the time lapse between gallery and subsequent probe images, in years. The
T = Threshold
first two columns identify the algorithm The next 8 values give rank-based FNIR with R = 1, T = 0 and FPIR = 1. All these are relevant to investigational uses where
candidates from all searches would need human review. The second 8 values give threshold-based FNIR with T ≥ 0, FPIR = 0.001 and no rank criterion. The shaded
cells indictate indicate the three most accurate algorithms for that elapsed time. The gallery size is 3068801. The total number of searches is 10951064.
T > 0 → Identification
T = 0 → Investigation
51
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISS RATES INVESTIGATION , FNIR ( N , R = 1, T = 0) IDENTIFICATION , FNIR ( N , R = L,T ≥ 0 ) FOR FPIR = 0.001
11:12:06
2022/12/18
# ALGORITHM (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18] (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18]
58 56 58 84 79 80
45 GORILLA -008 0.0071 0.0081 0.0089 0.1557 0.1847 0.2340
26 23 25 34 32 30
46 GRIAULE -001 0.0046 0.0050 0.0038 0.0402 0.0487 0.0636
46 37 38 46 44 40
47 HZAILU -001 0.0058 0.0059 0.0049 0.0524 0.0630 0.0791
81 86 86 85 84 124 124 123 87 86 86 86 85 124 123 124
48 IDEMIA -003 0.0110 0.0151 0.0196 0.0238 0.0281 0.0313 0.0368 0.0504 0.0717 0.1147 0.1614 0.2113 0.2553 0.2976 0.3537 0.4334
80 84 85 84 83 123 123 124 58 55 54 53 52 85 82 83
49 IDEMIA -004 0.0107 0.0148 0.0192 0.0233 0.0277 0.0312 0.0367 0.0512 0.0373 0.0587 0.0833 0.1100 0.1340 0.1580 0.1911 0.2482
84 87 90 89 88 127 126 126 65 64 60 59 58 92 87 90
50 IDEMIA -005 0.0118 0.0167 0.0218 0.0270 0.0317 0.0357 0.0425 0.0579 0.0440 0.0689 0.0964 0.1254 0.1513 0.1762 0.2113 0.2698
87 89 89 87 86 125 122 122 62 59 57 52 49 78 76 75
51 IDEMIA -006 0.0124 0.0171 0.0218 0.0263 0.0302 0.0321 0.0356 0.0471 0.0409 0.0620 0.0850 0.1097 0.1309 0.1486 0.1738 0.2200
47 48 48 50 51 90 90 92 36 36 34 33 31 62 59 62
52 IDEMIA -007 0.0050 0.0071 0.0089 0.0106 0.0124 0.0142 0.0171 0.0220 0.0202 0.0335 0.0491 0.0663 0.0825 0.0999 0.1240 0.1645
5 6 6 5 7 11 17 19 3 3 5 5 5 11 10 10
53 IDEMIA -008 0.0018 0.0024 0.0029 0.0032 0.0035 0.0039 0.0046 0.0033 0.0034 0.0051 0.0069 0.0087 0.0102 0.0123 0.0146 0.0186
15 8 10 7 7 7
54 IDEMIA -009 0.0040 0.0042 0.0024 0.0094 0.0103 0.0123
33 33 31 29 30 64 65 64 39 39 40 40 38 71 70 68
55 IMAGUS -005 0.0039 0.0052 0.0061 0.0067 0.0077 0.0088 0.0103 0.0109 0.0212 0.0357 0.0539 0.0755 0.0967 0.1183 0.1485 0.1893
149 147 146
56 IMAGUS -008 0.1625 0.1704 0.1823
FNIR(N, R, T) =
34 35 36 38 40 77 76 80 49 51 51 54 56 96 99 98
57 IMPERIAL -000 0.0040 0.0054 0.0067 0.0079 0.0093 0.0112 0.0139 0.0178 0.0286 0.0503 0.0779 0.1116 0.1455 0.1844 0.2341 0.2951
FPIR(N, T) =
94 96 96 96 96 138 138 139 102 102 102 100 100 140 140 140
58 INCODE -003 0.0155 0.0247 0.0348 0.0463 0.0571 0.0674 0.0856 0.1114 0.1627 0.2507 0.3322 0.4122 0.4772 0.5368 0.6059 0.6766
56 59 59 61 64 104 107 105 73 74 75 75 77 115 114 113
59 INCODE -004 0.0061 0.0087 0.0110 0.0136 0.0161 0.0185 0.0236 0.0309 0.0532 0.0908 0.1334 0.1809 0.2245 0.2675 0.3249 0.3932
114 113 113 112 112 156 156 156 107 106 106 106 105 144 142 142
60 INNOVATRICS -004 0.3594 0.3629 0.3688 0.3754 0.3813 0.3870 0.3960 0.4135 0.4234 0.4642 0.5073 0.5522 0.5902 0.6274 0.6736 0.7253
41 41 42 45 45 80 81 81 55 56 58 58 59 99 98 96
FRVT
61 INNOVATRICS -005 0.0046 0.0063 0.0078 0.0092 0.0106 0.0124 0.0149 0.0178 0.0343 0.0590 0.0886 0.1222 0.1544 0.1881 0.2321 0.2874
135 134 133
62 INTELLIVISION -002 0.0577 0.0694 0.0881
16 11 11 18 17 17
63 INTEMA -000 0.0040 0.0043 0.0024 0.0193 0.0235 0.0294
-
False pos. identification rate
False neg. identification rate
24 24 25 26 26 59 61 62 52 52 53 56 55 91 94 92
64 IREX -000 0.0031 0.0042 0.0051 0.0060 0.0068 0.0080 0.0095 0.0107 0.0313 0.0539 0.0815 0.1137 0.1442 0.1755 0.2181 0.2718
22 29 35 43 43 85 88 84 43 44 44 44 45 77 80 77
77 MICROSOFT-005 0.0031 0.0047 0.0066 0.0084 0.0103 0.0131 0.0164 0.0185 0.0243 0.0432 0.0658 0.0913 0.1172 0.1476 0.1874 0.2272
26 31 34 42 42 78 77 76 24 24 25 23 22 53 53 53
78 MICROSOFT-006 0.0032 0.0049 0.0065 0.0081 0.0096 0.0117 0.0144 0.0160 0.0134 0.0233 0.0346 0.0462 0.0578 0.0713 0.0903 0.1156
147 148 148 150 150 150
79 MUKH -002 0.1394 0.1754 0.2335 0.9761 0.9840 0.9899
97 99 99 99 98 141 141 141 89 89 89 89 89 127 125 125
80 NEC -000 0.0195 0.0316 0.0445 0.0581 0.0699 0.0817 0.0998 0.1237 0.0759 0.1245 0.1729 0.2240 0.2671 0.3117 0.3639 0.4348
104 102 100 100 101 143 142 142 94 94 94 94 94 133 133 132
81 NEC -001 0.0246 0.0382 0.0524 0.0672 0.0793 0.0904 0.1076 0.1317 0.1019 0.1623 0.2214 0.2834 0.3341 0.3844 0.4440 0.5183
27 22 18 16 15 31 33 28 15 11 10 10 9 14 15 15
82 NEC -002 0.0033 0.0041 0.0043 0.0044 0.0045 0.0049 0.0056 0.0041 0.0066 0.0090 0.0111 0.0131 0.0149 0.0171 0.0207 0.0267
-
31 26 24 24 24 51 51 53 9 9 9 7 6 13 12 12
83 NEC -003 0.0036 0.0046 0.0051 0.0055 0.0059 0.0067 0.0077 0.0073 0.0056 0.0076 0.0091 0.0105 0.0119 0.0137 0.0162 0.0209
IDENTIFICATION
32 25 22 18 14 30 30 23 7 5 2 2 1 4 4 4
84 NEC -004 0.0039 0.0045 0.0047 0.0046 0.0044 0.0046 0.0052 0.0036 0.0046 0.0057 0.0063 0.0066 0.0069 0.0076 0.0090 0.0105
10 6 6 5 5 5
85 NEC -005 0.0037 0.0041 0.0020 0.0080 0.0091 0.0107
13 9 7 1 1 1
86 NEC -006 0.0039 0.0042 0.0021 0.0030 0.0033 0.0012
101 101 102 101 100 140 140 138 109 109 110 110 110 149 149 149
87 NEUROTECHNOLOGY-003 0.0234 0.0379 0.0549 0.0682 0.0720 0.0747 0.0886 0.1066 0.6802 0.8187 0.8920 0.9355 0.9594 0.9738 0.9828 0.9885
79 78 76 73 72 112 110 107 83 82 81 79 78 116 115 114
88 NEUROTECHNOLOGY-004 0.0104 0.0134 0.0156 0.0173 0.0195 0.0212 0.0245 0.0320 0.0642 0.1015 0.1426 0.1881 0.2299 0.2722 0.3269 0.3943
Table 8: Accuracy for the FRVT 2018 mugshot sets under ageing. The second row shows the time lapse between gallery and subsequent probe images, in years. The
T = Threshold
first two columns identify the algorithm The next 8 values give rank-based FNIR with R = 1, T = 0 and FPIR = 1. All these are relevant to investigational uses where
candidates from all searches would need human review. The second 8 values give threshold-based FNIR with T ≥ 0, FPIR = 0.001 and no rank criterion. The shaded
cells indictate indicate the three most accurate algorithms for that elapsed time. The gallery size is 3068801. The total number of searches is 10951064.
T > 0 → Identification
T = 0 → Investigation
52
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISS RATES INVESTIGATION , FNIR ( N , R = 1, T = 0) IDENTIFICATION , FNIR ( N , R = L,T ≥ 0 ) FOR FPIR = 0.001
11:12:06
2022/12/18
# ALGORITHM (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18] (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18]
74 71 68 68 69 109 105 104 76 76 74 74 74 112 111 111
89 NEUROTECHNOLOGY-005 0.0089 0.0116 0.0136 0.0152 0.0173 0.0196 0.0233 0.0306 0.0556 0.0913 0.1315 0.1766 0.2192 0.2617 0.3174 0.3843
66 65 64 65 63 103 102 101 82 85 85 85 86 126 127 127
90 NEUROTECHNOLOGY-007 0.0078 0.0103 0.0124 0.0140 0.0161 0.0185 0.0225 0.0290 0.0641 0.1069 0.1546 0.2075 0.2572 0.3081 0.3713 0.4421
37 41 41 58 56 56
91 NEUROTECHNOLOGY-010 0.0053 0.0061 0.0053 0.0863 0.1050 0.1333
22 25 24 50 49 50
92 NEUROTECHNOLOGY-012 0.0044 0.0051 0.0038 0.0638 0.0783 0.1027
112 112 112 113 113 157 157 157 113 113 113 113 113 153 156 156
93 NOBLIS -002 0.1520 0.2419 0.3296 0.4114 0.4856 0.5528 0.6061 0.6532 0.9984 0.9996 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000
65 76 87 90 91 133 136 137 68 72 79 83 87 129 129 129
94 NTECHLAB -003 0.0078 0.0131 0.0202 0.0295 0.0405 0.0543 0.0761 0.1035 0.0491 0.0881 0.1384 0.1985 0.2594 0.3270 0.4065 0.4891
62 68 79 86 89 130 132 134 60 63 66 66 73 121 126 128
95 NTECHLAB -004 0.0068 0.0110 0.0167 0.0239 0.0330 0.0447 0.0641 0.0891 0.0379 0.0688 0.1108 0.1629 0.2192 0.2846 0.3657 0.4524
51 62 72 83 85 128 129 132 56 60 63 64 66 111 118 122
96 NTECHLAB -006 0.0056 0.0095 0.0148 0.0218 0.0301 0.0413 0.0591 0.0814 0.0349 0.0636 0.1023 0.1506 0.2024 0.2617 0.3374 0.4185
37 43 49 57 60 107 112 112 45 46 48 49 51 89 91 93
97 NTECHLAB -007 0.0044 0.0066 0.0089 0.0118 0.0150 0.0189 0.0255 0.0342 0.0256 0.0450 0.0705 0.1012 0.1334 0.1692 0.2170 0.2752
18 21 26 31 44 91 108 113 26 28 32 37 40 76 85 89
98 NTECHLAB -008 0.0025 0.0038 0.0052 0.0074 0.0104 0.0146 0.0236 0.0348 0.0143 0.0267 0.0459 0.0733 0.1062 0.1469 0.2044 0.2698
13 15 16 17 19 53 59 61 18 17 17 17 18 36 37 44
99 NTECHLAB -009 0.0022 0.0031 0.0038 0.0045 0.0055 0.0067 0.0088 0.0100 0.0073 0.0117 0.0170 0.0238 0.0319 0.0419 0.0577 0.0833
42 44 51 29 30 35
100 NTECHLAB -011 0.0056 0.0066 0.0073 0.0351 0.0475 0.0724
FNIR(N, R, T) =
34 32 33 44 43 42
101 PANGIAM -000 0.0051 0.0055 0.0046 0.0503 0.0617 0.0810
FPIR(N, T) =
86 85 74
102 PANGIAM -001 0.0132 0.0153 0.0153
53 58 60 63 65 105 104 102
103 PARAVISION -002 0.0058 0.0083 0.0111 0.0137 0.0162 0.0187 0.0229 0.0295
44 44 51 52 54 92 92 91 57 58 59 60 61 100 100 97
104 PARAVISION -003 0.0048 0.0067 0.0090 0.0109 0.0128 0.0148 0.0178 0.0219 0.0354 0.0618 0.0931 0.1290 0.1625 0.1964 0.2408 0.2924
16 17 17 19 18 47 49 49 20 23 24 24 24 55 55 55
105 PARAVISION -004 0.0024 0.0032 0.0040 0.0047 0.0053 0.0061 0.0073 0.0072 0.0118 0.0209 0.0327 0.0465 0.0613 0.0779 0.1008 0.1285
FRVT
12 13 13 14 16 40 45 48 11 12 12 14 15 31 34 34
106 PARAVISION -005 0.0021 0.0028 0.0035 0.0041 0.0046 0.0054 0.0067 0.0070 0.0057 0.0093 0.0144 0.0207 0.0278 0.0368 0.0508 0.0715
6 8 7 8 8 19 21 17 10 13 14 13 14 30 31 31
107 PARAVISION -007 0.0019 0.0025 0.0029 0.0033 0.0036 0.0042 0.0049 0.0030 0.0057 0.0094 0.0144 0.0206 0.0275 0.0357 0.0485 0.0652
17 15 13 24 25 26
-
108 PARAVISION -009 0.0041 0.0046 0.0026 0.0283 0.0371 0.0525
False pos. identification rate
False neg. identification rate
107 108 108 108 109 153 155 155 105 105 105 105 106 145 146 146
122 REALNETWORKS -002 0.0381 0.0687 0.1062 0.1495 0.1963 0.2513 0.3206 0.3927 0.2153 0.3323 0.4444 0.5485 0.6355 0.7132 0.7855 0.8437
103 105 105 106 106 151 151 152 98 100 101 103 103 143 144 144
123 REALNETWORKS -003 0.0245 0.0437 0.0686 0.0975 0.1312 0.1719 0.2294 0.2907 0.1468 0.2370 0.3313 0.4269 0.5142 0.5979 0.6815 0.7567
102 104 104 105 105 150 150 151 99 101 100 102 102 142 143 143
124 REALNETWORKS -004 0.0244 0.0428 0.0663 0.0939 0.1251 0.1634 0.2170 0.2785 0.1484 0.2377 0.3303 0.4249 0.5106 0.5924 0.6758 0.7534
57 52 56 64 60 60
125 REALNETWORKS -006 0.0069 0.0077 0.0080 0.1022 0.1253 0.1622
33 31 36 38 38 37
126 REALNETWORKS -008 0.0049 0.0054 0.0047 0.0462 0.0577 0.0745
29 26 26 40 40 39
-
127 S 1-002 0.0046 0.0051 0.0038 0.0482 0.0597 0.0788
IDENTIFICATION
44 42 44 51 52 51
128 S 1-003 0.0057 0.0063 0.0056 0.0681 0.0839 0.1061
68 72 75 78 78 118 120 120 88 88 87 87 84 123 120 119
129 SCANOVATE -001 0.0079 0.0117 0.0151 0.0185 0.0221 0.0259 0.0321 0.0427 0.0727 0.1169 0.1650 0.2115 0.2528 0.2925 0.3437 0.4084
96 92 84 75 68 87 60 45 40 25 19 18 12 19 14 13
130 SENSETIME -002 0.0186 0.0191 0.0183 0.0179 0.0173 0.0133 0.0089 0.0059 0.0220 0.0236 0.0237 0.0240 0.0245 0.0219 0.0195 0.0222
11 12 11 7 6 14 18 18 8 8 6 4 4 10 11 11
131 SENSETIME -003 0.0021 0.0028 0.0031 0.0033 0.0035 0.0040 0.0047 0.0033 0.0046 0.0064 0.0076 0.0086 0.0101 0.0122 0.0155 0.0196
3 3 3 3 3 5 13 12 4 4 3 3 3 12 13 14
132 SENSETIME -004 0.0016 0.0022 0.0025 0.0028 0.0030 0.0035 0.0043 0.0025 0.0036 0.0052 0.0066 0.0081 0.0099 0.0126 0.0169 0.0230
Table 9: Accuracy for the FRVT 2018 mugshot sets under ageing. The second row shows the time lapse between gallery and subsequent probe images, in years. The
T = Threshold
first two columns identify the algorithm The next 8 values give rank-based FNIR with R = 1, T = 0 and FPIR = 1. All these are relevant to investigational uses where
candidates from all searches would need human review. The second 8 values give threshold-based FNIR with T ≥ 0, FPIR = 0.001 and no rank criterion. The shaded
cells indictate indicate the three most accurate algorithms for that elapsed time. The gallery size is 3068801. The total number of searches is 10951064.
T > 0 → Identification
T = 0 → Investigation
53
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISS RATES INVESTIGATION , FNIR ( N , R = 1, T = 0) IDENTIFICATION , FNIR ( N , R = L,T ≥ 0 ) FOR FPIR = 0.001
11:12:06
2022/12/18
# ALGORITHM (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18] (0, 2] (2, 4] (4, 6] (6, 8] (8, 10] (10, 12] (12, 14] (14, 18]
2 2 2 2 2 4 10 15 5 7 8 9 10 20 23 24
133 SENSETIME -005 0.0015 0.0020 0.0024 0.0026 0.0029 0.0035 0.0043 0.0028 0.0036 0.0059 0.0089 0.0128 0.0177 0.0240 0.0345 0.0493
1 1 1 1 1 1 5 8 2 2 4 6 7 16 19 19
134 SENSETIME -006 0.0015 0.0019 0.0022 0.0025 0.0027 0.0033 0.0040 0.0021 0.0031 0.0049 0.0068 0.0097 0.0132 0.0184 0.0262 0.0359
3 2 3 9 9 9
135 SENSETIME -007 0.0035 0.0038 0.0015 0.0112 0.0140 0.0176
2 4 4 8 8 8
136 SENSETIME -008 0.0034 0.0039 0.0017 0.0103 0.0127 0.0163
117 117 117 117 117 161 161 160 112 110 109 109 109 148 148 147
137 SIAT-002 0.8309 0.8310 0.8311 0.8306 0.8296 0.8302 0.8300 0.8301 0.8340 0.8368 0.8404 0.8445 0.8480 0.8532 0.8595 0.8691
89 85 83 80 79 115 115 110 85 83 83 82 82 119 119 118
138 SYNESIS -003 0.0125 0.0151 0.0174 0.0199 0.0223 0.0240 0.0279 0.0331 0.0658 0.1052 0.1483 0.1968 0.2399 0.2834 0.3405 0.4046
40 37 37 40 37 71 71 73 46 45 45 45 44 74 75 74
139 SYNESIS -005 0.0044 0.0058 0.0070 0.0080 0.0091 0.0103 0.0125 0.0152 0.0262 0.0444 0.0666 0.0923 0.1156 0.1399 0.1736 0.2185
136 135 135
140 T 4 ISB -000 0.0606 0.0748 0.0970
57 61 66 71 77 122 125 125 86 87 90 91 91 130 132 133
141 TECH 5-001 0.0061 0.0093 0.0128 0.0171 0.0221 0.0289 0.0412 0.0560 0.0660 0.1156 0.1733 0.2385 0.2998 0.3629 0.4424 0.5284
73 74 74 74 75 116 116 115
142 TOSHIBA -001 0.0086 0.0119 0.0150 0.0178 0.0209 0.0241 0.0292 0.0365
36 36 30 28 27 62 62 60 35 37 38 35 35 68 66 66
143 TRUEFACE -000 0.0043 0.0057 0.0061 0.0067 0.0073 0.0084 0.0097 0.0099 0.0200 0.0338 0.0504 0.0705 0.0904 0.1112 0.1401 0.1792
58 56 56 56 56 93 94 90 61 61 62 62 62 101 101 102
FNIR(N, R, T) =
144 VERIDAS -001 0.0063 0.0083 0.0099 0.0113 0.0132 0.0148 0.0184 0.0219 0.0403 0.0684 0.1012 0.1386 0.1741 0.2113 0.2611 0.3233
43 46 52 55 55 96 95 98 74 77 78 78 79 117 116 112
145 VISIONLABS -004 0.0048 0.0069 0.0091 0.0111 0.0130 0.0152 0.0187 0.0242 0.0540 0.0916 0.1358 0.1855 0.2303 0.2745 0.3312 0.3913
FPIR(N, T) =
FRVT
149 VISIONLABS -009 0.0020 0.0026 0.0030 0.0034 0.0038 0.0044 0.0052 0.0046 0.0065 0.0105 0.0156 0.0217 0.0289 0.0368 0.0499 0.0681
9 9 9 11 9 20 24 35 17 16 16 16 17 35 36 36
150 VISIONLABS -010 0.0020 0.0025 0.0030 0.0034 0.0036 0.0043 0.0051 0.0047 0.0069 0.0113 0.0170 0.0238 0.0316 0.0411 0.0557 0.0740
18 16 22 23 21 22
151 VISIONLABS -011 0.0042 0.0046 0.0036 0.0270 0.0337 0.0432
100 97 95 93 88 86
-
False pos. identification rate
False neg. identification rate
Table 10: Accuracy for the FRVT 2018 mugshot sets under ageing. The second row shows the time lapse between gallery and subsequent probe images, in years. The
first two columns identify the algorithm The next 8 values give rank-based FNIR with R = 1, T = 0 and FPIR = 1. All these are relevant to investigational uses where
R = Num. candidates examined
N = Num. enrolled subjects
candidates from all searches would need human review. The second 8 values give threshold-based FNIR with T ≥ 0, FPIR = 0.001 and no rank criterion. The shaded
cells indictate indicate the three most accurate algorithms for that elapsed time. The gallery size is 3068801. The total number of searches is 10951064.
-
IDENTIFICATION
T = Threshold
T > 0 → Identification
T = 0 → Investigation
54
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
281 270 181 206 133 201 276 270 255 207 117 203
1 20 FACE -000 0.055 0.085 0.736 0.056 0.239 0.243 0.348 0.450 1.000 0.424 0.772 0.938 0.000 0.000 0.000 0.000
290 287 220 226 285 284 220 184
2 3 DIVI -003 0.083 0.206 0.141 0.474 0.400 0.626 0.605 0.821 0.002 0.005
248 258 198 205 255 260 196 159
3 3 DIVI -004 0.018 0.062 0.035 0.279 0.169 0.343 0.277 0.607 0.002 0.005
249 257 228 239 206 252 258 169 227 158
4 3 DIVI -005 0.018 0.062 0.930 0.821 0.279 0.166 0.339 0.996 0.864 0.597 0.002 0.005 0.442
259 265 202 215 254 259 197 162
5 3 DIVI -006 0.024 0.074 0.047 0.312 0.168 0.342 0.283 0.615 0.002 0.005
225 220 208 185 188 244 237 118 191 142
6 ACER -000 0.011 0.036 0.827 0.025 0.209 0.146 0.246 0.981 0.201 0.490 0.000 0.000 0.042
177 167 125 148 111 89 186 164 205 149 104 141
7 ACER -001 0.005 0.020 0.422 0.008 0.050 0.098 0.056 0.109 0.999 0.068 0.406 0.479 0.001 0.001 0.041 0.000
183 181 171 172 113 171 206 192 147 163 97 120
8 AIZE -001 0.006 0.022 0.683 0.016 0.050 0.165 0.077 0.143 0.994 0.101 0.364 0.387 0.001 0.001 0.047 0.000
244 245 215 201 211 241 221 185 185 180
FNIR(N, R, T) =
9 ALCHERA -000 0.016 0.047 0.870 0.046 0.292 0.138 0.216 0.999 0.176 0.803 0.006 0.014 0.328
319 315 241 277 316 319 317 279
10 ALCHERA -001 0.987 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.006 0.013 0.324
FPIR(N, T) =
292 284 242 236 224 292 281 214 226 181
11 ALCHERA -002 0.095 0.166 0.954 0.668 0.446 0.486 0.591 1.000 0.827 0.811 0.001 0.002 0.106
222 218 182 173 186 246 233 198 184 136
12 ALCHERA -003 0.010 0.035 0.741 0.016 0.206 0.155 0.239 0.999 0.172 0.464 0.001 0.002 0.106
228 224 117 174 124 160 284 276 139 208 111 153
13 ALCHERA -004 0.011 0.038 0.345 0.017 0.088 0.144 0.394 0.529 0.991 0.424 0.708 0.546 0.001 0.001 0.046 0.000
231 214 218 180 208 218 208 136 166 150
FRVT
14 ALLGOVISION -000 0.011 0.033 0.894 0.021 0.282 0.088 0.166 0.990 0.117 0.526 0.002 0.003 0.122
211 230 167 179 199 224 225 125 178 143
15 ALLGOVISION -001 0.009 0.038 0.661 0.021 0.241 0.102 0.221 0.986 0.150 0.491 0.001 0.001 0.042
239 225 231 253 312 228 224 146 279 226
16 ANKE -000 0.013 0.038 0.931 1.000 1.000 0.117 0.220 0.994 1.000 1.000 0.000 0.001 0.080
240 226 237 244 315 232 223 153 268 235
-
False pos. identification rate
False neg. identification rate
17 ANKE -001 0.013 0.038 0.946 1.000 1.000 0.119 0.220 0.994 1.000 1.000 0.000 0.001 0.080
30 CANON -002 0.001 0.006 0.106 0.001 0.007 0.059 0.005 0.020 0.407 0.013 0.075 0.188 0.001 0.000 0.042 0.000
58 31 50 46 51 37 76 71 230 65 51 194
31 CIB -000 0.002 0.008 0.100 0.002 0.011 0.069 0.012 0.045 1.000 0.017 0.141 0.894 0.000 0.000 0.000 0.000
16 14 11 25 15 13 45 35 104 31 23 98
32 CLEARVIEWAI -000 0.001 0.007 0.062 0.001 0.006 0.056 0.006 0.025 0.974 0.008 0.057 0.268 0.000 0.000 0.037 0.000
54 55 15 41 18 14 13 12 3 15 10 20
33 CLOUDWALK - HR -000 0.001 0.010 0.064 0.002 0.006 0.057 0.002 0.013 0.133 0.005 0.033 0.099 0.001 0.000 0.042 0.000
76 74 5 9 5 5 12 11 2 3 2 2
34 CLOUDWALK - MT-000 0.002 0.011 0.057 0.001 0.004 0.051 0.002 0.013 0.109 0.002 0.018 0.072 0.001 0.000 0.042 0.000
75 75 2 1 1 1 10 4 1 1 1 1
35 CLOUDWALK - MT-001 0.002 0.011 0.053 0.001 0.003 0.042 0.002 0.012 0.070 0.001 0.015 0.056 0.001 0.000 0.042 0.000
-
224 242 253 176 188 158
36 COGENT-000 0.010 0.046 0.965 0.053 0.140 0.995 0.000 0.000 0.000
IDENTIFICATION
223 243 252 177 189 159
37 COGENT-001 0.010 0.046 0.965 0.053 0.140 0.995 0.000 0.000 0.000
153 169 226 163 154 174
38 COGENT-002 0.004 0.020 0.925 0.044 0.098 0.998 0.000 0.000 0.000
155 174 235 168 148 177
39 COGENT-003 0.004 0.021 0.939 0.046 0.095 0.998 0.000 0.000 0.000
97 106 225 96 76 125 148 77 172 79 47 133
40 COGENT-004 0.002 0.013 0.922 0.004 0.019 0.113 0.033 0.051 0.997 0.022 0.126 0.456 0.000 0.000 0.000 0.000
69 63 59 47 48 134 60 60 132 49 37 195
41 COGENT-005 0.002 0.010 0.126 0.002 0.010 0.120 0.009 0.037 0.989 0.011 0.082 0.905 0.000 0.000 0.000 0.000
33 19 25 18 29 99 32 31 15 20 105 36
42 COGENT-006 0.001 0.007 0.067 0.001 0.007 0.101 0.004 0.023 0.238 0.006 0.422 0.130 0.000 0.000 0.041 0.000
261 253 250 250 253 140
43 COGNITEC -000 0.025 0.059 0.964 0.161 0.303 0.992 0.003 0.002 0.924
232 216 244 223 229 309
44 COGNITEC -001 0.012 0.034 0.958 0.102 0.230 1.000 0.003 0.002 0.924
T = Threshold
Table 11: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
55
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
146 139 205 164 117 159 146 152 133 148 94 100
47 COGNITEC -004 0.003 0.016 0.813 0.013 0.057 0.143 0.031 0.097 0.990 0.068 0.316 0.288 0.002 0.001 0.635 0.006
66 61 178 181 108 128 62 67 301 120 61 66
48 COGNITEC -005 0.002 0.010 0.713 0.021 0.037 0.115 0.010 0.041 1.000 0.041 0.157 0.179 0.002 0.001 0.614 0.017
62 50 175 138 87 120 55 63 283 96 67 168
49 COGNITEC -006 0.002 0.010 0.703 0.007 0.024 0.111 0.008 0.040 1.000 0.030 0.171 0.681 0.002 0.001 0.568 0.003
47 58 8 30 7 3 21 22 6 11 9 3
50 CUBOX -000 0.001 0.010 0.058 0.002 0.004 0.049 0.003 0.019 0.168 0.004 0.028 0.073 0.001 0.000 0.042 0.000
157 166 179 141 152 187 168 162 146 114
51 CYBERLINK -000 0.004 0.020 0.717 0.007 0.134 0.056 0.116 0.995 0.063 0.339 0.001 0.001 0.063
151 154 180 134 151 180 165 157 143 164
52 CYBERLINK -001 0.004 0.018 0.731 0.007 0.133 0.054 0.109 0.995 0.062 0.652 0.000 0.000 0.040
130 89 158 90 112 86 87 131 83 101
53 CYBERLINK -002 0.003 0.012 0.577 0.004 0.107 0.015 0.053 0.988 0.024 0.288 0.001 0.000 0.042
63 40 135 71 52 65 56 56 102 51 42 117
54 CYBERLINK -003 0.002 0.009 0.474 0.003 0.012 0.082 0.008 0.035 0.972 0.012 0.100 0.368 0.000 0.000 0.039 0.000
68 85 126 69 49 103 52 57 249 53 43 207
55 CYBERLINK -004 0.002 0.011 0.423 0.003 0.011 0.104 0.007 0.036 1.000 0.013 0.109 0.954 0.000 0.000 0.011 0.000
FNIR(N, R, T) =
80 68 80 51 43 90 66 64 218 56 38 202
56 CYBERLINK -005 0.002 0.011 0.209 0.002 0.010 0.098 0.010 0.041 1.000 0.014 0.089 0.926 0.000 0.000 0.034 0.000
FPIR(N, T) =
FRVT
14 21 64 31 23 35 51 37 36 37 19 31
61 DAHUA -004 0.001 0.008 0.144 0.002 0.007 0.069 0.007 0.026 0.485 0.008 0.051 0.113 0.000 0.000 0.000 0.000
160 147 147 111 78 139 117 101 219 84 69 189
62 DAON -000 0.004 0.017 0.530 0.005 0.020 0.125 0.023 0.061 1.000 0.025 0.173 0.846 0.002 0.002 0.108 0.001
104 87 88 100 75 116 120 107 53 88 68 84
63 DECATUR -000 0.002 0.011 0.229 0.004 0.019 0.109 0.023 0.066 0.675 0.027 0.173 0.239 0.001 0.000 0.044 0.001
-
False pos. identification rate
False neg. identification rate
51 13 76 59 44 26 13 211 21 53
-
82 GLORY-000 0.178 0.320 0.994 0.228 0.678 0.367 0.547 0.995 0.453 0.839 0.011 0.013 0.985
IDENTIFICATION
297 292 269 222 230 271 277 144 206 183
83 GLORY-001 0.127 0.267 0.992 0.178 0.594 0.305 0.537 0.993 0.408 0.819 0.011 0.013 0.988
282 274 233 210 216 286 271 246 212 292
84 GORILLA -001 0.060 0.095 0.936 0.069 0.329 0.406 0.453 1.000 0.468 1.000 0.001 0.001 0.069
255 239 188 186 193 258 246 248 194 225
85 GORILLA -002 0.020 0.044 0.753 0.027 0.214 0.188 0.268 1.000 0.250 1.000 0.001 0.001 0.069
269 261 207 203 203 273 268 302 205 288
86 GORILLA -003 0.036 0.070 0.821 0.048 0.265 0.318 0.434 1.000 0.407 1.000 0.001 0.001 0.069
189 193 173 157 170 220 205 90 172 130
87 GORILLA -004 0.006 0.024 0.697 0.012 0.162 0.089 0.160 0.959 0.135 0.438 0.000 0.001 0.042
145 155 79 124 137 191 191 55 158 108
88 GORILLA -005 0.003 0.018 0.209 0.006 0.124 0.058 0.142 0.700 0.088 0.315 0.000 0.000 0.040
74 91 57 79 70 105 135 139 41 89 65 78
89 GORILLA -006 0.002 0.012 0.122 0.003 0.018 0.105 0.027 0.089 0.531 0.028 0.166 0.218 0.000 0.000 0.041 0.000
70 67 55 56 68 73 133 126 42 85 84 64
90 GORILLA -007 0.002 0.011 0.114 0.002 0.016 0.088 0.027 0.077 0.534 0.026 0.264 0.178 0.000 0.000 0.041 0.000
T = Threshold
55 52 40 35 55 66 121 133 31 95 96 62
91 GORILLA -008 0.001 0.010 0.085 0.002 0.012 0.082 0.024 0.083 0.463 0.030 0.319 0.178 0.000 0.000 0.041 0.000
128 111 111 155 105 141 108 104 160 105 74 73
92 GRIAULE -000 0.002 0.014 0.327 0.011 0.031 0.126 0.020 0.063 0.995 0.033 0.185 0.198 0.000 0.002 0.090 0.001
Table 12: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
56
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
28 28 61 7 83 29 37 42 75 25 126 19
93 GRIAULE -001 0.001 0.008 0.132 0.001 0.023 0.065 0.005 0.028 0.865 0.007 0.995 0.099 0.000 0.000 0.000 0.000
233 206 172 160 164 225 201 97 175 132
94 HIK -003 0.012 0.027 0.689 0.012 0.151 0.103 0.158 0.969 0.142 0.445 0.000 0.000 0.048
230 204 183 158 166 221 198 105 173 129
95 HIK -004 0.011 0.027 0.743 0.012 0.152 0.099 0.153 0.976 0.137 0.434 0.000 0.000 0.048
169 142 149 136 119 160 125 208 147 152
96 HIK -005 0.005 0.017 0.535 0.007 0.111 0.044 0.077 0.999 0.068 0.541 0.000 0.000 0.000
170 141 150 169 136 241
97 HIK -006 0.005 0.017 0.535 0.047 0.086 1.000 0.000 0.000 0.000
43 77 24 29 21 22 33 49 12 26 21 24
98 HYPERVERGE -001 0.001 0.011 0.067 0.002 0.007 0.061 0.004 0.031 0.220 0.007 0.053 0.101 0.001 0.000 0.041 0.000
40 73 12 19 17 19 27 40 10 18 18 13
99 HYPERVERGE -002 0.001 0.011 0.063 0.001 0.006 0.058 0.004 0.027 0.210 0.006 0.048 0.093 0.001 0.000 0.041 0.000
109 109 92 72 65 76 107 78 95 72 93 48
100 HZAILU -000 0.002 0.013 0.244 0.003 0.015 0.090 0.020 0.051 0.967 0.020 0.316 0.153 0.001 0.001 0.054 0.001
94 76 53 52 125 79 57 216 128 190 263 167
101 HZAILU -001 0.002 0.011 0.106 0.002 0.113 0.092 0.009 0.183 0.986 0.196 1.000 0.679 0.000 0.000 0.039 0.000
FNIR(N, R, T) =
191 213 238 177 189 156 172 103 167 177
103 IDEMIA -004 0.007 0.032 0.947 0.018 0.210 0.037 0.118 0.973 0.123 0.766 0.000 0.000 0.041
205 231 241 183 194 162 196 109 169 193
104 IDEMIA -005 0.008 0.039 0.954 0.021 0.217 0.044 0.150 0.978 0.130 0.879 0.000 0.000 0.041
219 263 257 188 202 159 227 119 176 172
105 IDEMIA -006 0.010 0.072 0.969 0.030 0.253 0.043 0.226 0.982 0.144 0.733 0.000 0.000 0.041
129 134 303 125 107 148 99 90 279 132 72 254
106 IDEMIA -007 0.003 0.015 1.000 0.006 0.036 0.131 0.018 0.055 1.000 0.052 0.182 1.000 0.000 0.000 0.040 0.000
FRVT
12 8 37 28 25 49 9 10 9 14 14 27
107 IDEMIA -008 0.001 0.007 0.079 0.001 0.007 0.075 0.002 0.013 0.204 0.005 0.036 0.106 0.000 0.000 0.040 0.000
5 7 18 8 11 6 3 3 4 5 8 6
108 IDEMIA -009 0.001 0.006 0.065 0.001 0.005 0.051 0.002 0.011 0.141 0.003 0.027 0.074 0.000 0.000 0.040 0.000
303 293 268 301 293 239
109 IMAGUS -002 0.220 0.301 0.988 0.749 0.816 1.000 0.004 0.008 0.550
-
False pos. identification rate
False neg. identification rate
-
226 212 236 175 122 184 245 217 192 171 106 135
IDENTIFICATION
129 INTELLIVISION -002 0.011 0.031 0.942 0.018 0.080 0.200 0.154 0.196 0.999 0.134 0.437 0.460 0.001 0.000 0.043 0.000
19 35 7 10 14 4 16 18 236 16 90 8
130 INTEMA -000 0.001 0.008 0.058 0.001 0.005 0.051 0.002 0.017 1.000 0.005 0.288 0.081 0.000 0.000 0.040 0.000
298 190 157 211 149 314 308 215 235 221
131 INTSYSMSU -000 0.146 0.023 0.562 0.072 0.132 0.998 1.000 1.000 0.999 0.999 0.000 0.000 0.050
166 46 170 57 53 63 139 100 89 124 92 60
132 IREX -000 0.004 0.010 0.681 0.002 0.012 0.082 0.028 0.060 0.957 0.044 0.302 0.170 0.000 0.000 0.042 0.000
190 200 211 208 179 173
133 ISYSTEMS -002 0.006 0.026 0.844 0.078 0.126 0.998 0.002 0.002 0.142
178 187 195 192 163 220
134 ISYSTEMS -003 0.005 0.023 0.791 0.059 0.107 1.000 0.002 0.002 0.142
53 66 56 60 57 54 89 93 33 69 50 52
135 KAKAO -000 0.001 0.011 0.119 0.002 0.013 0.078 0.015 0.056 0.468 0.019 0.141 0.158 0.000 0.000 0.041 0.000
44 41 6 5 9 2 18 20 5 10 17 5
136 KAKAO -001 0.001 0.009 0.058 0.001 0.004 0.047 0.003 0.017 0.159 0.004 0.042 0.074 0.000 0.000 0.040 0.000
T = Threshold
201 219 260 194 196 118 116 127 137 104
137 KEDACOM -001 0.008 0.036 0.972 0.034 0.237 0.023 0.072 0.986 0.055 0.305 0.000 0.000 0.000
185 205 155 187 183
138 KNERON -000 0.006 0.027 0.552 0.028 0.195 0.000 0.000 0.000
Table 13: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
57
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
266 309 91 221 131 207
139 KNERON -001 0.030 0.621 0.237 0.144 0.207 0.280 0.000 0.000 0.000 0.000
112 115 87 116 99 110 145 149 126 87 260
140 LINE -000 0.002 0.014 0.223 0.005 0.029 0.107 0.031 0.095 0.046 0.278 1.000 0.000 0.000 0.000 0.000
18 18 14 39 35 72 38 38 242 44 31 286
141 LINE -001 0.001 0.007 0.063 0.002 0.008 0.085 0.005 0.027 1.000 0.009 0.072 1.000 0.000 0.000 0.000 0.000
38 20 28 33 50 18 28 181 116 118 131 170
142 LINECLOVA -002 0.001 0.008 0.070 0.002 0.011 0.058 0.004 0.130 0.981 0.040 1.000 0.700 0.000 0.001 0.040 0.001
210 229 197 198 161 167 157 115
143 LOOKMAN -003 0.009 0.038 0.035 0.239 0.044 0.112 0.084 0.355 0.000 0.000
212 232 262 164 161 106
144 LOOKMAN -004 0.009 0.039 0.973 0.045 0.105 0.977 0.000 0.000 0.000
204 222 261 196 197 143 135 108 144 105
145 LOOKMAN -005 0.008 0.036 0.972 0.035 0.237 0.030 0.086 0.978 0.062 0.308 0.000 0.000 0.000
73 59 177 132 88 121 67 65 268 92 59 224
146 MANTRA -000 0.002 0.010 0.709 0.007 0.024 0.112 0.010 0.041 1.000 0.029 0.152 1.000 0.002 0.001 0.591 0.003
123 127 112 101 114 96 140 230 62 177 127 155
147 MAXVISION -000 0.002 0.015 0.327 0.004 0.051 0.101 0.028 0.237 0.767 0.149 0.997 0.557 0.000 0.000 0.042 0.000
FNIR(N, R, T) =
30 22 17 12 73 17 31 34 11 24 122 23
148 MAXVISION -001 0.001 0.008 0.064 0.001 0.018 0.057 0.004 0.025 0.219 0.007 0.951 0.100 0.000 0.000 0.042 0.000
FPIR(N, T) =
FRVT
310 307 232 233 307 301 230 213
153 MICROFOCUS -005 0.424 0.601 0.494 0.777 0.835 0.928 0.935 0.985 0.001 0.005
311 306 231 236 312 300 229 210
154 MICROFOCUS -006 0.427 0.583 0.490 0.782 0.978 0.923 0.923 0.971 0.001 0.005
64 95 88 117 137 143 111 83
155 MICROSOFT-003 0.002 0.012 0.004 0.109 0.028 0.091 0.036 0.233 0.000 0.001
-
False pos. identification rate
False neg. identification rate
-
9 26 13 4 13 15 49 53 91 40 25 198
IDENTIFICATION
175 NEUROTECHNOLOGY-012 0.001 0.008 0.063 0.001 0.005 0.057 0.007 0.032 0.959 0.008 0.061 0.916 0.000 0.000 0.039 0.000
288 279 232 288 272 195
176 NEWLAND -002 0.079 0.117 0.936 0.438 0.466 0.999 0.007 0.012 0.200
305 301 273 317 321 244
177 NOBLIS -001 0.249 0.522 0.993 1.000 1.000 1.000 0.000 0.000 0.000
301 298 265 313 316 250
178 NOBLIS -002 0.179 0.392 0.982 0.997 1.000 1.000 0.000 0.000 0.000
127 96 77 94 66 84 94 99 46 76 58 61
179 NOTIONTAG -000 0.002 0.012 0.204 0.004 0.016 0.095 0.017 0.059 0.611 0.021 0.150 0.176 0.000 0.000 0.000 0.000
186 184 138 182 170 72
180 NTECHLAB -003 0.006 0.023 0.504 0.054 0.118 0.837 0.000 0.000 0.040
173 160 139 143 145 157 160 71 135 94
181 NTECHLAB -004 0.005 0.019 0.506 0.008 0.129 0.041 0.105 0.833 0.053 0.263 0.000 0.000 0.040
171 156 121 147 131 158 158 63 151 102
182 NTECHLAB -005 0.005 0.018 0.367 0.008 0.118 0.042 0.102 0.771 0.073 0.294 0.000 0.000 0.040
T = Threshold
Table 14: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
58
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
72 47 71 80 69 83 72 40 107 68
185 NTECHLAB -008 0.002 0.010 0.157 0.003 0.084 0.014 0.045 0.529 0.033 0.183 0.000 0.000 0.044
35 27 62 48 61 47 40 29 28 58 44 43
186 NTECHLAB -009 0.001 0.008 0.138 0.002 0.013 0.074 0.005 0.022 0.430 0.015 0.109 0.142 0.000 0.000 0.041 0.001
17 32 41 38 34 16 17 16 16 22 24 17
187 NTECHLAB -010 0.001 0.008 0.085 0.002 0.008 0.057 0.003 0.015 0.252 0.007 0.059 0.098 0.001 0.001 0.043 0.000
10 11 30 24 33 7 22 15 13 43 33 11
188 NTECHLAB -011 0.001 0.007 0.072 0.001 0.007 0.051 0.003 0.015 0.228 0.009 0.074 0.091 0.000 0.000 0.040 0.000
25 24 32 42 32 30 46 47 21 46 49 26
189 PANGIAM -000 0.001 0.008 0.074 0.002 0.007 0.065 0.006 0.030 0.318 0.009 0.136 0.105 0.000 0.001 0.044 0.001
195 104 35 13 41 27 71 46 23 42 120 42
190 PANGIAM -001 0.007 0.013 0.078 0.001 0.009 0.064 0.011 0.030 0.383 0.009 0.860 0.141 0.003 0.000 0.040 0.000
252 228 148 229 228 219 209 197 213 201
191 PARAVISION -000 0.019 0.038 0.534 0.423 0.529 0.089 0.170 0.999 0.470 0.926 0.000 0.000 0.000
154 170 113 228 227 171 180 187 210 173
192 PARAVISION -001 0.004 0.020 0.329 0.414 0.484 0.049 0.128 0.999 0.444 0.739 0.000 0.000 0.000
159 177 115 170 175 172 173 120 154 144
193 PARAVISION -002 0.004 0.022 0.335 0.015 0.175 0.050 0.119 0.983 0.080 0.497 0.000 0.000 0.032
FNIR(N, R, T) =
FRVT
168 180 203 154 180 226 262 252 218 320
199 PIXELALL -002 0.005 0.022 0.810 0.011 0.187 0.105 0.388 1.000 0.602 1.000 0.000 0.000 0.000
105 121 141 130 163 114 117 212 114 154
200 PIXELALL -003 0.002 0.014 0.515 0.006 0.151 0.022 0.073 1.000 0.037 0.554 0.000 0.000 0.000
102 128 145 118 165 102 129 233 130 217
201 PIXELALL -004 0.002 0.015 0.523 0.005 0.152 0.018 0.079 1.000 0.051 0.994 0.000 0.000 0.000
-
False pos. identification rate
False neg. identification rate
-
274 269 265 257
IDENTIFICATION
221 REALNETWORKS -001 0.040 0.078 0.234 0.319 0.001 0.000
271 267 263 255
222 REALNETWORKS -002 0.039 0.078 0.231 0.315 0.001 0.000
260 256 193 191 187 249 244 182 181 145
223 REALNETWORKS -003 0.024 0.062 0.771 0.031 0.209 0.159 0.266 0.998 0.164 0.500 0.001 0.000 0.009
258 254 199 190 192 248 242 199 183 160
224 REALNETWORKS -004 0.024 0.059 0.797 0.031 0.213 0.158 0.263 0.999 0.170 0.613 0.001 0.000 0.009
116 108 128 102 82 100 136 119 100 112 80 77
225 REALNETWORKS -005 0.002 0.013 0.433 0.004 0.023 0.102 0.028 0.074 0.971 0.037 0.223 0.215 0.000 0.000 0.006 0.000
46 54 101 64 46 55 84 85 115 59 46 50
226 REALNETWORKS -006 0.001 0.010 0.287 0.002 0.010 0.078 0.015 0.053 0.980 0.016 0.120 0.154 0.000 0.000 0.009 0.000
39 44 97 34 37 42 63 70 110 50 107 41
227 REALNETWORKS -007 0.001 0.009 0.267 0.002 0.009 0.072 0.010 0.043 0.979 0.012 0.463 0.140 0.000 0.000 0.009 0.000
22 25 43 36 28 77 47 45 96 38 30 35
228 REALNETWORKS -008 0.001 0.008 0.089 0.002 0.007 0.091 0.006 0.029 0.968 0.008 0.068 0.129 0.000 0.000 0.042 0.000
T = Threshold
150 157 166 142 162 185 174 196 150 171
229 REMARKAI -000 0.003 0.018 0.660 0.008 0.148 0.055 0.120 0.999 0.069 0.717 0.000 0.000 0.000
209 211 235 220
230 REMARKAI -000 0.009 0.030 0.128 0.203 0.000 0.001
Table 15: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
59
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
207 210 201 234 218 138
231 REMARKAI -002 0.008 0.029 0.802 0.124 0.196 0.991 0.000 0.001 0.017
61 130 127 126 94 70 73 98 81 77 73 58
232 RENDIP -000 0.002 0.015 0.424 0.006 0.028 0.084 0.012 0.059 0.894 0.022 0.185 0.167 0.000 0.000 0.041 0.000
86 49 98 49 54 46 75 68 54 75 41 45
233 REVEALMEDIA -000 0.002 0.010 0.275 0.002 0.012 0.074 0.012 0.042 0.680 0.021 0.093 0.143 0.000 0.000 0.041 0.000
122 144 95 119 89 75 138 134 256 129 314 276
234 S 1-000 0.002 0.017 0.258 0.005 0.025 0.090 0.028 0.085 1.000 0.047 1.000 1.000 0.000 0.000 0.040 0.000
143 118 84 70 71 50 91 82 124 68 48 46
235 S 1-001 0.003 0.014 0.215 0.003 0.018 0.077 0.016 0.052 0.985 0.019 0.136 0.148 0.001 0.000 0.035 0.000
48 42 48 11 47 12 44 48 8 27 119 188
236 S 1-002 0.001 0.009 0.093 0.001 0.010 0.055 0.006 0.031 0.196 0.007 0.792 0.841 0.000 0.000 0.028 0.000
52 48 54 26 27 21 59 59 225 57 102 271
237 S 1-003 0.001 0.010 0.114 0.001 0.007 0.060 0.009 0.037 1.000 0.014 0.396 1.000 0.000 0.000 0.033 0.000
175 240 156 195 191 200 235 79 192 123
238 SCANOVATE -000 0.005 0.045 0.560 0.035 0.211 0.067 0.240 0.893 0.215 0.400 0.000 0.001 0.057
179 234 160 189 178 211 228 84 188 126
239 SCANOVATE -001 0.005 0.040 0.585 0.031 0.178 0.081 0.227 0.911 0.192 0.404 0.000 0.001 0.044
FNIR(N, R, T) =
FRVT
4 4 10 54 26 62 14 14 7 23 20 25
245 SENSETIME -005 0.001 0.006 0.059 0.002 0.007 0.082 0.002 0.014 0.173 0.007 0.051 0.104 0.000 0.000 0.041 0.000
3 3 4 6 4 26 7 7 180 9 12 12
246 SENSETIME -006 0.001 0.006 0.055 0.001 0.004 0.064 0.002 0.012 0.998 0.004 0.034 0.093 0.000 0.000 0.025 0.000
2 2 1 3 3 23 2 2 201 4 6 9
247 SENSETIME -007 0.001 0.006 0.052 0.001 0.003 0.062 0.001 0.009 0.999 0.003 0.024 0.085 0.000 0.000 0.025 0.000
-
False pos. identification rate
False neg. identification rate
1 1 3 2 2 32 1 1 25 2 5 7
248 SENSETIME -008 0.001 0.006 0.054 0.001 0.003 0.067 0.001 0.009 0.405 0.002 0.021 0.080 0.000 0.000 0.039 0.000
-
229 227 229 213
IDENTIFICATION
267 TEVIAN -004 0.011 0.038 0.117 0.176 0.001 0.002
199 209 134 216 193 93
268 TEVIAN -005 0.007 0.028 0.467 0.087 0.144 0.962 0.001 0.002 0.116
124 79 58 68 62 40 64 51 27 60 39 205
269 TEVIAN -006 0.002 0.011 0.123 0.003 0.013 0.071 0.010 0.032 0.425 0.016 0.093 0.951 0.001 0.000 0.062 0.000
78 43 47 45 42 33 42 28 20 45 28 32
270 TEVIAN -007 0.002 0.009 0.093 0.002 0.009 0.067 0.005 0.022 0.301 0.009 0.065 0.122 0.000 0.000 0.062 0.000
283 275 283 274
271 TIGER -000 0.062 0.095 0.390 0.500 0.000 0.000
182 186 140 213 203 191
272 TIGER -002 0.006 0.023 0.514 0.086 0.158 0.999 0.000 0.000 0.056
181 185 212 202
273 TIGER -003 0.006 0.023 0.086 0.158 0.000 0.000
193 182 205 166
274 TONGYITRANS -000 0.007 0.022 0.074 0.112 0.003 0.001
T = Threshold
Table 16: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
60
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
RANK ONE MISS RATE , FNIR ( N , 0, 1) HIGH T → FPIR = 0.001, FNIR ( N , T, L ) FEATURES
N =1.6 M N =1.6 M
GALLERY MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER VISA MUGSHOT MUGSHOT MUGSHOT VISA BORDER KIOSK
PROBE MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK MUGSHOT WEBCAM PROFILE BORDER BOR ¿10 YR KIOSK
172 179 190 144
277 TOSHIBA -001 0.005 0.022 0.058 0.092 0.000 0.000
147 112 89 137 86 81 101 102 76 94 75 70
278 TRUEFACE -000 0.003 0.014 0.230 0.007 0.024 0.092 0.018 0.062 0.882 0.030 0.194 0.188 0.001 0.001 0.047 0.003
217 202 38 200 130 195 274 296 143 233 147 222
279 TURINGTECHVIP -001 0.009 0.026 0.081 0.045 0.199 0.220 0.345 0.850 0.993 0.978 1.000 0.999 0.001 0.003 0.044 0.000
313 305 308 304
280 VD -000 0.474 0.551 0.917 0.946 0.011 0.013
265 248 260 248
281 VD -001 0.028 0.053 0.201 0.281 0.005 0.001
218 207 216 165 112 176 209 195 164 160 98 118
282 VD -002 0.010 0.027 0.893 0.013 0.050 0.176 0.079 0.148 0.996 0.095 0.367 0.372 0.004 0.003 0.156 0.002
200 176 194 146 102 156 166 155 193 131 83 109
283 VD -003 0.008 0.022 0.773 0.008 0.030 0.137 0.046 0.100 0.999 0.051 0.244 0.315 0.003 0.003 0.144 0.002
135 120 154 127 96 147 155 132 129 123 85 95
284 VERIDAS -001 0.003 0.014 0.550 0.006 0.028 0.131 0.037 0.082 0.987 0.044 0.266 0.264 0.000 0.002 0.093 0.001
134 119 153 129 97 146 154 131 130 122 86 96
285 VERIDAS -002 0.003 0.014 0.550 0.006 0.028 0.131 0.037 0.082 0.987 0.044 0.266 0.264 0.000 0.002 0.093 0.001
FNIR(N, R, T) =
308 297 256 213 129 212 302 292 188 199 121 157
287 VERIJELAS -000 0.355 0.369 0.968 0.086 0.191 0.292 0.799 0.813 0.999 0.324 0.933 0.589 0.002 0.001 0.070 0.001
286 283 246 287 288 186
288 VIGILANTSOLUTIONS -003 0.069 0.151 0.958 0.408 0.660 0.999 0.000 0.001 0.127
294 291 251 293 294 167
289 VIGILANTSOLUTIONS -004 0.125 0.244 0.965 0.549 0.817 0.996 0.000 0.001 0.127
213 223 282 254
290 VIGILANTSOLUTIONS -005 0.009 0.920 0.388 1.000 0.000 0.001 0.127
FRVT
220 224 277 243
291 VIGILANTSOLUTIONS -006 0.010 0.921 0.353 1.000 0.000 0.001 0.127
149 148 227 163 119 174 141 138 166 156 100 122
292 VIGILANTSOLUTIONS -007 0.003 0.017 0.925 0.013 0.068 0.175 0.028 0.088 0.996 0.081 0.371 0.391 0.000 0.001 0.127 0.001
141 150 222 167 120 177 109 123 190 164 103 146
293 VIGILANTSOLUTIONS -008 0.003 0.017 0.913 0.014 0.072 0.178 0.021 0.077 0.999 0.104 0.398 0.511 0.000 0.001 0.127 0.001
-
False pos. identification rate
False neg. identification rate
203 171 196 161 143 278 210 226 189 215
307 VOCORD -004 0.008 0.021 0.792 0.012 0.127 0.355 0.173 1.000 0.193 0.991 0.000 0.000 0.000
197 189 204 205 185 247 183 171 174 119
308 VOCORD -005 0.007 0.023 0.812 0.055 0.206 0.158 0.130 0.997 0.138 0.381 0.001 0.009 0.554
321 317 313 248 319 319 312 263 274 233
309 VOCORD -006 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.001 0.009 0.554
316 308 220 233 136 232 296 283 200 221 116 175
310 VTS -000 0.594 0.608 0.909 0.607 0.724 0.739 0.598 0.619 0.999 0.613 0.760 0.761 0.000 0.001 0.047 0.000
59 57 73 122 72 53 79 80 149 78 53 72
311 VTS -001 0.002 0.010 0.167 0.006 0.018 0.077 0.013 0.051 0.994 0.022 0.141 0.192 0.000 0.000 0.040 0.000
92 105 90 169 109 138 126 120 210 125 81 127
312 VTS -002 0.002 0.013 0.233 0.014 0.038 0.125 0.026 0.075 1.000 0.045 0.231 0.417 0.000 0.000 0.029 0.000
-
IDENTIFICATION
21 15 33 32 38 8 53 54 235 55 123 163
313 VTS -003 0.001 0.007 0.074 0.002 0.009 0.053 0.007 0.033 1.000 0.014 0.954 0.635 0.000 0.001 0.029 0.000
115 116 44 89 64 83 88 89 29 74 62 59
314 XFORWARDAI -000 0.002 0.014 0.089 0.004 0.015 0.094 0.015 0.053 0.440 0.021 0.159 0.169 0.000 0.000 0.000 0.000
103 100 23 73 39 64 39 44 30 35 27 33
315 XFORWARDAI -001 0.002 0.013 0.067 0.003 0.009 0.082 0.005 0.028 0.448 0.008 0.062 0.123 0.000 0.000 0.000 0.000
95 92 9 62 22 51 24 17 38 17 16 21
316 XFORWARDAI -002 0.002 0.012 0.059 0.002 0.007 0.077 0.003 0.016 0.525 0.005 0.041 0.099 0.000 0.000 0.000 0.000
264 255 208 209 275 291 224 199
317 YISHENG -001 0.027 0.060 0.058 0.287 0.346 0.808 0.666 0.919 0.002 0.005
84 60 96 75
318 YITU -002 0.002 0.010 0.018 0.049 0.000 0.000
140 138 104 84
319 YITU -003 0.003 0.016 0.019 0.052 0.003 0.001
36 34 214 61 39 87
320 YITU -004 0.001 0.008 0.866 0.010 0.027 0.936 0.000 0.000 0.000
T = Threshold
117 126 68 52
321 YITU -005 0.002 0.014 0.010 0.032 0.003 0.001
Table 17: Miss rates by dataset: At left, rank 1 miss rates relevant to investigations; at right, with threshold set to target FPIR = 0.01 for higher volume, low prior, uses.
Yellow indicates most accurate algorithm. Throughout blue superscripts indicate the rank of the algorithm for that column.
T > 0 → Identification
T = 0 → Investigation
61
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 62
Table 18: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR =
0.001 for five enrollment population sizes, N. The right six columns apply for enrollment of one image. Missing entries usually
apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate
algorithms were not run on galleries with N ≥ 3 000 000. Throughout blue superscripts indicate the rank of the algorithm for that
column.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 63
89 89 87 86 57
92 KAKAO -000 0.0109 0.0151 0.0196 0.0324 0.1010
20 18 18 19 20
93 KAKAO -001 0.0021 0.0026 0.0032 0.0085 0.0693
123 118 107 108 109
94 KEDACOM -001 0.0181 0.0227 0.0265 0.0422 0.1340
27 28 28 29 32
95 LINECLOVA -002 0.0028 0.0040 0.0049 0.0120 0.0824
168 161 153 148 145
96 LOOKMAN -003 0.0346 0.0437 0.0514 0.0724 0.1620
148 143 136 121 108
97 LOOKMAN -005 0.0240 0.0301 0.0356 0.0512 0.1334
61 67 70 81 62
98 MANTRA -000 0.0065 0.0101 0.0151 0.0308 0.1035
142 140 133 123 110
99 MAXVISION -000 0.0206 0.0282 0.0355 0.0517 0.1340
30 31 29 31 41
100 MAXVISION -001 0.0031 0.0043 0.0055 0.0122 0.0895
204 203 187 186 202
101 MEGVII -001 0.0562 0.0722 0.0872 0.1309 0.2713
313 307 237 229 222
102 MICROFOCUS -005 0.9732 0.8354 0.8555 0.8755 0.8954
136 137 135 129 135
103 MICROSOFT-003 0.0198 0.0278 0.0356 0.0538 0.1539
126 128 126 124 133
104 MICROSOFT-004 0.0185 0.0259 0.0333 0.0517 0.1510
124 125 123 120 131
105 MICROSOFT-005 0.0181 0.0256 0.0320 0.0512 0.1491
75 72 76 78 130
106 MICROSOFT-006 0.0091 0.0120 0.0162 0.0301 0.1482
295 295 234 226 220
107 MUKH -002 0.5041 0.5942 0.6674 0.7314 0.8276
212 210 192 181 164
108 NEC -000 0.0637 0.0789 0.0933 0.1163 0.1941
227 227 207 195 183
109 NEC -001 0.0863 0.1055 0.1249 0.1519 0.2253
18 19 19 35 18
110 NEC -002 0.0020 0.0026 0.0033 0.0135 0.0653
19 15 14 10 13
111 NEC -003 0.0021 0.0024 0.0028 0.0059 0.0540
10 6 5 3 4
112 NEC -004 0.0017 0.0018 0.0020 0.0037 0.0329
5 4 4 13 2
113 NEC -005 0.0015 0.0017 0.0019 0.0065 0.0307
11 11 13 24 16
114 NEC -006 0.0018 0.0020 0.0026 0.0103 0.0573
298 299 235 227 219
115 NEUROTECHNOLOGY-003 0.5698 0.6362 0.7035 0.7602 0.8224
198 197 181 178 175
116 NEUROTECHNOLOGY-004 0.0466 0.0629 0.0779 0.1135 0.2102
179 184 171 165 168
117 NEUROTECHNOLOGY-005 0.0396 0.0538 0.0675 0.0950 0.1966
193 196 183 187 190
118 NEUROTECHNOLOGY-007 0.0436 0.0623 0.0802 0.1320 0.2393
166 178 190 202 209
119 NEUROTECHNOLOGY-008 0.0339 0.0530 0.0893 0.1769 0.3288
87 90 88 84 72
120 NEUROTECHNOLOGY-009 0.0108 0.0152 0.0196 0.0324 0.1102
66 65 67 111 151
121 NEUROTECHNOLOGY-010 0.0069 0.0099 0.0138 0.0449 0.1727
48 49 52 66 112
122 NEUROTECHNOLOGY-012 0.0047 0.0068 0.0097 0.0265 0.1343
94 94 93 92 101
123 NOTIONTAG -000 0.0128 0.0175 0.0228 0.0357 0.1270
188 182 170 158 141
124 NTECHLAB -003 0.0421 0.0537 0.0674 0.0907 0.1582
158 157 154 147 132
125 NTECHLAB -004 0.0312 0.0405 0.0519 0.0722 0.1503
162 158 158 153 138
126 NTECHLAB -005 0.0334 0.0424 0.0537 0.0760 0.1543
154 152 151 144 134
127 NTECHLAB -006 0.0288 0.0367 0.0471 0.0670 0.1523
129 124 121 118 107
128 NTECHLAB -007 0.0188 0.0256 0.0317 0.0495 0.1306
85 83 83 72 55
129 NTECHLAB -008 0.0107 0.0145 0.0187 0.0286 0.0995
40 40 38 33 24
130 NTECHLAB -009 0.0037 0.0049 0.0062 0.0125 0.0735
16 17 15 17 23
131 NTECHLAB -010 0.0020 0.0025 0.0030 0.0077 0.0710
21 22 23 16 17
132 NTECHLAB -011 0.0022 0.0030 0.0038 0.0075 0.0625
46 46 46 43 39
133 PANGIAM -000 0.0042 0.0060 0.0080 0.0160 0.0876
150 150 149 143 146
134 PARAVISION -003 0.0260 0.0351 0.0447 0.0657 0.1630
67 69 65 67 98
135 PARAVISION -004 0.0074 0.0101 0.0136 0.0267 0.1256
31 30 31 46 63
136 PARAVISION -005 0.0032 0.0041 0.0057 0.0174 0.1037
29 29 30 51 71
137 PARAVISION -007 0.0030 0.0040 0.0055 0.0211 0.1097
17 20 22 23 36
138 PARAVISION -009 0.0020 0.0026 0.0038 0.0098 0.0857
222 226 214 215 214
139 PIXELALL -002 0.0716 0.1052 0.1475 0.2489 0.3904
114 114 116 114 83
140 PIXELALL -003 0.0158 0.0218 0.0288 0.0474 0.1138
97 102 103 94 115
141 PIXELALL -004 0.0129 0.0183 0.0245 0.0378 0.1375
73 74 78 59 65
142 PIXELALL -005 0.0087 0.0121 0.0171 0.0250 0.1052
151 151 150 127 11
143 PTAKURATSATU -000 0.0275 0.0366 0.0458 0.0523 0.0523
183 181 167 160 142
144 QNAP -001 0.0404 0.0536 0.0661 0.0916 0.1595
Table 19: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR =
0.001 for five enrollment population sizes, N. The right six columns apply for enrollment of one image. Missing entries usually
apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate
algorithms were not run on galleries with N ≥ 3 000 000. Throughout blue superscripts indicate the rank of the algorithm for that
column.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 64
Table 20: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR =
0.001 for five enrollment population sizes, N. The right six columns apply for enrollment of one image. Missing entries usually
apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate
algorithms were not run on galleries with N ≥ 3 000 000. Throughout blue superscripts indicate the rank of the algorithm for that
column.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 65
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Table 21: Identification-mode: Effect of N on FNIR at high threshold. Values are threshold-based miss rates i.e. FNIR at FPIR =
0.001 for five enrollment population sizes, N. The right six columns apply for enrollment of one image. Missing entries usually
apply because another algorithm from the same developer was run instead. Some developers are missing because less accurate
algorithms were not run on galleries with N ≥ 3 000 000. Throughout blue superscripts indicate the rank of the algorithm for that
column.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 66
Table 22: Investigation-mode: Effect of N on FNIR on recent images For five enrollment population sizes, N, with T = 0 and FPIR
= 1. The left five columns are rank 1 miss rates The right five columns are rank 50 miss rates Missing entries usually apply because
another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were
not run on galleries with N > 1 600 000. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow
highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind
of behavior, not as a model to be used for prediction.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 67
91 ISYSTEMS -003 0.0046 0.0052 0.0057 0.0066 0.0076 0.0031 0.0033 0.0034 0.0035 0.0037
43 53 55 60 63 39
92 KAKAO -000 0.0013 0.0015 0.0016 0.0019 0.0022 0.0001 N0.192 131 30
0.0009 30
0.0010 29
0.0010 31
0.0010 31
0.0011 89
0.0005 N0.050 102
53 44 41 35 32 183
93 KAKAO -001 0.0014 0.0014 0.0015 0.0015 0.0016 0.0006 N0.060 16 103
0.0013 91
0.0013 87
0.0013 74
0.0013 61
0.0013 184
0.0011 N0.012 23
210 201 185 173 162 217
94 KEDACOM -001 0.0076 0.0077 0.0079 0.0083 0.0087 0.0040 N0.047 9 256
0.0071 249
0.0072 214
0.0072 202
0.0073 188
0.0073 220
0.0063 N0.009 19
185 185 177 171 167 119
95 KNERON -000 0.0048 0.0059 0.0067 0.0079 0.0093 0.0002 N0.226 155 236
0.0048 238
0.0059 209
0.0067 207
0.0079 199
0.0093 62
0.0002 N0.226 188
42 38 34 34 31 165
96 LINECLOVA -002 0.0013 0.0013 0.0014 0.0015 0.0016 0.0004 N0.079 31 77
0.0012 67
0.0012 61
0.0012 53
0.0012 47
0.0012 182
0.0011 N0.008 14
221 210 192 184 173 213
97 LOOKMAN -003 0.0083 0.0088 0.0091 0.0096 0.0104 0.0030 N0.076 27 260
0.0072 252
0.0074 216
0.0075 205
0.0076 192
0.0077 218
0.0054 N0.022 53
212 204 187 177 165 214
98 LOOKMAN -005 0.0078 0.0080 0.0083 0.0086 0.0092 0.0038 N0.053 11 257
0.0072 250
0.0072 215
0.0073 203
0.0073 189
0.0074 219
0.0060 N0.013 30
71 73 76 76 76 70
99 MANTRA -000 0.0015 0.0017 0.0019 0.0022 0.0025 0.0002 N0.171 116 78
0.0012 69
0.0012 68
0.0012 64
0.0013 60
0.0013 119
0.0007 N0.042 88
118 123 124 122 121 57
100 MAXVISION -000 0.0021 0.0024 0.0027 0.0032 0.0038 0.0001 N0.206 140 98
0.0013 107
0.0014 107
0.0014 109
0.0015 107
0.0017 71
0.0003 N0.100 145
33 30 29 24 22 151
101 MAXVISION -001 0.0012 0.0012 0.0013 0.0014 0.0015 0.0003 N0.089 40 55
0.0011 50
0.0011 45
0.0011 42
0.0011 35
0.0011 165
0.0009 N0.014 32
239 234 204 198 191 207
102 MEGVII -001 0.0105 0.0118 0.0128 0.0142 0.0161 0.0015 N0.143 89 262
0.0077 258
0.0080 218
0.0082 212
0.0086 198
0.0089 214
0.0040 N0.048 99
310 310 239 231 224 224
103 MICROFOCUS -005 0.3700 0.4242 0.4610 0.5000 0.5391 0.0674 N0.128 78 310
0.1300 310
0.1724 239
0.2046 231
0.2425 224
0.2810 213
0.0040 N0.263 198
39 64 71 80 86 14
104 MICROSOFT-003 0.0013 0.0016 0.0018 0.0022 0.0028 0.0000 N0.271 189 2
0.0006 2
0.0006 4
0.0007 8
0.0008 10
0.0009 28
0.0001 N0.158 174
37 56 64 75 84 13
105 MICROSOFT-004 0.0012 0.0015 0.0018 0.0021 0.0028 0.0000 N0.281 198 1
0.0006 1
0.0006 1
0.0007 1
0.0007 6
0.0009 38
0.0001 N0.139 166
69 88 104 116 116 9
106 MICROSOFT-005 0.0015 0.0019 0.0023 0.0030 0.0037 0.0000 N0.320 215 3
0.0006 3
0.0006 2
0.0007 2
0.0008 8
0.0009 39
0.0001 N0.136 165
73 96 113 117 120 12
107 MICROSOFT-006 0.0016 0.0020 0.0025 0.0030 0.0038 0.0000 N0.305 211 4
0.0006 4
0.0007 3
0.0007 11
0.0009 27
0.0010 22
0.0000 N0.184 177
266 262 224 219 214 189
108 MUKH -002 0.0204 0.0258 0.0305 0.0361 0.0430 0.0007 N0.255 178 243
0.0054 248
0.0070 219
0.0083 215
0.0101 210
0.0124 41
0.0001 N0.280 202
247 247 214 208 202 148
109 NEC -000 0.0131 0.0170 0.0203 0.0244 0.0294 0.0003 N0.276 194 214
0.0029 220
0.0038 202
0.0048 197
0.0059 190
0.0074 16
0.0000 N0.319 212
259 256 218 212 204 209
110 NEC -001 0.0180 0.0209 0.0233 0.0266 0.0304 0.0016 N0.179 121 275
0.0109 268
0.0113 224
0.0116 217
0.0121 211
0.0129 217
0.0051 N0.056 106
6 11 11 11 8 104
111 NEC -002 0.0009 0.0010 0.0011 0.0012 0.0013 0.0002 N0.113 63 5
0.0008 5
0.0008 5
0.0008 5
0.0008 5
0.0008 88
0.0005 N0.038 82
45 41 40 39 34 170
112 NEC -003 0.0013 0.0014 0.0015 0.0016 0.0016 0.0005 N0.079 29 73
0.0012 66
0.0012 64
0.0012 58
0.0012 52
0.0012 168
0.0009 N0.019 49
56 49 43 38 35 185
113 NEC -004 0.0014 0.0014 0.0015 0.0016 0.0017 0.0006 N0.059 15 101
0.0013 90
0.0013 85
0.0013 82
0.0013 64
0.0013 179
0.0010 N0.016 37
31 27 23 15 12 172
114 NEC -005 0.0011 0.0012 0.0012 0.0013 0.0014 0.0005 N0.066 18 54
0.0011 49
0.0011 44
0.0011 39
0.0011 33
0.0011 167
0.0009 N0.013 29
38 34 32 29 21 175
115 NEC -006 0.0012 0.0013 0.0013 0.0014 0.0015 0.0005 N0.070 21 62
0.0011 59
0.0011 56
0.0012 49
0.0012 46
0.0012 156
0.0008 N0.025 60
258 257 220 215 209 195
116 NEUROTECHNOLOGY-003 0.0179 0.0225 0.0263 0.0306 0.0361 0.0007 N0.239 168 233
0.0042 237
0.0057 213
0.0072 213
0.0090 207
0.0112 21
0.0000 N0.334 215
182 180 175 169 163 127
117 NEUROTECHNOLOGY-004 0.0046 0.0056 0.0064 0.0074 0.0088 0.0002 N0.220 148 188
0.0022 187
0.0025 179
0.0028 173
0.0031 163
0.0034 67
0.0003 N0.154 171
166 164 162 158 152 89
118 NEUROTECHNOLOGY-005 0.0035 0.0043 0.0049 0.0057 0.0068 0.0002 N0.223 151 183
0.0021 181
0.0023 172
0.0024 166
0.0025 157
0.0028 111
0.0006 N0.092 141
159 156 158 153 149 79
119 NEUROTECHNOLOGY-007 0.0032 0.0039 0.0044 0.0052 0.0062 0.0002 N0.222 150 178
0.0020 174
0.0022 168
0.0023 160
0.0024 150
0.0026 140
0.0007 N0.076 128
103 107 108 112 107 48
120 NEUROTECHNOLOGY-008 0.0019 0.0022 0.0025 0.0029 0.0034 0.0001 N0.205 139 112
0.0013 97
0.0013 94
0.0013 90
0.0014 82
0.0015 138
0.0007 N0.043 89
46 50 52 53 54 65
121 NEUROTECHNOLOGY-009 0.0013 0.0014 0.0016 0.0018 0.0021 0.0001 N0.162 108 56
0.0011 54
0.0011 51
0.0011 47
0.0012 44
0.0012 145
0.0007 N0.029 69
30 32 33 33 33 107
122 NEUROTECHNOLOGY-010 0.0011 0.0012 0.0013 0.0015 0.0016 0.0002 N0.125 76 44
0.0010 40
0.0010 31
0.0010 29
0.0010 28
0.0011 159
0.0008 N0.014 31
13 9 8 8 10 125
123 NEUROTECHNOLOGY-012 0.0010 0.0010 0.0011 0.0012 0.0013 0.0002 N0.102 52 31
0.0009 28
0.0009 24
0.0009 21
0.0009 21
0.0010 158
0.0008 N0.009 18
134 127 118 111 99 171
124 NOTIONTAG -000 0.0023 0.0024 0.0026 0.0029 0.0032 0.0005 N0.117 66 170
0.0019 166
0.0019 161
0.0020 149
0.0020 135
0.0021 194
0.0013 N0.027 65
183 186 182 183 176 27
125 NTECHLAB -003 0.0046 0.0062 0.0076 0.0094 0.0114 0.0001 N0.310 212 108
0.0013 138
0.0016 150
0.0018 156
0.0022 151
0.0026 24
0.0001 N0.237 189
169 173 170 166 161 29
126 NTECHLAB -004 0.0037 0.0048 0.0058 0.0071 0.0085 0.0001 N0.291 203 66
0.0011 102
0.0013 120
0.0015 119
0.0017 132
0.0021 34
0.0001 N0.198 179
163 171 171 167 166 16
127 NTECHLAB -005 0.0035 0.0047 0.0058 0.0073 0.0092 0.0000 N0.334 218 11
0.0008 45
0.0011 66
0.0012 108
0.0015 120
0.0019 11
0.0000 N0.283 203
152 161 163 160 158 15
128 NTECHLAB -006 0.0030 0.0041 0.0050 0.0062 0.0078 0.0000 N0.326 217 6
0.0008 24
0.0009 46
0.0011 68
0.0013 99
0.0016 13
0.0000 N0.253 193
126 131 133 133 130 31
129 NTECHLAB -007 0.0022 0.0027 0.0031 0.0037 0.0044 0.0001 N0.245 173 63
0.0011 72
0.0012 76
0.0013 92
0.0014 91
0.0015 65
0.0003 N0.109 151
62 72 80 89 81 24
130 NTECHLAB -008 0.0014 0.0017 0.0020 0.0024 0.0027 0.0001 N0.224 153 41
0.0010 41
0.0010 40
0.0011 46
0.0011 45
0.0012 82
0.0004 N0.065 120
34 35 35 37 39 87
131 NTECHLAB -009 0.0012 0.0013 0.0014 0.0015 0.0018 0.0002 N0.140 84 32
0.0009 29
0.0009 28
0.0010 28
0.0010 26
0.0010 101
0.0005 N0.041 85
19 17 15 14 14 143
132 NTECHLAB -010 0.0011 0.0011 0.0012 0.0013 0.0014 0.0003 N0.091 43 45
0.0010 39
0.0010 30
0.0010 27
0.0010 25
0.0010 173
0.0009 N0.005 12
12 10 9 9 9 123
133 NTECHLAB -011 0.0010 0.0010 0.0011 0.0012 0.0013 0.0002 N0.103 53 19
0.0009 17
0.0009 17
0.0009 14
0.0009 12
0.0009 129
0.0007 N0.017 41
29 25 28 26 29 113
134 PANGIAM -000 0.0011 0.0012 0.0013 0.0014 0.0016 0.0002 N0.118 69 39
0.0010 37
0.0010 35
0.0010 33
0.0011 32
0.0011 126
0.0007 N0.027 66
144 144 144 140 137 73
135 PARAVISION -003 0.0026 0.0031 0.0035 0.0042 0.0048 0.0002 N0.210 143 150
0.0016 150
0.0017 149
0.0018 145
0.0020 133
0.0021 91
0.0005 N0.089 137
72 65 63 59 56 150
136 PARAVISION -004 0.0015 0.0016 0.0017 0.0019 0.0021 0.0003 N0.111 59 106
0.0013 96
0.0013 86
0.0013 79
0.0013 71
0.0014 177
0.0010 N0.020 52
66 60 54 50 46 162
137 PARAVISION -005 0.0015 0.0015 0.0016 0.0018 0.0019 0.0004 N0.094 45 111
0.0013 99
0.0013 93
0.0013 81
0.0013 70
0.0014 183
0.0011 N0.015 33
27 24 22 16 18 145
138 PARAVISION -007 0.0011 0.0012 0.0012 0.0013 0.0015 0.0003 N0.091 42 43
0.0010 33
0.0010 32
0.0010 32
0.0010 29
0.0011 154
0.0008 N0.018 45
11 8 10 10 11 97
139 PARAVISION -009 0.0010 0.0010 0.0011 0.0012 0.0014 0.0002 N0.118 67 27
0.0009 26
0.0009 26
0.0009 26
0.0010 23
0.0010 106
0.0006 N0.032 71
171 168 165 161 156 69
140 PIXELALL -002 0.0037 0.0045 0.0052 0.0062 0.0075 0.0002 N0.238 166 155
0.0017 165
0.0019 163
0.0021 161
0.0024 152
0.0027 58
0.0002 N0.154 172
105 105 106 103 101 80
141 PIXELALL -003 0.0019 0.0021 0.0024 0.0028 0.0032 0.0002 N0.182 124 122
0.0014 116
0.0014 109
0.0014 102
0.0015 95
0.0016 147
0.0007 N0.045 94
88 102 102 97 94 58
142 PIXELALL -004 0.0017 0.0020 0.0023 0.0026 0.0030 0.0001 N0.192 130 109
0.0013 105
0.0013 100
0.0014 95
0.0014 85
0.0015 127
0.0007 N0.046 95
92 90 81 74 69 174
143 PIXELALL -005 0.0018 0.0019 0.0020 0.0021 0.0024 0.0005 N0.098 48 141
0.0015 137
0.0016 126
0.0016 113
0.0016 101
0.0016 189
0.0012 N0.018 43
140 142 145 137 123 138
144 PTAKURATSATU -000 0.0025 0.0030 0.0036 0.0040 0.0040 0.0003 N0.167 112 140
0.0015 140
0.0016 153
0.0018 142
0.0020 123
0.0020 83
0.0004 N0.096 142
Table 23: Investigation-mode: Effect of N on FNIR on recent images For five enrollment population sizes, N, with T = 0 and FPIR
= 1. The left five columns are rank 1 miss rates The right five columns are rank 50 miss rates Missing entries usually apply because
another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were
not run on galleries with N > 1 600 000. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow
highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind
of behavior, not as a model to be used for prediction.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 68
163 REALNETWORKS -007 0.0013 0.0013 0.0014 0.0016 0.0018 0.0010 0.0010 0.0010 0.0011 0.0011
18 22 25 23 27 91
164 REALNETWORKS -008 0.0011 0.0011 0.0013 0.0014 0.0016 0.0002 N0.131 80 15
0.0009 13
0.0009 20
0.0009 19
0.0009 18
0.0009 100
0.0005 N0.037 79
147 150 150 148 143 33
165 REMARKAI -000 0.0027 0.0034 0.0040 0.0048 0.0058 0.0001 N0.260 183 133
0.0014 135
0.0015 129
0.0016 127
0.0018 125
0.0020 72
0.0003 N0.108 148
61 61 62 63 62 81
166 RENDIP -000 0.0014 0.0015 0.0017 0.0019 0.0022 0.0002 N0.158 102 72
0.0012 70
0.0012 65
0.0012 59
0.0012 53
0.0013 161
0.0008 N0.025 59
84 86 79 81 74 135
167 REVEALMEDIA -000 0.0017 0.0019 0.0020 0.0023 0.0025 0.0003 N0.134 81 80
0.0012 76
0.0012 70
0.0012 65
0.0013 59
0.0013 148
0.0007 N0.035 75
119 122 127 125 118 59
168 S 1-000 0.0021 0.0024 0.0028 0.0032 0.0037 0.0001 N0.203 136 135
0.0014 129
0.0015 122
0.0015 116
0.0016 105
0.0017 124
0.0007 N0.055 105
157 143 141 130 125 197
169 S 1-001 0.0031 0.0031 0.0034 0.0036 0.0040 0.0009 N0.092 44 193
0.0023 183
0.0023 170
0.0024 162
0.0024 149
0.0025 201
0.0017 N0.023 57
55 48 44 44 40 166
170 S 1-002 0.0014 0.0014 0.0015 0.0016 0.0018 0.0004 N0.085 35 110
0.0013 100
0.0013 89
0.0013 76
0.0013 65
0.0013 186
0.0011 N0.011 22
54 52 51 47 45 155
171 S 1-003 0.0014 0.0015 0.0015 0.0017 0.0019 0.0003 N0.101 51 88
0.0012 79
0.0013 75
0.0013 66
0.0013 58
0.0013 163
0.0009 N0.024 58
172 175 173 168 155 84
172 SCANOVATE -000 0.0038 0.0050 0.0059 0.0073 0.0073 0.0002 N0.235 164 127
0.0014 133
0.0015 135
0.0017 150
0.0020 130
0.0020 56
0.0002 N0.142 167
175 179 174 172 170 28
173 SCANOVATE -001 0.0041 0.0053 0.0064 0.0079 0.0098 0.0001 N0.299 208 120
0.0013 132
0.0015 136
0.0017 152
0.0021 148
0.0024 36
0.0001 N0.207 183
125 118 117 109 100 154
174 SENSETIME -000 0.0022 0.0023 0.0026 0.0028 0.0032 0.0003 N0.135 82 152
0.0016 149
0.0017 147
0.0018 133
0.0018 127
0.0020 144
0.0007 N0.060 113
124 119 114 113 115 96
175 SENSETIME -001 0.0022 0.0023 0.0025 0.0029 0.0037 0.0002 N0.177 120 149
0.0016 139
0.0016 134
0.0017 130
0.0018 146
0.0024 68
0.0003 N0.125 161
250 241 207 197 185 221
176 SENSETIME -002 0.0136 0.0137 0.0137 0.0138 0.0139 0.0124 N0.007 2 281
0.0136 274
0.0136 226
0.0136 220
0.0136 213
0.0136 222
0.0135 N0.001 3
8 7 7 7 7 142
177 SENSETIME -003 0.0010 0.0010 0.0010 0.0011 0.0012 0.0003 N0.085 37 29
0.0009 27
0.0009 25
0.0009 24
0.0010 20
0.0010 152
0.0008 N0.013 27
7 6 5 6 5 144
178 SENSETIME -004 0.0010 0.0010 0.0010 0.0011 0.0012 0.0003 N0.081 32 12
0.0008 10
0.0009 10
0.0009 9
0.0009 9
0.0009 118
0.0007 N0.018 46
4 4 4 4 4 131
179 SENSETIME -005 0.0008 0.0009 0.0009 0.0010 0.0011 0.0003 N0.085 36 8
0.0008 7
0.0008 7
0.0008 3
0.0008 1
0.0008 155
0.0008 N0.002 6
3 3 3 3 3 146
180 SENSETIME -006 0.0008 0.0009 0.0009 0.0010 0.0010 0.0003 N0.069 20 9
0.0008 9
0.0008 9
0.0008 7
0.0008 4
0.0008 132
0.0007 N0.011 21
2 2 1 1 1 156
181 SENSETIME -007 0.0008 0.0008 0.0009 0.0009 0.0010 0.0004 N0.061 17 10
0.0008 8
0.0008 8
0.0008 6
0.0008 3
0.0008 143
0.0007 N0.008 15
1 1 2 2 2 147
182 SENSETIME -008 0.0008 0.0008 0.0009 0.0009 0.0010 0.0003 N0.067 19 7
0.0008 6
0.0008 6
0.0008 4
0.0008 2
0.0008 120
0.0007 N0.013 26
279 272 229 223 216 220
183 SHAMAN -007 0.0371 0.0396 0.0416 0.0443 0.0473 0.0122 N0.083 33 294
0.0308 288
0.0314 232
0.0319 224
0.0326 217
0.0337 223
0.0207 N0.029 70
81 79 83 84 82 74
184 SIAT-001 0.0017 0.0018 0.0020 0.0023 0.0027 0.0002 N0.173 118 50
0.0010 53
0.0011 57
0.0012 62
0.0013 63
0.0013 73
0.0003 N0.085 134
79 82 85 85 79 78
185 SIAT-002 0.0016 0.0018 0.0020 0.0023 0.0027 0.0002 N0.171 115 67
0.0011 74
0.0012 74
0.0013 73
0.0013 72
0.0014 95
0.0005 N0.062 116
148 163 172 175 225 2
186 SQISOFT-001 0.0028 0.0042 0.0059 0.0084 0.9207 0.0000 N1.674 225 35
0.0010 44
0.0010 49
0.0011 56
0.0012 225
0.9198 2
0.0000 N1.883 225
32 37 45 56 64 18
187 SQISOFT-002 0.0012 0.0013 0.0015 0.0019 0.0023 0.0000 N0.232 161 24
0.0009 23
0.0009 27
0.0009 25
0.0010 24
0.0010 102
0.0005 N0.037 80
299 299 235 227 221 222
188 SYNESIS -003 0.1456 0.1700 0.1876 0.2088 0.2317 0.0177 N0.158 103 301
0.0828 301
0.0869 235
0.0920 227
0.0998 219
0.1104 224
0.0218 N0.098 144
256 245 212 203 201 211
189 SYNESIS -003 0.0161 0.0162 0.0163 0.0165 0.0254 0.0027 N0.127 77 284
0.0160 279
0.0160 228
0.0160 222
0.0160 216
0.0245 174
0.0009 N0.192 178
223 208 190 178 164 219
190 SYNESIS -005 0.0085 0.0085 0.0085 0.0086 0.0088 0.0072 N0.012 3 266
0.0085 260
0.0085 220
0.0085 209
0.0085 196
0.0085 221
0.0085 N0.000 2
158 158 161 157 154 32
191 TECH 5-001 0.0032 0.0040 0.0047 0.0057 0.0071 0.0001 N0.271 187 144
0.0016 145
0.0017 148
0.0018 141
0.0020 143
0.0023 70
0.0003 N0.119 156
115 132 136 132 134 17
192 TECH 5-002 0.0020 0.0027 0.0031 0.0037 0.0047 0.0000 N0.285 201 26
0.0009 35
0.0010 43
0.0011 51
0.0012 62
0.0013 50
0.0002 N0.127 163
196 199 189 188 183 56
193 TEVIAN -005 0.0056 0.0073 0.0084 0.0105 0.0130 0.0001 N0.283 200 174
0.0020 180
0.0023 175
0.0025 169
0.0028 162
0.0034 51
0.0002 N0.178 176
132 124 121 105 97 182
194 TEVIAN -006 0.0023 0.0024 0.0026 0.0028 0.0031 0.0005 N0.106 55 145
0.0016 141
0.0017 133
0.0017 122
0.0017 113
0.0018 170
0.0009 N0.041 86
89 78 70 68 55 187
195 TEVIAN -007 0.0017 0.0018 0.0018 0.0020 0.0021 0.0006 N0.073 26 93
0.0013 85
0.0013 83
0.0013 80
0.0013 67
0.0013 164
0.0009 N0.026 61
178 182 178 179 174 30
196 TIGER -002 0.0044 0.0056 0.0068 0.0086 0.0105 0.0001 N0.299 209 102
0.0013 127
0.0015 142
0.0018 154
0.0021 153
0.0027 18
0.0000 N0.253 194
165 167 167 159 188 6
197 TOSHIBA -000 0.0035 0.0045 0.0052 0.0061 0.0154 0.0000 N0.449 221 147
0.0016 157
0.0018 157
0.0019 155
0.0021 206
0.0105 5
0.0000 N0.539 222
155 147 143 136 127 188
198 TRUEFACE -000 0.0031 0.0033 0.0035 0.0039 0.0043 0.0006 N0.115 65 204
0.0025 190
0.0026 176
0.0026 168
0.0027 158
0.0028 198
0.0015 N0.038 83
268 265 225 220 212 206
199 VD -001 0.0230 0.0276 0.0315 0.0363 0.0418 0.0015 N0.204 138 278
0.0120 273
0.0130 227
0.0140 221
0.0154 215
0.0170 210
0.0024 N0.120 157
133 135 137 135 131 42
200 VERIDAS -001 0.0023 0.0028 0.0032 0.0037 0.0045 0.0001 N0.231 160 129
0.0014 124
0.0015 118
0.0015 117
0.0016 112
0.0018 87
0.0005 N0.083 133
131 134 126 121 117 136
201 VERIDAS -002 0.0023 0.0028 0.0028 0.0032 0.0037 0.0003 N0.158 101 128
0.0014 123
0.0015 111
0.0015 107
0.0015 100
0.0016 146
0.0007 N0.047 97
82 81 78 79 77 109
202 VERIDAS -003 0.0017 0.0018 0.0020 0.0022 0.0026 0.0002 N0.150 94 94
0.0013 92
0.0013 90
0.0013 84
0.0014 77
0.0014 130
0.0007 N0.043 91
138 141 142 139 132 54
203 VIGILANTSOLUTIONS -008 0.0025 0.0029 0.0034 0.0040 0.0047 0.0001 N0.224 152 69
0.0012 86
0.0013 106
0.0014 110
0.0015 106
0.0017 55
0.0002 N0.130 164
90 91 96 239 226 1
204 VISIONBOX -000 0.0017 0.0019 0.0022 1.0000 0.9526 0.0000 N2.570 226 90
0.0012 84
0.0013 92
0.0013 233
1.0000 226
0.9525 1
0.0000 N2.719 226
127 133 139 141 153 7
205 VISIONLABS -004 0.0022 0.0027 0.0032 0.0044 0.0070 0.0000 N0.387 219 91
0.0012 112
0.0014 132
0.0017 164
0.0025 176
0.0045 6
0.0000 N0.435 218
111 121 130 131 139 11
206 VISIONLABS -005 0.0020 0.0024 0.0029 0.0037 0.0051 0.0000 N0.322 216 86
0.0012 93
0.0013 124
0.0016 140
0.0019 159
0.0029 12
0.0000 N0.298 206
80 83 97 108 126 10
207 VISIONLABS -006 0.0016 0.0018 0.0022 0.0028 0.0041 0.0000 N0.314 214 81
0.0012 87
0.0013 113
0.0015 134
0.0019 154
0.0027 14
0.0000 N0.275 199
77 77 82 87 108 20
208 VISIONLABS -007 0.0016 0.0018 0.0020 0.0023 0.0034 0.0001 N0.248 174 74
0.0012 73
0.0012 72
0.0013 72
0.0013 126
0.0020 44
0.0001 N0.152 170
102 100 92 96 95 93
209 VISIONLABS -008 0.0019 0.0020 0.0021 0.0025 0.0030 0.0002 N0.169 113 153
0.0016 148
0.0017 139
0.0017 144
0.0020 144
0.0023 74
0.0003 N0.114 153
24 20 21 28 38 50
210 VISIONLABS -009 0.0011 0.0011 0.0012 0.0014 0.0017 0.0001 N0.160 106 38
0.0010 32
0.0010 34
0.0010 44
0.0011 74
0.0014 60
0.0002 N0.109 149
51 45 48 48 52 103
211 VISIONLABS -010 0.0014 0.0014 0.0015 0.0017 0.0021 0.0002 N0.137 83 97
0.0013 81
0.0013 91
0.0013 94
0.0014 103
0.0017 78
0.0004 N0.090 139
25 26 27 30 42 49
212 VISIONLABS -011 0.0011 0.0012 0.0013 0.0014 0.0018 0.0001 N0.162 109 48
0.0010 48
0.0011 50
0.0011 55
0.0012 86
0.0015 57
0.0002 N0.114 154
108 114 120 123 112 38
213 VIXVIZION -009 0.0019 0.0023 0.0026 0.0032 0.0037 0.0001 N0.226 154 52
0.0011 71
0.0012 78
0.0013 83
0.0013 80
0.0015 66
0.0003 N0.106 147
117 106 101 94 83 181
214 VNPT-001 0.0020 0.0022 0.0023 0.0025 0.0028 0.0005 N0.101 50 160
0.0018 155
0.0018 151
0.0018 131
0.0018 115
0.0019 195
0.0014 N0.018 42
99 89 77 73 65 190
215 VNPT-002 0.0018 0.0019 0.0020 0.0021 0.0023 0.0007 N0.072 24 156
0.0017 152
0.0017 140
0.0018 126
0.0018 111
0.0018 199
0.0015 N0.009 20
197 197 186 185 178 129
216 VOCORD -005 0.0060 0.0070 0.0082 0.0097 0.0117 0.0003 N0.232 163 222
0.0033 216
0.0035 196
0.0037 184
0.0040 174
0.0043 175
0.0010 N0.090 138
Table 24: Investigation-mode: Effect of N on FNIR on recent images For five enrollment population sizes, N, with T = 0 and FPIR
= 1. The left five columns are rank 1 miss rates The right five columns are rank 50 miss rates Missing entries usually apply because
another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were
not run on galleries with N > 1 600 000. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow
highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind
of behavior, not as a model to be used for prediction.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 69
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
Table 25: Investigation-mode: Effect of N on FNIR on recent images For five enrollment population sizes, N, with T = 0 and FPIR
= 1. The left five columns are rank 1 miss rates The right five columns are rank 50 miss rates Missing entries usually apply because
another algorithm from the same developer was run instead. Some developers are missing because less accurate algorithms were
not run on galleries with N > 1 600 000. Throughout blue superscripts indicate the rank of the algorithm for that column, and yellow
highlighting indicates the most accurate value. Caution: The Power-low models are mostly intended to draw attention to the kind
of behavior, not as a model to be used for prediction.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 70
Table 26: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation
duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those
with higher volumes where candidates from all searches would need review. The next column is a workload statistic, a small value
shows an algorithm front-loads mates into the first 10 candidates. Throughout, blue superscripts indicate the rank of the algorithm
for that column, and the best value is highlighted in yellow.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 71
5 43 55 43 43 40 46 44
91 GORILLA -008 0 4 0.0015 0.0012 0.0011 0.0011 0.0011 1.011
254 134 128 133 137 143 143 131
92 GRIAULE -000 2052 419 0.0025 0.0020 0.0019 0.0018 0.0017 1.018
19 15 28 31 34 34 42 31
93 GRIAULE -001 0 2 0.0012 0.0011 0.0011 0.0010 0.0010 1.010
145 188 233 215 214 214 205 216
94 HIK -003 1408 633 0.0117 0.0060 0.0048 0.0039 0.0030 1.061
138 160 230 213 213 207 201 215
95 HIK -004 1152 510 0.0113 0.0059 0.0047 0.0037 0.0030 1.060
144 185 169 161 148 133 126 162
96 HIK -005 1408 619 0.0046 0.0025 0.0020 0.0017 0.0015 1.025
143 181 170 162 149 132 125 163
97 HIK -006 1408 610 0.0046 0.0025 0.0020 0.0017 0.0015 1.025
114 276 43 58 65 76 94 56
98 HYPERVERGE -001 1024 846 0.0014 0.0013 0.0013 0.0013 0.0013 1.012
1 10 40 59 67 75 83 55
99 HYPERVERGE -002 0 1 0.0014 0.0013 0.0013 0.0013 0.0013 1.012
15 9 109 104 109 110 119 104
100 HZAILU -000 0 1 0.0022 0.0016 0.0015 0.0015 0.0014 1.015
39 30 94 112 117 124 130 109
101 HZAILU -001 0 2 0.0020 0.0017 0.0016 0.0016 0.0015 1.016
97 209 196 199 199 201 198 196
102 IDEMIA -003 528 689 0.0069 0.0045 0.0039 0.0034 0.0027 1.043
98 201 191 188 184 183 172 186
103 IDEMIA -004 528 669 0.0066 0.0038 0.0032 0.0027 0.0021 1.038
75 117 205 197 193 195 203 199
104 IDEMIA -005 352 374 0.0081 0.0044 0.0036 0.0032 0.0030 1.044
76 116 219 207 205 213 218 206
105 IDEMIA -006 352 373 0.0096 0.0052 0.0042 0.0039 0.0037 1.052
108 259 129 102 92 74 68 107
106 IDEMIA -007 860 807 0.0026 0.0016 0.0014 0.0013 0.0012 1.015
74 142 12 11 14 19 18 10
107 IDEMIA -008 300 451 0.0011 0.0009 0.0009 0.0009 0.0009 1.009
20 1 5 5 8 11 11 5
108 IDEMIA -009 0 0 0.0010 0.0009 0.0009 0.0009 0.0009 1.008
83 52 303 301 300 299 297 302
109 IMAGUS -002 512 76 0.2203 0.1342 0.1090 0.0871 0.0632 2.308
80 50 309 308 308 308 308 308
110 IMAGUS -003 512 57 0.3559 0.2491 0.2132 0.1791 0.1397 3.363
162 256 93 103 101 99 101 98
111 IMAGUS -005 2048 788 0.0019 0.0016 0.0015 0.0014 0.0013 1.015
217 299 98 108 111 112 121 102
112 IMAGUS -006 2048 905 0.0020 0.0016 0.0015 0.0015 0.0014 1.015
215 179 101 89 87 79 82 88
113 IMAGUS -007 2048 590 0.0020 0.0015 0.0014 0.0013 0.0013 1.014
10 21 291 292 294 294 294 292
114 IMAGUS -008 0 2 0.0860 0.0701 0.0646 0.0590 0.0518 1.648
214 197 125 126 133 141 146 126
115 IMPERIAL -000 2048 654 0.0024 0.0019 0.0018 0.0018 0.0017 1.018
118 70 279 274 275 273 270 274
116 INCODE -000 1024 190 0.0489 0.0261 0.0204 0.0160 0.0117 1.262
220 212 246 235 228 227 226 237
117 INCODE -001 2048 690 0.0166 0.0084 0.0067 0.0055 0.0043 1.086
184 96 250 238 232 228 227 243
118 INCODE -002 2048 291 0.0178 0.0090 0.0070 0.0056 0.0043 1.092
183 220 238 219 217 215 207 224
119 INCODE -003 2048 704 0.0129 0.0064 0.0051 0.0040 0.0031 1.066
168 159 152 155 157 159 159 154
120 INCODE -004 2048 508 0.0035 0.0024 0.0021 0.0020 0.0019 1.023
185 158 67 72 82 78 80 73
121 INCODE -005 2048 500 0.0017 0.0014 0.0014 0.0013 0.0013 1.013
101 86 277 279 282 284 286 281
122 INNOVATRICS -002 530 255 0.0451 0.0342 0.0322 0.0308 0.0297 1.321
100 87 263 254 249 243 232 257
123 INNOVATRICS -003 530 255 0.0263 0.0126 0.0095 0.0074 0.0053 1.129
134 129 237 218 215 216 210 223
124 INNOVATRICS -004 1076 406 0.0123 0.0063 0.0050 0.0040 0.0032 1.064
102 274 126 120 119 122 120 120
125 INNOVATRICS -005 538 842 0.0024 0.0018 0.0017 0.0016 0.0014 1.017
104 255 71 77 73 70 77 76
126 INNOVATRICS -007 538 785 0.0017 0.0014 0.0013 0.0013 0.0012 1.013
3 25 99 86 77 68 65 86
127 INTELIGENSIA -000 0 2 0.0020 0.0015 0.0013 0.0013 0.0012 1.014
30 36 270 272 268 267 262 270
128 INTELLIVISION -001 0 2 0.0365 0.0199 0.0160 0.0126 0.0095 1.199
28 38 226 211 209 206 204 212
129 INTELLIVISION -002 0 2 0.0107 0.0055 0.0044 0.0037 0.0030 1.055
8 3 19 32 33 36 43 28
130 INTEMA -000 0 0 0.0011 0.0011 0.0011 0.0010 0.0010 1.010
167 205 298 300 303 303 305 300
131 INTSYSMSU -000 2048 675 0.1457 0.1320 0.1272 0.1225 0.1163 2.203
284 321 166 193 207 219 225 191
132 IREX -000 3080 2379 0.0044 0.0043 0.0043 0.0043 0.0043 1.039
229 104 190 194 200 204 215 195
133 ISYSTEMS -002 2048 316 0.0064 0.0043 0.0039 0.0037 0.0034 1.041
188 279 178 189 194 203 211 185
134 ISYSTEMS -003 2048 856 0.0052 0.0039 0.0036 0.0034 0.0033 1.037
236 271 53 37 36 29 30 39
135 KAKAO -000 2052 840 0.0015 0.0011 0.0011 0.0010 0.0010 1.010
2 26 44 65 72 84 91 60
136 KAKAO -001 0 2 0.0014 0.0013 0.0013 0.0013 0.0013 1.012
73 166 201 227 233 240 249 225
137 KEDACOM -001 292 537 0.0077 0.0074 0.0073 0.0072 0.0072 1.067
173 163 185 214 221 231 238 208
138 KNERON -000 2048 530 0.0059 0.0059 0.0059 0.0059 0.0059 1.053
228 151 266 276 281 283 285 275
139 KNERON -001 2048 468 0.0295 0.0295 0.0295 0.0295 0.0295 1.266
189 153 112 96 86 67 62 95
140 LINE -000 2048 482 0.0022 0.0015 0.0014 0.0013 0.0012 1.015
211 303 18 23 26 25 25 22
141 LINE -001 2048 910 0.0011 0.0010 0.0010 0.0009 0.0009 1.009
6 24 38 50 51 59 67 47
142 LINECLOVA -002 0 2 0.0013 0.0012 0.0012 0.0012 0.0012 1.011
72 109 210 231 239 245 252 228
143 LOOKMAN -003 292 342 0.0088 0.0078 0.0076 0.0075 0.0074 1.071
106 105 212 232 238 244 251 229
144 LOOKMAN -004 548 325 0.0091 0.0079 0.0076 0.0075 0.0073 1.072
Table 27: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation
duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those
with higher volumes where candidates from all searches would need review. The next column is a workload statistic, a small value
shows an algorithm front-loads mates into the first 10 candidates. Throughout, blue superscripts indicate the rank of the algorithm
for that column, and the best value is highlighted in yellow.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 72
155 211 41 54 57 64 66 50
163 NEC -003 1712 690 0.0014 0.0012 0.0012 0.0012 0.0012 1.011
135 318 49 69 79 81 90 67
164 NEC -004 1104 967 0.0014 0.0013 0.0013 0.0013 0.0013 1.012
136 317 27 36 41 44 49 36
165 NEC -005 1104 964 0.0012 0.0011 0.0011 0.0011 0.0011 1.010
34 12 34 48 52 54 59 45
166 NEC -006 0 1 0.0013 0.0012 0.0012 0.0012 0.0011 1.011
178 169 257 255 252 249 237 256
167 NEUROTECHNOLOGY-003 2048 547 0.0225 0.0126 0.0100 0.0078 0.0057 1.125
218 168 180 181 186 188 187 182
168 NEUROTECHNOLOGY-004 2048 543 0.0056 0.0036 0.0032 0.0029 0.0025 1.035
61 130 164 171 175 175 181 172
169 NEUROTECHNOLOGY-005 256 412 0.0043 0.0029 0.0027 0.0024 0.0023 1.028
62 243 251 233 220 220 212 235
170 NEUROTECHNOLOGY-006 256 746 0.0180 0.0079 0.0059 0.0046 0.0033 1.083
63 62 156 166 171 172 174 164
171 NEUROTECHNOLOGY-007 256 169 0.0039 0.0027 0.0025 0.0023 0.0022 1.026
94 258 107 91 95 97 97 94
172 NEUROTECHNOLOGY-008 514 804 0.0022 0.0015 0.0014 0.0014 0.0013 1.015
92 207 50 49 50 50 54 49
173 NEUROTECHNOLOGY-009 513 686 0.0014 0.0012 0.0012 0.0011 0.0011 1.011
67 200 32 28 31 31 40 30
174 NEUROTECHNOLOGY-010 256 663 0.0012 0.0011 0.0010 0.0010 0.0010 1.010
12 2 9 19 23 24 28 13
175 NEUROTECHNOLOGY-012 0 0 0.0010 0.0010 0.0010 0.0009 0.0009 1.009
176 284 288 288 287 287 284 289
176 NEWLAND -002 2048 868 0.0786 0.0480 0.0397 0.0332 0.0263 1.468
208 79 305 305 305 305 303 305
177 NOBLIS -001 2048 211 0.2492 0.1772 0.1542 0.1339 0.1112 2.679
314 165 301 298 298 297 296 298
178 NOBLIS -002 6144 535 0.1794 0.1108 0.0903 0.0722 0.0535 2.077
274 146 127 145 151 162 166 140
179 NOTIONTAG -000 2120 461 0.0024 0.0021 0.0021 0.0020 0.0019 1.019
288 267 186 174 167 157 138 177
180 NTECHLAB -003 3484 831 0.0062 0.0029 0.0023 0.0019 0.0016 1.030
287 306 173 152 140 127 102 160
181 NTECHLAB -004 3484 929 0.0048 0.0023 0.0019 0.0016 0.0013 1.024
159 232 171 147 124 83 45 155
182 NTECHLAB -005 1940 717 0.0047 0.0022 0.0017 0.0013 0.0011 1.023
160 272 161 125 102 60 24 142
183 NTECHLAB -006 1940 841 0.0041 0.0019 0.0015 0.0012 0.0009 1.019
286 269 131 109 94 90 72 113
184 NTECHLAB -007 3348 834 0.0027 0.0017 0.0014 0.0013 0.0012 1.016
141 173 72 47 47 46 41 53
185 NTECHLAB -008 1300 562 0.0017 0.0012 0.0012 0.0011 0.0010 1.012
142 297 35 30 29 28 29 34
186 NTECHLAB -009 1300 900 0.0013 0.0011 0.0010 0.0010 0.0009 1.010
140 289 17 26 28 30 39 24
187 NTECHLAB -010 1280 875 0.0011 0.0010 0.0010 0.0010 0.0010 1.009
139 282 10 9 13 15 17 9
188 NTECHLAB -011 1280 865 0.0010 0.0009 0.0009 0.0009 0.0009 1.008
32 34 25 33 35 35 37 33
189 PANGIAM -000 0 2 0.0012 0.0011 0.0011 0.0010 0.0010 1.010
11 19 195 222 230 236 246 217
190 PANGIAM -001 0 2 0.0069 0.0068 0.0068 0.0068 0.0068 1.061
198 141 252 267 272 275 280 263
191 PARAVISION -000 2048 438 0.0188 0.0171 0.0167 0.0165 0.0164 1.156
226 178 154 158 158 163 160 158
192 PARAVISION -001 2048 590 0.0038 0.0024 0.0022 0.0020 0.0019 1.023
224 118 159 163 163 166 162 161
193 PARAVISION -002 2048 377 0.0040 0.0025 0.0022 0.0021 0.0019 1.025
206 238 144 146 150 153 150 146
194 PARAVISION -003 2048 735 0.0031 0.0022 0.0020 0.0019 0.0017 1.021
303 235 65 75 78 88 96 75
195 PARAVISION -004 4096 720 0.0016 0.0014 0.0013 0.0013 0.0013 1.013
293 280 60 73 81 89 99 70
196 PARAVISION -005 4096 858 0.0015 0.0014 0.0013 0.0013 0.0013 1.013
290 223 24 34 32 33 33 29
197 PARAVISION -007 4096 706 0.0012 0.0011 0.0010 0.0010 0.0010 1.010
304 189 8 17 22 26 26 12
198 PARAVISION -009 4100 638 0.0010 0.0010 0.0010 0.0009 0.0009 1.009
281 73 168 172 172 169 165 173
199 PIXELALL -002 2560 198 0.0045 0.0029 0.0025 0.0022 0.0019 1.028
279 234 105 105 108 106 116 105
200 PIXELALL -003 2560 719 0.0021 0.0016 0.0015 0.0014 0.0014 1.015
280 143 102 94 98 104 105 92
201 PIXELALL -004 2560 453 0.0020 0.0015 0.0015 0.0014 0.0013 1.014
278 275 90 111 114 126 137 103
202 PIXELALL -005 2560 845 0.0019 0.0017 0.0016 0.0016 0.0016 1.015
103 304 142 143 144 139 140 144
203 PTAKURATSATU -000 538 910 0.0030 0.0021 0.0019 0.0018 0.0016 1.020
202 144 202 195 196 197 199 197
204 QNAP -000 2048 457 0.0078 0.0044 0.0037 0.0033 0.0028 1.043
193 183 162 173 176 178 184 170
205 QNAP -001 2048 615 0.0041 0.0029 0.0027 0.0025 0.0023 1.028
27 37 174 196 208 218 224 193
206 QNAP -002 0 2 0.0049 0.0044 0.0043 0.0043 0.0042 1.040
21 13 136 141 138 129 136 141
207 QNAP -003 0 2 0.0028 0.0021 0.0019 0.0017 0.0015 1.019
219 124 302 304 304 304 304 304
208 QUANTASOFT-001 2048 396 0.2177 0.1643 0.1468 0.1312 0.1116 2.539
53 57 254 250 247 246 240 250
209 RANKONE -002 133 113 0.0194 0.0112 0.0093 0.0077 0.0060 1.111
54 58 253 249 246 247 241 249
210 RANKONE -003 133 114 0.0194 0.0112 0.0093 0.0077 0.0060 1.111
46 49 276 273 273 269 265 273
211 RANKONE -004 85 36 0.0415 0.0226 0.0177 0.0141 0.0102 1.225
55 55 216 210 211 212 209 210
212 RANKONE -005 133 94 0.0094 0.0054 0.0046 0.0039 0.0032 1.054
56 88 176 177 177 173 169 176
213 RANKONE -006 165 261 0.0050 0.0030 0.0027 0.0024 0.0021 1.030
57 95 148 153 154 149 142 150
214 RANKONE -007 165 278 0.0034 0.0023 0.0021 0.0018 0.0017 1.022
68 71 120 107 110 115 114 108
215 RANKONE -009 260 191 0.0024 0.0016 0.0015 0.0015 0.0014 1.015
70 74 113 116 116 120 122 116
216 RANKONE -010 261 200 0.0022 0.0018 0.0016 0.0015 0.0015 1.016
Table 28: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation
duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those
with higher volumes where candidates from all searches would need review. The next column is a workload statistic, a small value
shows an algorithm front-loads mates into the first 10 candidates. Throughout, blue superscripts indicate the rank of the algorithm
for that column, and the best value is highlighted in yellow.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 73
Table 29: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation
duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those
with higher volumes where candidates from all searches would need review. The next column is a workload statistic, a small value
shows an algorithm front-loads mates into the first 10 candidates. Throughout, blue superscripts indicate the rank of the algorithm
for that column, and the best value is highlighted in yellow.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 74
Table 30: Rank-based accuracy for the FRVT 2018 mugshot sets. In columns 3 and 4 are template size and template generation
duration. Thereafter values are rank-based FNIR with T = 0 and FPIR = 1. This is appropriate to investigational uses but not those
with higher volumes where candidates from all searches would need review. The next column is a workload statistic, a small value
shows an algorithm front-loads mates into the first 10 candidates. Throughout, blue superscripts indicate the rank of the algorithm
for that column, and the best value is highlighted in yellow.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
266 276 284 277 270 272 221 255 254 207 209 117 125 203 217
1 20 FACE -000 0.462 0.348 0.230 0.763 0.450 0.301 1.000 1.000 1.000 0.424 0.255 0.772 0.599 0.938 0.836
268 285 290 272 284 288 220 221 184 206
2 3 DIVI -003 0.482 0.400 0.282 0.685 0.626 0.497 0.605 0.445 0.821 0.717
238 255 260 239 260 266 196 202 159 187
3 3 DIVI -004 0.256 0.169 0.093 0.400 0.343 0.237 0.277 0.172 0.607 0.485
237 252 259 238 258 265 159 169 186 227 230 158 186
4 3 DIVI -005 0.255 0.166 0.093 0.395 0.339 0.234 0.998 0.996 0.990 0.864 0.846 0.597 0.484
236 254 262 242 259 267 197 203 162 188
5 3 DIVI -006 0.253 0.168 0.096 0.403 0.342 0.238 0.283 0.174 0.615 0.490
222 244 249 222 237 240 105 118 149 191 198 142 169
6 ACER -000 0.208 0.146 0.074 0.300 0.246 0.157 0.987 0.981 0.955 0.201 0.114 0.490 0.363
168 186 191 157 164 171 194 205 233 149 151 104 112 141 116
7 ACER -001 0.109 0.056 0.026 0.136 0.109 0.069 1.000 0.999 0.998 0.068 0.036 0.406 0.250 0.479 0.206
179 206 205 187 192 194 132 147 174 163 167 97 107 120 151
8 AIZE -001 0.127 0.077 0.034 0.187 0.143 0.087 0.995 0.994 0.983 0.101 0.052 0.364 0.216 0.387 0.289
229 241 243 211 221 233 171 185 215 185 196 180 181
9 ALCHERA -000 0.231 0.138 0.070 0.259 0.216 0.146 0.999 0.999 0.996 0.176 0.111 0.803 0.456
316 316 318 316 319 311 317 313 279 266
FNIR(N, R, T) =
10 ALCHERA -001 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
291 292 293 271 281 283 212 214 238 226 227 181 203
11 ALCHERA -002 0.807 0.486 0.302 0.685 0.591 0.442 1.000 1.000 0.999 0.827 0.770 0.811 0.705
FPIR(N, T) =
262 246 244 223 233 238 206 198 220 184 189 136 168
12 ALCHERA -003 0.450 0.155 0.070 0.304 0.239 0.152 1.000 0.999 0.997 0.172 0.097 0.464 0.362
273 284 283 268 276 277 133 139 111 208 207 111 120 153 178
13 ALCHERA -004 0.520 0.394 0.211 0.642 0.529 0.327 0.995 0.991 0.813 0.424 0.232 0.708 0.515 0.546 0.398
188 218 225 198 208 218 118 136 173 166 173 150 177
14 ALLGOVISION -000 0.138 0.088 0.045 0.202 0.166 0.106 0.993 0.990 0.982 0.117 0.066 0.526 0.396
197 224 231 216 225 232 123 125 132 178 184 143 176
FRVT
15 ALLGOVISION -001 0.155 0.102 0.053 0.275 0.221 0.141 0.993 0.986 0.933 0.150 0.081 0.491 0.389
208 228 240 209 224 236 129 146 184 279 277 226 301
16 ANKE -000 0.184 0.117 0.063 0.256 0.220 0.151 0.995 0.994 0.990 1.000 1.000 1.000 1.000
206 232 241 210 223 237 135 153 195 268 275 235 306
17 ANKE -001 0.183 0.119 0.063 0.256 0.220 0.151 0.995 0.994 0.992 1.000 1.000 1.000 1.000
-
131 147 147 121 128 133 82 88 106 108 112 86 110
False pos. identification rate
False neg. identification rate
18 ANKE -002 0.062 0.032 0.014 0.103 0.079 0.050 0.975 0.948 0.795 0.034 0.018 0.245 0.190
-
193 177 197 179 189 211 139 159 190
37 COGENT-001 0.143 0.053 0.029 0.175 0.140 0.100 0.996 0.995 0.991
IDENTIFICATION
203 163 158 142 154 162 166 174 201
38 COGENT-002 0.159 0.044 0.017 0.124 0.098 0.063 0.998 0.998 0.994
220 168 152 140 148 159 167 177 210
39 COGENT-003 0.203 0.046 0.016 0.121 0.095 0.061 0.999 0.998 0.995
224 148 80 76 77 83 158 172 213 79 83 47 58 133 101
40 COGENT-004 0.209 0.033 0.006 0.067 0.051 0.031 0.998 0.997 0.995 0.022 0.012 0.126 0.072 0.456 0.178
113 60 61 55 60 64 137 132 49 49 52 37 42 195 112
41 COGENT-005 0.050 0.009 0.004 0.050 0.037 0.023 0.996 0.989 0.323 0.011 0.006 0.082 0.043 0.905 0.202
32 32 33 33 31 32 17 15 17 20 21 105 25 36 55
42 COGENT-006 0.010 0.004 0.002 0.033 0.023 0.015 0.383 0.238 0.145 0.006 0.003 0.422 0.028 0.130 0.120
227 250 261 247 253 257 136 140 157
43 COGNITEC -000 0.226 0.161 0.095 0.439 0.303 0.200 0.996 0.992 0.971
218 223 232 304 229 229 263 309 153
44 COGNITEC -001 0.192 0.102 0.053 0.997 0.230 0.135 1.000 1.000 0.965
175 179 186 301 214 215 283 229 150
T = Threshold
45 COGNITEC -002 0.122 0.053 0.025 0.990 0.178 0.101 1.000 1.000 0.956
161 175 188 202 206 209 287 232 141
46 COGNITEC -003 0.099 0.053 0.025 0.222 0.162 0.100 1.000 1.000 0.946
Table 31: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
75
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
124 146 148 145 152 151 131 133 127 148 152 94 106 100 126
47 COGNITEC -004 0.055 0.031 0.014 0.127 0.097 0.058 0.995 0.990 0.919 0.068 0.038 0.316 0.196 0.288 0.218
125 62 58 64 67 60 271 301 121 120 137 61 75 66 79
48 COGNITEC -005 0.055 0.010 0.004 0.058 0.041 0.022 1.000 1.000 0.878 0.041 0.028 0.157 0.092 0.179 0.145
73 55 52 70 63 57 295 283 235 96 92 67 67 168 123
49 COGNITEC -006 0.029 0.008 0.003 0.065 0.040 0.022 1.000 1.000 0.999 0.030 0.013 0.171 0.081 0.681 0.214
13 21 25 20 22 27 8 6 11 11 12 9 9 3 3
50 CUBOX -000 0.005 0.003 0.002 0.022 0.019 0.014 0.276 0.168 0.104 0.004 0.003 0.028 0.014 0.073 0.062
187 187 178 173 168 174 151 162 172 146 145 114 133
51 CYBERLINK -000 0.137 0.056 0.023 0.162 0.116 0.070 0.997 0.995 0.981 0.063 0.032 0.339 0.232
158 180 176 160 165 167 150 157 175 143 141 164 135
52 CYBERLINK -001 0.096 0.054 0.022 0.138 0.109 0.067 0.997 0.995 0.984 0.062 0.031 0.652 0.239
88 86 86 80 87 88 125 131 151 83 86 101 89
53 CYBERLINK -002 0.038 0.015 0.006 0.068 0.053 0.032 0.994 0.988 0.957 0.024 0.013 0.288 0.157
101 56 57 48 56 53 126 102 115 51 56 42 47 117 57
54 CYBERLINK -003 0.045 0.008 0.004 0.045 0.035 0.021 0.995 0.972 0.845 0.012 0.007 0.100 0.051 0.368 0.120
216 52 51 68 57 59 247 249 243 53 55 43 44 207 154
55 CYBERLINK -004 0.188 0.007 0.003 0.063 0.036 0.022 1.000 1.000 0.999 0.013 0.007 0.109 0.050 0.954 0.291
223 66 63 59 64 72 219 218 122 56 57 38 40 202 144
56 CYBERLINK -005 0.208 0.010 0.004 0.054 0.041 0.026 1.000 1.000 0.888 0.014 0.007 0.089 0.043 0.926 0.266
FNIR(N, R, T) =
FRVT
185 117 116 94 101 106 211 219 230 84 87 69 74 189 97
62 DAON -000 0.135 0.023 0.009 0.079 0.061 0.039 1.000 1.000 0.998 0.025 0.013 0.173 0.091 0.846 0.172
93 120 121 99 107 108 43 53 67 88 96 68 81 84 87
63 DECATUR -000 0.043 0.023 0.010 0.085 0.066 0.040 0.757 0.675 0.509 0.027 0.014 0.173 0.098 0.239 0.156
29 26 27 13 13 9 240 211 65 21 37 53 37
64 DEEPGLINT-001 0.010 0.003 0.002 0.018 0.014 0.010 1.000 1.000 0.503 0.006 0.004 0.159 0.097
-
False pos. identification rate
False neg. identification rate
213 240 247 215 222 230 205 223 206 186 195 109 118 134 164
78 FINCORE -000 0.187 0.134 0.071 0.267 0.217 0.140 1.000 1.000 0.995 0.187 0.108 0.598 0.418 0.458 0.349
17 23 17 24 23 22 16 18 28 28 33 26 26 16 17
79 FIRSTCREDITKZ -001 0.007 0.003 0.002 0.025 0.019 0.013 0.379 0.291 0.177 0.007 0.004 0.061 0.028 0.097 0.079
233 111 107 83 94 99 81 91 70 79 85 88
80 FUJITSULAB -000 0.246 0.021 0.008 0.070 0.056 0.035 0.024 0.013 0.177 0.093 0.240 0.156
283 100 90 129 96 90 138 142 138 82 81 112 116 88 82
81 FUJITSULAB -001 0.655 0.018 0.007 0.112 0.058 0.033 0.996 0.992 0.940 0.024 0.011 0.739 0.310 0.247 0.146
261 280 292 261 279 286 128 156 198 211 216 186 214
82 GLORY-000 0.441 0.367 0.295 0.586 0.547 0.470 0.995 0.995 0.993 0.453 0.381 0.839 0.795
-
253 271 285 260 277 284 124 144 188 206 213 183 210
83 GLORY-001 0.355 0.305 0.236 0.582 0.537 0.448 0.994 0.993 0.991 0.408 0.336 0.819 0.753
IDENTIFICATION
289 286 286 263 271 275 232 246 260 212 212 292 204
84 GORILLA -001 0.747 0.406 0.246 0.590 0.453 0.314 1.000 1.000 1.000 0.468 0.299 1.000 0.710
240 258 266 231 246 248 229 248 199 194 201 225 185
85 GORILLA -002 0.266 0.188 0.106 0.342 0.268 0.170 1.000 1.000 0.993 0.250 0.137 1.000 0.466
287 273 277 270 268 268 270 302 256 205 204 288 192
86 GORILLA -003 0.694 0.318 0.157 0.684 0.434 0.247 1.000 1.000 1.000 0.407 0.213 1.000 0.562
184 220 218 195 205 213 78 90 124 172 178 130 160
87 GORILLA -004 0.135 0.089 0.043 0.202 0.160 0.101 0.972 0.959 0.903 0.135 0.072 0.438 0.309
154 191 192 181 191 196 46 55 76 158 156 108 128
88 GORILLA -005 0.086 0.058 0.026 0.179 0.142 0.088 0.770 0.700 0.553 0.088 0.040 0.315 0.223
105 135 129 135 139 140 30 41 53 89 89 65 78 78 85
89 GORILLA -006 0.046 0.027 0.011 0.118 0.089 0.053 0.602 0.531 0.369 0.028 0.013 0.166 0.093 0.218 0.154
102 133 126 118 126 122 33 42 54 85 82 84 84 64 74
90 GORILLA -007 0.046 0.027 0.010 0.101 0.077 0.045 0.626 0.534 0.369 0.026 0.012 0.264 0.108 0.178 0.138
95 121 108 127 133 130 23 31 45 95 80 96 73 62 68
91 GORILLA -008 0.044 0.024 0.009 0.111 0.083 0.048 0.541 0.463 0.295 0.030 0.011 0.319 0.090 0.178 0.132
T = Threshold
Table 32: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
76
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
39 37 32 56 42 38 67 75 84 25 17 126 126 19 20
93 GRIAULE -001 0.013 0.005 0.002 0.051 0.028 0.016 0.928 0.865 0.625 0.007 0.003 0.995 0.610 0.099 0.081
202 225 235 190 201 217 91 97 129 175 182 132 166
94 HIK -003 0.159 0.103 0.057 0.190 0.158 0.105 0.980 0.969 0.925 0.142 0.080 0.445 0.359
199 221 233 185 198 214 98 105 142 173 181 129 165
95 HIK -004 0.156 0.099 0.054 0.182 0.153 0.101 0.983 0.976 0.947 0.137 0.077 0.434 0.353
163 160 162 112 125 131 196 208 226 147 149 152 141
96 HIK -005 0.102 0.044 0.019 0.098 0.077 0.048 1.000 0.999 0.998 0.068 0.036 0.541 0.258
191 169 165 126 136 138 237 241 245
97 HIK -006 0.142 0.047 0.020 0.111 0.086 0.052 1.000 1.000 0.999
23 33 38 42 49 52 7 12 18 26 32 21 24 24 22
98 HYPERVERGE -001 0.009 0.004 0.002 0.039 0.031 0.020 0.275 0.220 0.146 0.007 0.004 0.053 0.027 0.101 0.083
21 27 29 35 40 43 10 10 13 18 15 18 18 13 14
99 HYPERVERGE -002 0.008 0.004 0.002 0.034 0.027 0.018 0.278 0.210 0.131 0.006 0.003 0.048 0.023 0.093 0.077
82 107 112 69 78 82 96 95 112 72 69 93 62 48 60
100 HZAILU -000 0.035 0.020 0.009 0.064 0.051 0.031 0.983 0.967 0.813 0.020 0.010 0.316 0.077 0.153 0.120
47 57 66 243 216 69 163 128 43 190 123 263 132 167 167
101 HZAILU -001 0.016 0.009 0.004 0.414 0.183 0.024 0.998 0.986 0.282 0.196 0.021 1.000 0.997 0.679 0.360
276 170 169 308 207 187 316 168 170 176 197
102 IDEMIA -003 0.552 0.047 0.021 1.000 0.165 0.079 1.000 0.123 0.061 0.766 0.630
FNIR(N, R, T) =
123 156 168 162 172 186 85 103 154 167 169 177 196
103 IDEMIA -004 0.055 0.037 0.021 0.144 0.118 0.079 0.976 0.973 0.968 0.123 0.061 0.766 0.630
FPIR(N, T) =
138 162 189 184 196 216 90 109 161 169 176 193 207
104 IDEMIA -005 0.066 0.044 0.026 0.181 0.150 0.102 0.979 0.978 0.973 0.130 0.070 0.879 0.743
136 159 187 214 227 241 101 119 171 176 187 172 191
105 IDEMIA -006 0.065 0.043 0.025 0.266 0.226 0.161 0.984 0.982 0.980 0.144 0.090 0.733 0.531
83 99 101 88 90 91 299 279 305 132 129 72 85 254 227
106 IDEMIA -007 0.035 0.018 0.008 0.073 0.055 0.033 1.000 1.000 1.000 0.052 0.022 0.182 0.109 1.000 0.982
8 9 10 12 10 6 9 9 15 14 14 14 16 27 32
107 IDEMIA -008 0.004 0.002 0.001 0.016 0.013 0.009 0.276 0.204 0.136 0.005 0.003 0.036 0.019 0.106 0.092
FRVT
7 3 4 3 3 3 4 4 7 5 5 8 8 6 6
108 IDEMIA -009 0.004 0.002 0.001 0.012 0.011 0.008 0.202 0.141 0.099 0.003 0.002 0.027 0.013 0.074 0.064
301 301 303 285 293 296 242 239 257
109 IMAGUS -002 0.908 0.749 0.564 0.944 0.816 0.645 1.000 1.000 1.000
300 303 306 290 297 299 245 231 252
110 IMAGUS -003 0.898 0.807 0.669 0.954 0.909 0.809 1.000 1.000 1.000
-
False pos. identification rate
False neg. identification rate
-
IDENTIFICATION
22 16 11 21 18 18 236 8 16 9 90 39 8 7
130 INTEMA -000 0.009 0.002 0.001 0.022 0.017 0.012 1.000 0.100 0.005 0.002 0.288 0.042 0.081 0.067
311 314 316 306 308 310 207 215 225 235 235 221 232
131 INTSYSMSU -000 0.999 0.998 0.990 1.000 1.000 0.998 1.000 1.000 0.998 0.999 0.989 0.999 0.988
140 139 100 115 100 86 107 89 96 124 77 92 52 60 72
132 IREX -000 0.068 0.028 0.008 0.099 0.060 0.032 0.988 0.957 0.680 0.044 0.011 0.302 0.062 0.170 0.135
198 208 202 171 179 189 164 173 197
133 ISYSTEMS -002 0.155 0.078 0.032 0.161 0.126 0.080 0.998 0.998 0.993
221 192 183 156 163 169 218 220 223
134 ISYSTEMS -003 0.204 0.059 0.024 0.135 0.107 0.068 1.000 1.000 0.997
71 89 88 86 93 97 22 33 50 69 68 50 60 52 58
135 KAKAO -000 0.028 0.015 0.006 0.071 0.056 0.034 0.539 0.468 0.327 0.019 0.010 0.141 0.075 0.158 0.120
16 18 20 19 20 21 5 5 9 10 8 17 11 5 4
136 KAKAO -001 0.006 0.003 0.002 0.022 0.017 0.013 0.226 0.159 0.101 0.004 0.002 0.042 0.016 0.074 0.063
91 118 146 109 116 143 111 127 163 137 160 104 143
137 KEDACOM -001 0.041 0.023 0.013 0.096 0.072 0.054 0.989 0.986 0.973 0.055 0.043 0.305 0.264
T = Threshold
204 207
138 KNERON -000 0.033 0.099
Table 33: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
77
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
229
139 KNERON -001 0.052
132 145 143 152 149 145 266 126 124 87 99 260 145
140 LINE -000 0.062 0.031 0.012 0.132 0.095 0.054 1.000 0.046 0.021 0.278 0.151 1.000 0.268
74 38 31 72 38 35 236 242 262 44 35 31 34 286 218
141 LINE -001 0.030 0.005 0.002 0.066 0.027 0.015 1.000 1.000 1.000 0.009 0.004 0.072 0.034 1.000 0.858
27 28 26 256 181 28 117 116 79 118 22 131 127 170 31
142 LINECLOVA -002 0.010 0.004 0.002 0.508 0.130 0.014 0.992 0.981 0.577 0.040 0.004 1.000 0.690 0.700 0.091
137 161 185 151 167 190 157 171 115 159
143 LOOKMAN -003 0.066 0.044 0.025 0.131 0.112 0.082 0.084 0.061 0.355 0.304
144 164 181 141 161 181 88 106 165
144 LOOKMAN -004 0.074 0.045 0.024 0.123 0.105 0.075 0.979 0.977 0.974
112 143 155 119 135 163 92 108 160 144 162 105 147
145 LOOKMAN -005 0.050 0.030 0.017 0.102 0.086 0.063 0.980 0.978 0.973 0.062 0.047 0.308 0.273
139 67 59 66 65 58 311 268 242 92 93 59 68 224 83
146 MANTRA -000 0.066 0.010 0.004 0.063 0.041 0.022 1.000 1.000 0.999 0.029 0.014 0.152 0.081 1.000 0.151
108 140 144 253 230 146 53 62 87 177 125 127 130 155 136
147 MAXVISION -000 0.048 0.028 0.013 0.468 0.237 0.054 0.827 0.767 0.631 0.149 0.022 0.997 0.872 0.557 0.245
25 31 30 47 34 34 11 11 14 24 16 122 119 23 15
148 MAXVISION -001 0.010 0.004 0.002 0.044 0.025 0.015 0.282 0.219 0.136 0.007 0.003 0.951 0.485 0.100 0.078
FNIR(N, R, T) =
FRVT
308 312 314 288 300 302 229 229 210 221
154 MICROFOCUS -006 0.983 0.978 0.963 0.950 0.923 0.858 0.923 0.843 0.971 0.939
110 137 136 132 143 149 111 118 83 99
155 MICROSOFT-003 0.049 0.028 0.012 0.117 0.091 0.056 0.036 0.019 0.233 0.176
104 128 127 128 137 142 106 113 79 96
-
156 MICROSOFT-004 0.046 0.026 0.011 0.111 0.087 0.053 0.033 0.018 0.222 0.170
False pos. identification rate
False neg. identification rate
-
IDENTIFICATION
274 288 291 257 272 278 181 195 228
176 NEWLAND -002 0.523 0.438 0.294 0.535 0.466 0.335 0.999 0.999 0.998
317 317 317 314 321 314 234 244 264
177 NOBLIS -001 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000 1.000
315 313 300 317 316 315 227 250 259
178 NOBLIS -002 1.000 0.997 0.488 1.000 1.000 1.000 1.000 1.000 1.000
78 94 98 89 99 103 39 46 62 76 79 58 71 61 75
179 NOTIONTAG -000 0.032 0.017 0.007 0.076 0.059 0.036 0.671 0.611 0.467 0.021 0.011 0.150 0.084 0.176 0.140
148 182 195 164 170 182 58 72 105
180 NTECHLAB -003 0.080 0.054 0.028 0.148 0.118 0.075 0.873 0.837 0.752
134 157 170 150 160 165 57 71 103 135 140 94 125
181 NTECHLAB -004 0.063 0.041 0.021 0.131 0.105 0.065 0.868 0.833 0.746 0.053 0.030 0.263 0.214
133 158 171 149 158 164 51 63 94 151 154 102 130
182 NTECHLAB -005 0.062 0.042 0.021 0.130 0.102 0.063 0.816 0.771 0.661 0.073 0.039 0.294 0.227
126 152 160 139 146 152 49 61 89 139 144 93 118
183 NTECHLAB -006 0.056 0.037 0.018 0.121 0.094 0.059 0.802 0.754 0.635 0.057 0.032 0.260 0.207
T = Threshold
Table 34: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
78
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
61 83 91 63 72 78 29 40 58 107 114 68 76
185 NTECHLAB -008 0.024 0.014 0.007 0.057 0.045 0.029 0.601 0.529 0.391 0.033 0.018 0.183 0.140
28 40 45 28 29 29 21 28 46 58 61 44 51 43 47
186 NTECHLAB -009 0.010 0.005 0.003 0.028 0.022 0.014 0.522 0.430 0.311 0.015 0.008 0.109 0.061 0.142 0.114
14 17 12 15 16 13 14 16 25 22 31 24 29 17 13
187 NTECHLAB -010 0.005 0.003 0.002 0.018 0.015 0.011 0.334 0.252 0.169 0.007 0.004 0.059 0.031 0.098 0.077
15 22 16 14 15 12 12 13 22 43 40 33 37 11 10
188 NTECHLAB -011 0.006 0.003 0.002 0.018 0.015 0.010 0.291 0.228 0.150 0.009 0.004 0.074 0.038 0.091 0.075
42 46 44 44 47 44 81 21 27 46 42 49 32 26 23
189 PANGIAM -000 0.014 0.006 0.003 0.039 0.030 0.018 0.974 0.318 0.175 0.009 0.005 0.136 0.033 0.105 0.083
55 71 103 41 46 51 36 23 30 42 30 120 66 42 24
190 PANGIAM -001 0.023 0.011 0.008 0.039 0.030 0.020 0.650 0.383 0.180 0.009 0.004 0.860 0.081 0.141 0.085
244 219 224 248 209 210 230 197 219 213 220 201 212
191 PARAVISION -000 0.278 0.089 0.045 0.447 0.170 0.100 1.000 0.999 0.997 0.470 0.443 0.926 0.779
190 171 167 199 180 179 228 187 202 210 219 173 194
192 PARAVISION -001 0.140 0.049 0.020 0.207 0.128 0.074 1.000 0.999 0.994 0.444 0.428 0.739 0.573
153 172 177 168 173 184 116 120 104 154 161 144 146
193 PARAVISION -002 0.085 0.050 0.022 0.152 0.119 0.076 0.992 0.983 0.748 0.080 0.043 0.497 0.268
135 150 151 144 150 155 149 152 99 140 147 103 132
194 PARAVISION -003 0.063 0.035 0.016 0.124 0.096 0.060 0.997 0.994 0.733 0.058 0.034 0.296 0.232
FNIR(N, R, T) =
45 30 36 31 32 39 147 113 31 48 62 37 56
196 PARAVISION -005 0.014 0.004 0.002 0.031 0.024 0.016 0.997 0.980 0.181 0.011 0.008 0.132 0.120
107 29 24 258 33 33 243 238 267 41 53 45 20 242 315
197 PARAVISION -007 0.048 0.004 0.002 0.560 0.025 0.015 1.000 1.000 1.000 0.009 0.006 0.113 0.024 1.000 1.000
20 20 8 25 24 16 47 57 75 6 4 11 10 4 2
198 PARAVISION -009 0.007 0.003 0.001 0.026 0.019 0.012 0.778 0.735 0.550 0.003 0.002 0.033 0.015 0.073 0.061
284 226 198 295 262 191 252 255 218 164 320 235
199 PIXELALL -002 0.664 0.105 0.030 0.974 0.388 0.083 1.000 1.000 0.602 0.047 1.000 1.000
FRVT
109 114 114 120 117 118 212 227 114 119 154 140
200 PIXELALL -003 0.049 0.022 0.009 0.102 0.073 0.043 1.000 0.998 0.037 0.020 0.554 0.255
174 102 95 279 129 104 233 237 130 100 217 222
201 PIXELALL -004 0.120 0.018 0.007 0.783 0.079 0.037 1.000 0.999 0.051 0.015 0.994 0.942
147 74 69 250 76 75 240 247 87 106 76 56 223 228
202 PIXELALL -005 0.079 0.012 0.005 0.456 0.050 0.027 1.000 0.999 0.027 0.017 0.203 0.071 1.000 0.983
-
False pos. identification rate
False neg. identification rate
128 151 156 174 178 176 75 85 118 127 126 78 89 82 102
-
255 263 273 244 255 264
IDENTIFICATION
222 REALNETWORKS -002 0.370 0.231 0.137 0.416 0.315 0.209
242 249 256 230 244 249 179 182 177 181 191 145 170
223 REALNETWORKS -003 0.273 0.159 0.090 0.342 0.266 0.172 0.999 0.998 0.987 0.164 0.103 0.500 0.364
232 248 255 236 242 246 195 199 196 183 192 160 171
224 REALNETWORKS -004 0.242 0.158 0.090 0.353 0.263 0.169 1.000 0.999 0.992 0.170 0.103 0.613 0.370
117 136 139 108 119 125 99 100 123 112 107 80 91 77 92
225 REALNETWORKS -005 0.052 0.028 0.012 0.094 0.074 0.047 0.984 0.971 0.896 0.037 0.017 0.223 0.123 0.215 0.165
65 84 78 81 85 89 119 115 114 59 64 46 53 50 49
226 REALNETWORKS -006 0.025 0.015 0.006 0.068 0.053 0.032 0.993 0.980 0.838 0.016 0.008 0.120 0.063 0.154 0.116
51 63 62 62 70 74 114 110 116 50 48 107 54 41 41
227 REALNETWORKS -007 0.019 0.010 0.004 0.057 0.043 0.027 0.992 0.979 0.855 0.012 0.005 0.463 0.063 0.140 0.100
38 47 49 40 45 45 109 96 41 38 41 30 35 35 46
228 REALNETWORKS -008 0.012 0.006 0.003 0.037 0.029 0.018 0.988 0.968 0.271 0.008 0.004 0.068 0.035 0.129 0.110
178 185 179 177 174 173 186 196 207 150 146 171 161
229 REMARKAI -000 0.125 0.055 0.023 0.173 0.120 0.070 0.999 0.999 0.995 0.069 0.033 0.717 0.315
T = Threshold
Table 35: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
79
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
215 234 237 207 218 224 122 138 170
231 REMARKAI -002 0.188 0.124 0.059 0.248 0.196 0.122 0.993 0.991 0.980
57 73 73 189 98 95 74 81 102 77 88 73 72 58 67
232 RENDIP -000 0.023 0.012 0.005 0.189 0.059 0.034 0.945 0.894 0.744 0.022 0.013 0.185 0.089 0.167 0.130
58 75 77 60 68 71 42 54 74 75 76 41 48 45 52
233 REVEALMEDIA -000 0.024 0.012 0.006 0.054 0.042 0.025 0.755 0.680 0.539 0.021 0.011 0.093 0.051 0.143 0.118
186 138 131 147 134 129 249 256 80 129 115 314 90 276 199
234 S 1-000 0.137 0.028 0.011 0.129 0.085 0.048 1.000 1.000 0.596 0.047 0.018 1.000 0.123 1.000 0.632
122 91 93 73 82 94 115 124 147 68 70 48 61 46 53
235 S 1-001 0.054 0.016 0.007 0.066 0.052 0.033 0.992 0.985 0.952 0.019 0.010 0.136 0.075 0.148 0.119
129 44 42 100 48 42 65 8 5 27 19 119 100 188 78
236 S 1-002 0.060 0.006 0.002 0.085 0.031 0.018 0.924 0.196 0.095 0.007 0.003 0.792 0.151 0.841 0.144
114 59 55 57 59 56 238 225 182 57 50 102 36 271 120
237 S 1-003 0.050 0.009 0.003 0.052 0.037 0.022 1.000 1.000 0.989 0.014 0.006 0.396 0.037 1.000 0.209
164 200 199 220 235 235 69 79 110 192 199 123 157
238 SCANOVATE -000 0.103 0.067 0.030 0.296 0.240 0.150 0.931 0.893 0.803 0.215 0.118 0.400 0.299
180 211 211 219 228 231 70 84 113 188 193 126 153
239 SCANOVATE -001 0.128 0.081 0.037 0.281 0.227 0.140 0.935 0.911 0.834 0.192 0.103 0.404 0.290
84 112 115 92 103 110 296 282 179
240 SENSETIME -000 0.036 0.021 0.009 0.078 0.063 0.040 1.000 1.000 0.988
FNIR(N, R, T) =
FRVT
11 7 3 11 7 4 168 180 95 9 7 12 12 12 18
246 SENSETIME -006 0.005 0.002 0.001 0.016 0.012 0.009 0.999 0.998 0.680 0.004 0.002 0.034 0.016 0.093 0.079
4 2 2 2 2 2 198 201 73 4 3 6 5 9 9
247 SENSETIME -007 0.003 0.001 0.001 0.012 0.009 0.007 1.000 0.999 0.538 0.003 0.001 0.024 0.011 0.085 0.074
1 1 1 1 1 1 112 25 3 2 2 5 2 7 8
248 SENSETIME -008 0.002 0.001 0.001 0.011 0.009 0.007 0.990 0.405 0.086 0.002 0.001 0.021 0.009 0.080 0.074
-
False pos. identification rate
False neg. identification rate
111 123 135 103 115 119 130 121 107 104 102 76 90
262 SYNESIS -005 0.050 0.025 0.011 0.088 0.072 0.043 0.995 0.984 0.795 0.032 0.016 0.214 0.158
68 92 130 79 86 96 26 37 61 73 72 115 104 55 62
263 T 4 ISB -000 0.027 0.016 0.011 0.068 0.053 0.034 0.566 0.510 0.463 0.021 0.010 0.759 0.177 0.161 0.125
292 188 159 302 302 148 272 258 253 193 138 218 216
264 TECH 5-001 0.807 0.057 0.018 0.994 0.935 0.055 1.000 1.000 1.000 0.244 0.028 0.994 0.817
121 132 138 107 113 112 59 69 85 116 116 77 86 131 106
265 TECH 5-002 0.053 0.027 0.012 0.094 0.070 0.040 0.874 0.805 0.627 0.039 0.019 0.205 0.111 0.440 0.182
231 256 263 232 251 256
266 TEVIAN -003 0.239 0.177 0.096 0.346 0.298 0.198
204 229 242 201 213 221
267 TEVIAN -004 0.170 0.117 0.063 0.216 0.176 0.115
-
IDENTIFICATION
182 216 223 183 193 197 106 93 108
268 TEVIAN -005 0.129 0.087 0.045 0.180 0.144 0.089 0.988 0.962 0.796
60 64 72 46 51 55 25 27 44 60 65 39 45 205 51
269 TEVIAN -006 0.024 0.010 0.005 0.041 0.032 0.021 0.562 0.425 0.291 0.016 0.009 0.093 0.050 0.951 0.117
34 42 46 27 28 30 20 20 32 45 44 28 31 32 43
270 TEVIAN -007 0.011 0.005 0.003 0.028 0.022 0.015 0.504 0.301 0.183 0.009 0.005 0.065 0.033 0.122 0.102
265 283 287 259 274 280
271 TIGER -000 0.462 0.390 0.261 0.565 0.500 0.366
200 213 214 196 203 204 188 191 166
272 TIGER -002 0.158 0.086 0.039 0.202 0.158 0.095 0.999 0.999 0.975
201 212 213 197 202 203
273 TIGER -003 0.158 0.086 0.039 0.202 0.158 0.095
167 205 212 161 166 172
274 TONGYITRANS -000 0.107 0.074 0.038 0.141 0.112 0.069
177 199 201 146 156 161
275 TONGYITRANS -001 0.124 0.066 0.032 0.128 0.101 0.062
T = Threshold
Table 36: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
80
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
MISSES BELOW THRESHOLD , T ENROL RECENT MUGSHOT, N = 1.6 M ENROL APPLICATION PORTRAIT, N = 1.6 M
11:12:06
2022/12/18
ENROL : MUGSHOT ENROL : MUGSHOT ENROL : MUGSHOT ENROL : VISA ENROL : BORDER ENROL : VISA
PROBE : MUGSHOT PROBE : WEBCAM PROBE : PROFILE PROBE : BORDER PROBE : BORDER 10+ YR PROBE : KIOSK
# ALGORITHM FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.0003 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01 FPIR =0.001 FPIR =0.01
226 190 161 154 144 147
277 TOSHIBA -001 0.225 0.058 0.019 0.133 0.092 0.054
103 101 105 93 102 107 134 76 64 94 105 75 87 70 80
278 TRUEFACE -000 0.046 0.018 0.008 0.079 0.062 0.039 0.995 0.882 0.499 0.030 0.016 0.194 0.111 0.188 0.145
296 274 132 293 296 250 187 143 35 233 226 147 135 222 230
279 TURINGTECHVIP -001 0.865 0.345 0.011 0.967 0.850 0.173 0.999 0.993 0.205 0.978 0.754 1.000 1.000 0.999 0.984
303 308 312 294 304 304
280 VD -000 0.950 0.917 0.827 0.968 0.946 0.871
243 260 269 226 248 253
281 VD -001 0.278 0.201 0.116 0.331 0.281 0.188
194 209 207 188 195 198 157 164 176 160 165 98 108 118 148
282 VD -002 0.144 0.079 0.036 0.188 0.148 0.092 0.998 0.996 0.987 0.095 0.048 0.367 0.220 0.372 0.280
230 166 164 153 155 160 185 193 200 131 135 83 92 109 113
283 VD -003 0.234 0.046 0.020 0.133 0.100 0.061 0.999 0.999 0.994 0.051 0.027 0.244 0.133 0.315 0.203
149 155 153 123 132 134 121 129 136 123 131 85 95 95 115
284 VERIDAS -001 0.080 0.037 0.016 0.106 0.082 0.051 0.993 0.987 0.938 0.044 0.023 0.266 0.146 0.264 0.204
150 154 154 124 131 135 120 130 137 122 130 86 96 96 114
285 VERIDAS -002 0.080 0.037 0.016 0.106 0.082 0.051 0.993 0.987 0.938 0.044 0.023 0.266 0.146 0.264 0.204
141 93 85 84 92 92 165 170 130 70 74 57 63 65 77
286 VERIDAS -003 0.072 0.017 0.006 0.071 0.055 0.033 0.998 0.997 0.927 0.020 0.011 0.150 0.078 0.178 0.142
FNIR(N, R, T) =
294 302 307 283 292 297 177 188 211 199 205 121 123 157 183
287 VERIJELAS -000 0.846 0.799 0.681 0.868 0.813 0.697 0.999 0.999 0.995 0.324 0.216 0.933 0.561 0.589 0.462
FPIR(N, T) =
FRVT
146 141 134 130 138 141 153 166 193 156 163 100 111 122 156
292 VIGILANTSOLUTIONS -007 0.076 0.028 0.011 0.113 0.088 0.053 0.997 0.996 0.991 0.081 0.047 0.371 0.242 0.391 0.295
115 109 118 122 123 123 192 190 189 164 168 103 113 146 162
293 VIGILANTSOLUTIONS -008 0.051 0.021 0.010 0.105 0.077 0.046 1.000 0.999 0.991 0.104 0.054 0.398 0.259 0.511 0.316
142 98 94 85 95 100 127 137 164 80 84 56 65 56 63
294 VISIONBOX -000 0.073 0.018 0.007 0.071 0.057 0.035 0.995 0.990 0.974 0.023 0.012 0.146 0.081 0.162 0.126
-
False pos. identification rate
False neg. identification rate
286 247 220 172 183 188 176 171 155 174 188 119 150
308 VOCORD -005 0.689 0.158 0.044 0.161 0.130 0.080 0.999 0.997 0.968 0.138 0.090 0.381 0.287
318 319 320 307 312 320 317 263 317 274 269 233 310
309 VOCORD -006 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
278 296 304 265 283 294 183 200 232 221 224 116 129 175 208
310 VTS -000 0.605 0.598 0.595 0.624 0.619 0.613 0.999 0.999 0.998 0.613 0.609 0.760 0.739 0.761 0.749
81 79 79 77 80 81 156 149 68 78 85 53 64 72 64
311 VTS -001 0.035 0.013 0.006 0.067 0.051 0.031 0.998 0.994 0.510 0.022 0.012 0.141 0.079 0.192 0.126
120 126 125 114 120 124 203 210 148 125 134 81 93 127 107
312 VTS -002 0.053 0.026 0.010 0.098 0.075 0.046 1.000 1.000 0.953 0.045 0.026 0.231 0.133 0.417 0.187
46 53 50 53 54 48 226 235 88 55 45 123 50 163 30
-
313 VTS -003 0.015 0.007 0.003 0.048 0.033 0.019 1.000 1.000 0.632 0.014 0.005 0.954 0.060 0.635 0.089
IDENTIFICATION
72 88 89 82 89 98 41 29 38 74 73 62 69 59 69
314 XFORWARDAI -000 0.029 0.015 0.006 0.070 0.053 0.034 0.698 0.440 0.250 0.021 0.011 0.159 0.082 0.169 0.134
30 39 47 38 44 49 54 30 16 35 46 27 28 33 42
315 XFORWARDAI -001 0.010 0.005 0.003 0.036 0.028 0.020 0.838 0.448 0.143 0.008 0.005 0.062 0.030 0.123 0.102
18 24 35 17 17 25 83 38 4 17 20 16 15 21 28
316 XFORWARDAI -002 0.007 0.003 0.002 0.018 0.016 0.014 0.975 0.525 0.095 0.005 0.003 0.041 0.018 0.099 0.089
263 275 282 298 291 269 224 218 199 202
317 YISHENG -001 0.452 0.346 0.206 0.983 0.808 0.269 0.666 0.396 0.919 0.695
76 96 99 67 75 76
318 YITU -002 0.031 0.018 0.008 0.063 0.049 0.028
77 104 110 75 84 93
319 YITU -003 0.032 0.019 0.009 0.067 0.052 0.033
50 61 65 37 39 41 76 87 126
320 YITU -004 0.019 0.010 0.004 0.035 0.027 0.017 0.948 0.936 0.913
54 68 71 43 52 61
321 YITU -005 0.022 0.010 0.005 0.039 0.032 0.023
T = Threshold
Table 37: Threshold-based accuracy. Values are FNIR(N, T, L) with N = 1.6 million with thresholds set to produce FPIR = 0.0003, 0.001, and 0.01 in non-mate searches.
Throughout blue superscripts indicate the rank of the algorithm for that column. Caution: The Power-low models are mostly intended to draw attention to the kind of
behavior, not as a model to be used for prediction.
T > 0 → Identification
T = 0 → Investigation
81
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 82
Appendices
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 83
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.001
FPIR(N, T) =
FRVT
0.007
0.005
0.003
-
False pos. identification rate
False neg. identification rate
0.002
enrollment_style
dahua_003 paravision_007 griaule_001 pangiam_000 neurotechnology_010 nec_005 ntechlab_009 lifetime_consolidated
0.007 recent
0.005
0.003
0.002
Dataset: 2018 Mugshots
0.001 Tier: 1
Rank 1
R = Num. candidates examined
N = Num. enrolled subjects
Rank 10
intema_000 maxvision_001 cogent_006 visionlabs_009 sqisoft_002 firstcreditkz_001 yitu_4
Rank 50
0.007
0.005
0.003
0.002
-
0.001
IDENTIFICATION
realnetworks_007 nec_3 nec_006 visionlabs_011 lineclova_002 kakao_000 realnetworks_006
0.007
0.005
0.003
0.002
T = Threshold
0.001
05 000
0 06 06 06 07
rankone_012 gorilla_008 neurotechnology_009 hyperverge_001 sensetime_003 line_001 6e+ 160 3e+ 6e+ 9e1+.2e+
0.007
0.005
0.003
0.002
0.001
T > 0 → Identification
T = 0 → Investigation
05 0 06 06 06 07 05 0 6 06 06 07 05 0 06 06 06 07 05 0 06 06 06 07 05 0 06 06 06 07 05 0 06 06 06 07
6e+ 000 3e+ 6e+ 9e1+.2e+ 6e+ 000 3e+0 6e+ 9e1+.2e+ 6e+ 000 3e+ 6e+ 9e1+.2e+ 6e+ 000 3e+ 6e+ 9e1+.2e+ 6e+ 000 3e+ 6e+ 9e1+.2e+ 6e+ 000 3e+ 6e+ 9e1+.2e+
160 160 160 160 160 160
Enrolled population size, N
Figure 20: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. number of enrolled subjects. The figure shows false negative identification rates,
FNIR(N, R), across various gallery sizes and ranks 1, 10 and 50. The threshold is set to zero, so this metric rewards even weak scoring rank 1 mates. This also means
84
FPIR = 1, so any search without an enrolled mate will return non-mated candidates. For clarity, results are sorted and reported into tiers spanning multiple pages, the
tiering criteria being rank 1 hit rate on a gallery size of 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.003
0.002
0.001
FPIR(N, T) =
FRVT
0.300
0.200
0.100
0.070
0.050
False negative identification rate, FNIR(N, T = 0)
0.030
0.020
-
False pos. identification rate
False neg. identification rate
0.010
0.007
0.005
Rank 50
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
-
0.001
IDENTIFICATION
imagus_007 imagus_005 visionlabs_6 pixelall_005 cloudwalk_mt_001 cloudwalk_mt_000 paravision_005
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T = Threshold
0.002
0.001
05 000
0 06 06 06 07
ntechlab_008 everai_paravision_004 dahua_002 pixelall_004 cib_000 visionbox_000 6e+ 160 3e+ 6e+ 9e1+.2e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T > 0 → Identification
T = 0 → Investigation
0.002
0.001
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 0
000 3e+0
6 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 6e+ 9e1+.2e+
85
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.005
0.003
0.002
0.001
0.003
0.002
FNIR(N, R, T) =
FPIR(N, T) =
0.001
FRVT
0.005
0.003
False negative identification rate, FNIR(N, T = 0)
-
False pos. identification rate
False neg. identification rate
0.002
0.003
Dataset: 2018 Mugshots
0.002
Tier: 3
0.001 Rank 1
Rank 10
griaule_000 everai_3 vigilantsolutions_008 veridas_001 notiontag_000 qnap_003 yitu_3
R = Num. candidates examined
N = Num. enrolled subjects
Rank 50
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.001
0.003
0.002
T = Threshold
0.001
05 000
0 06 06 06 07
dermalog_009 anke_002 rankone_009 idemia_007 ntechlab_007 imperial_000 6e+ 160 3e+ 6e+ 9e1+.2e+
0.007
0.005
0.003
0.002
T > 0 → Identification
T = 0 → Investigation
0.001
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 0
000 3e+0
6 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 6e+ 9e1+.2e+
86
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.005
0.003
0.002
FPIR(N, T) =
0.001
FRVT
0.300
0.200
0.100
0.070
0.050
False negative identification rate, FNIR(N, T = 0)
0.030
0.020
-
False pos. identification rate
False neg. identification rate
0.010
0.007
Rank 50
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
-
0.002
0.001
IDENTIFICATION
scanovate_001 cognitec_2 isystems_3 daon_000 toshiba_0 pixelall_002 neurotechnology_4
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T = Threshold
0.003
0.002
0.001
05 000
0 06 06 06 07
irex_000 qnap_002 gorilla_004 kneron_000 neurotechnology_007 sqisoft_001 6e+ 160 3e+ 6e+ 9e1+.2e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 0
000 3e+0
6 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 6e+ 9e1+.2e+
87
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.020
0.010
0.007
0.005
0.003
0.002
0.001
qnap_000 vigilantsolutions_5 isystems_2 tevian_5 dahua_1 vigilantsolutions_6 idemia_3
0.030
0.020
0.010
0.007
0.005
FNIR(N, R, T) =
0.003
0.002
FPIR(N, T) =
0.001
tevian_4 vocord_4 vocord_5 alchera_004 idemia_0 idemia_5 fincore_000
0.030
FRVT
0.020
0.010
False negative identification rate, FNIR(N, T = 0)
0.007
0.005
-
False pos. identification rate
False neg. identification rate
Rank 50
0.030
0.020
0.010
0.007
0.005
0.003
-
0.002
IDENTIFICATION
0.001
acer_000 alchera_3 hik_4 vd_002 dermalog_007 visionlabs_3 lookman_4
0.030
0.020
0.010
0.007
0.005
0.003
T = Threshold
0.002
0.001
05 0
000 3e+0
6 06 06 07 05 000
0 06 06 06 07
lookman_3 kedacom_001 lookman_005 synesis_005 everai_0 6e+ 160 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+
0.030
0.020
0.010
0.007
0.005
0.003
T > 0 → Identification
T = 0 → Investigation
0.002
0.001
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+
88
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
incode_2 cognitec_1 cogent_0 neurotechnology_6 hik_3 incode_3 3divi_4
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
FNIR(N, R, T) =
0.007
0.005
0.003
FPIR(N, T) =
0.002
0.001
anke_0 tevian_0 tevian_1 allgovision_000 megvii_2 turingtechvip_001 tevian_2
0.700
0.500
FRVT
0.300
0.200
0.100
0.070
False negative identification rate, FNIR(N, T = 0)
0.050
0.030
-
False pos. identification rate
False neg. identification rate
0.020
Rank 50
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
-
0.003
0.002
IDENTIFICATION
0.001
neurotechnology_3 realnetworks_004 incode_1 nec_1 realnetworks_003 cognitec_0 hik_0
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T = Threshold
0.005
0.003
0.002
0.001
05 000
0 06 06 06 07
dermalog_5 camvi_5 camvi_3 camvi_4 synesis_003 f8_001 6e+ 160 3e+ 6e+ 9e1+.2e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
0.001
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 0
000 3e+0
6 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 6e+ 9e1+.2e+
89
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.100
11:12:06
2022/12/18
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.100
0.070
0.050
0.030
0.020
0.010
FNIR(N, R, T) =
0.007
0.005
FPIR(N, T) =
0.003
0.100
FRVT
0.070
0.050
0.030
False negative identification rate, FNIR(N, T = 0)
0.020
-
False pos. identification rate
False neg. identification rate
0.010
Rank 50
0.100
0.070
0.050
0.030
0.020
0.010
0.007
-
0.005
IDENTIFICATION
0.003
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T = Threshold
0.005
0.003
05 000
0 06 06 06 07
vigilantsolutions_0 vigilantsolutions_4 dermalog_3 camvi_2 dermalog_4 imagus_008 6e+ 160 3e+ 6e+ 9e1+.2e+
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 0
000 3e+0
6 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 6e+ 9e1+.2e+
90
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
11:12:06
2022/12/18
0.50
0.30
0.20
0.10
0.07
0.05
0.03
0.02
vigilantsolutions_1 eyedea_1 eyedea_2 smilart_2 smilart_0 noblis_2 camvi_1
0.70
0.50
0.30
0.20
0.10
0.07
FNIR(N, R, T) =
0.05
FPIR(N, T) =
0.03
0.02
glory_0 imagus_2 gorilla_0 shaman_4 synesis_3 vigilantsolutions_2 intsysmsu_000
0.70
FRVT
0.50
0.30
False negative identification rate, FNIR(N, T = 0)
0.20
-
False pos. identification rate
False neg. identification rate
0.10
0.70 Rank 1
0.50
0.30 Rank 10
0.20 Rank 50
0.10
0.07
0.05
0.03 enrollment_style
0.02
lifetime_consolidated
imagus_3 ayonix_2 microfocus_6 verijelas_000 vd_0 microfocus_5 ayonix_0
R = Num. candidates examined
N = Num. enrolled subjects
recent
0.70
0.50
0.30
0.20
0.10
0.07
0.05
-
0.03
IDENTIFICATION
0.02
smilart_1 microfocus_4 microfocus_0 microfocus_1 microfocus_3 quantasoft_1 microfocus_2
0.70
0.50
0.30
0.20
0.10
0.07
T = Threshold
0.05
0.03
0.02
05 000 3e+06 06 06 07
digidata_000 vts_000 smilart_5 smilart_4 alchera_1 vocord_6 6e+ 160
0 6e+ 9e1+.2e+
0.70
0.50
0.30
0.20
0.10
0.07
T > 0 → Identification
T = 0 → Investigation
0.05
0.03
0.02
05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000
0 06 06 06 07 05 000 3e+06 06 06 07
6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160 3e+ 6e+ 9e1+.2e+ 6e+ 160
0 6e+ 9e1+.2e+
91
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 92
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.001
FRVT
0.007
0.005
0.003
-
False pos. identification rate
False neg. identification rate
0.002
enrollment_style
lifetime_consolidated
nec_2 nec_3 neurotechnology_009 neurotechnology_010 neurotechnology_012 ntechlab_009 ntechlab_010 recent
0.007
0.005
0.003
0.002 Dataset: 2018 Mugshots
Tier: 1
0.001
00640000
01600000
R = Num. candidates examined
N = Num. enrolled subjects
03000000
ntechlab_011 pangiam_000 paravision_007 paravision_009 rankone_012 rankone_013 realnetworks_006
06000000
0.007
0.005 12000000
0.003
0.002
-
0.001
IDENTIFICATION
realnetworks_007 realnetworks_008 sensetime_003 sensetime_004 sensetime_005 sensetime_006 sensetime_007
0.007
0.005
0.003
0.002
T = Threshold
0.001
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 28: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
93
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.003
0.002
FPIR(N, T) =
0.001
FRVT
0.300
0.200
0.100
0.070
0.050
0.030
0.020
-
False pos. identification rate
False neg. identification rate
0.010
0.007
0.003
0.002
0.001 Dataset: 2018 Mugshots
Tier: 2
innovatrics_007 kakao_001 mantra_000 microsoft_5 microsoft_6 nec_004 ntechlab_008
00640000
0.700
0.500
0.300 01600000
0.200
0.100
0.070 03000000
0.050
0.030
0.020
06000000
0.010
0.007 12000000
0.005
0.003
0.002
0.001
enrollment_style
R = Num. candidates examined
N = Num. enrolled subjects
-
0.002
IDENTIFICATION
0.001
0.003
0.002
0.001
0.003
0.002
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 29: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
94
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.005
0.003
0.002
0.001
0.003
0.002
FNIR(N, R, T) =
FPIR(N, T) =
0.001
FRVT
0.005
0.003
-
False pos. identification rate
False neg. identification rate
0.002
0.001 enrollment_style
lifetime_consolidated
notiontag_000 ntechlab_007 pixelall_003 ptakuratsatu_000 qnap_003 rankone_009 rankone_010 recent
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.001
0.003
0.002
T = Threshold
0.001
0.003
0.002
T > 0 → Identification
T = 0 → Investigation
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 30: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
95
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.005
0.003
0.002
FPIR(N, T) =
0.001
FRVT
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
-
False pos. identification rate
False neg. identification rate
0.010
0.005
0.003
0.002
0.001 Dataset: 2018 Mugshots
Tier: 4
microsoft_2 neurotechnology_007 neurotechnology_4 neurotechnology_5 ntechlab_3 ntechlab_4 ntechlab_5
00640000
0.700
0.500
0.300 01600000
0.200
0.100 03000000
0.070
0.050
0.030 06000000
0.020 12000000
0.010
0.007
0.005
0.003
0.002
0.001
enrollment_style
R = Num. candidates examined
N = Num. enrolled subjects
-
0.003
0.002
IDENTIFICATION
0.001
0.005
0.003
0.002
0.001
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 31: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
96
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.020
0.010
0.007
0.005
0.003
0.002
0.001
dermalog_007 dermalog_6 everai_0 fincore_000 hik_4 idemia_0 idemia_1
0.030
0.020
0.010
0.007
0.005
FNIR(N, R, T) =
0.003
0.002
FPIR(N, T) =
0.001
idemia_2 idemia_3 idemia_4 idemia_5 idemia_6 intellivision_002 isystems_2
0.030
FRVT
0.020
0.010
0.007
-
False pos. identification rate
False neg. identification rate
0.005
0.003
0.002
enrollment_style
0.001
lifetime_consolidated
kedacom_001 lookman_005 lookman_3 lookman_4 megvii_0 ntechlab_0 pangiam_001 recent
0.030
0.020
0.010 Dataset: 2018 Mugshots
0.007
0.005 Tier: 5
0.003
0.002 00640000
0.001 01600000
03000000
R = Num. candidates examined
N = Num. enrolled subjects
-
0.002
IDENTIFICATION
0.001
tevian_4 tevian_5 tongyitrans_0 tongyitrans_1 vd_002 vd_003 vigilantsolutions_5
0.030
0.020
0.010
0.007
0.005
0.003
T = Threshold
0.002
0.001
vigilantsolutions_6 visionlabs_3 vocord_3 vocord_4 vocord_5 1 3 10 30 50 1 3 10 30 50
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 32: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
97
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
camvi_4 camvi_5 cogent_0 cogent_1 cognitec_0 cognitec_1 dermalog_5
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
0.010
0.007
0.005
0.003
FPIR(N, T) =
0.002
0.001
f8_001 gorilla_2 hik_0 hik_1 hik_2 hik_3 incode_1
0.700
FRVT
0.500
0.300
0.200
0.100
0.070
0.050
0.030
-
False pos. identification rate
False neg. identification rate
0.020
0.007
0.005
0.003
0.002 enrollment_style
0.001
lifetime_consolidated
incode_2 incode_3 innovatrics_3 innovatrics_4 isystems_0 isystems_1 megvii_1 recent
0.700
0.500
0.300
0.200
0.100
0.070 Dataset: 2018 Mugshots
0.050
0.030
0.020 Tier: 6
0.010
0.007
0.005 00640000
0.003
0.002
0.001 01600000
03000000
R = Num. candidates examined
N = Num. enrolled subjects
-
0.005
0.003
IDENTIFICATION
0.002
0.001
rankone_2 rankone_3 realnetworks_003 realnetworks_004 sensetime_002 synesis_003 t4isb_000
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
T = Threshold
0.007
0.005
0.003
0.002
0.001
tevian_0 tevian_1 tevian_2 tevian_3 turingtechvip_001 yisheng_0 1 3 10 30 50
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
T > 0 → Identification
T = 0 → Investigation
0.007
0.005
0.003
0.002
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 33: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
98
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.100
11:12:06
2022/12/18
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.100
0.070
0.050
0.030
0.020
0.010
FNIR(N, R, T) =
0.007
0.005
FPIR(N, T) =
0.003
0.100
FRVT
0.070
0.050
0.030
0.020
-
False pos. identification rate
False neg. identification rate
0.010
0.007
0.005
0.003 enrollment_style
lifetime_consolidated
incode_0 innovatrics_0 innovatrics_1 innovatrics_2 intellivision_001 kneron_001 mukh_002 recent
0.100
0.070
0.050
0.030 Dataset: 2018 Mugshots
0.020 Tier: 7
0.010
0.007
0.005 00640000
0.003 01600000
03000000
R = Num. candidates examined
N = Num. enrolled subjects
-
0.005
IDENTIFICATION
0.003
0.100
0.070
0.050
0.030
0.020
0.010
T = Threshold
0.007
0.005
0.003
0.100
0.070
0.050
0.030
0.020
0.010
T > 0 → Identification
T = 0 → Investigation
0.007
0.005
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 34: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
rate on a gallery size of N = 640 000 subjects.
99
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
11:12:06
2022/12/18
0.50
0.30
0.20
0.10
0.07
0.05
0.03
0.02
dermalog_2 digidata_000 eyedea_0 eyedea_1 eyedea_2 glory_0 glory_1
0.70
0.50
0.30
0.20
0.10
FNIR(N, R, T) =
0.07
0.05
FPIR(N, T) =
0.03
0.02
gorilla_0 hbinno_0 imagus_0 imagus_2 imagus_3 intsysmsu_000 microfocus_0
FRVT
0.70
0.50
0.30
0.20
-
False pos. identification rate
False neg. identification rate
0.10
0.05
0.03 enrollment_style
0.02
lifetime_consolidated
microfocus_1 microfocus_2 microfocus_3 microfocus_4 microfocus_5 microfocus_6 noblis_1 recent
0.70
0.50
0.30
0.20 Dataset: 2018 Mugshots
Tier: 8
0.10
0.07
0.05
00640000
0.03
0.02 01600000
03000000
R = Num. candidates examined
N = Num. enrolled subjects
-
0.05
IDENTIFICATION
0.03
0.02
smilart_0 smilart_1 smilart_2 smilart_4 smilart_5 synesis_0 synesis_3
0.70
0.50
0.30
0.20
0.10
0.07
T = Threshold
0.05
0.03
0.02
vd_0 verijelas_000 vigilantsolutions_1 vigilantsolutions_2 vocord_6 vts_000 1 3 10 30 50
0.70
0.50
0.30
0.20
0.10
0.07
T > 0 → Identification
T = 0 → Investigation
0.05
0.03
0.02
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
Figure 35: [FRVT-2018 Mugshot Dataset] Rank-based identification miss rates vs. rank. The figure shows false negative identification rates (FNIR) for ranks up to 50.
This metric is appropriate to investigational applications where human reviewers will adjudicate sorted candidate lists. Note that with threshold set to zero, FPIR = 1,
i.e. any search without an enrolled mate will return non-mated candidates. Results are sorted and reported into tiers for clarity, with the tiering criteria being rank 1 hit
100
rate on a gallery size of N = 640 000 subjects.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 101
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.050
0.030
FPIR(N, T) =
0.020
0.010
0.007
0.005
0.003
FRVT
0.002
0.001
-
False pos. identification rate
False neg. identification rate
0.200
0.030
0.020 lifetime_consolidated
0.010 recent
0.007
0.005
0.003
0.002
0.001
-
pangiam_000 sensetime_003 dahua_004 realnetworks_008 vts_003 neurotechnology_010
IDENTIFICATION
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
0.001
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
yitu_4 dahua_003 sqisoft_002 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
05 000
0 06 06 +06e+07 e+05 000 06 06 +06e+07 e+05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1.2 6 160
0 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2
Figure 36: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various
gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are
102
computed from the trials listed in rows 1-10 of Table 1. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.020
FPIR(N, T) =
0.010
0.007
0.005
0.003
0.002
FRVT
0.001
0.200
-
False pos. identification rate
False neg. identification rate
0.100
FPIR=0.100
0.010
0.007
0.005
0.003
0.002
0.001
-
0.200
IDENTIFICATION
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
0.001
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
gorilla_007 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2
103
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.700
0.500
0.300
0.200
0.100
FNIR(N, R, T) =
0.070
0.050
FPIR(N, T) =
0.030
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
microsoft_6 everai_paravision_004 innovatrics_007 revealmedia_000 veridas_003 dahua_002
False negative identification rate, FNIR(N, T > 0)
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.050
0.030 FPIR=1.000
0.020
0.010
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
vts_002 visionbox_000 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2
104
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.050
0.030
FPIR(N, T) =
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
sensetime_1 imagus_006 rankone_009 fujitsulab_000 hzailu_000 pixelall_003
False negative identification rate, FNIR(N, T > 0)
0.300
-
False pos. identification rate
False neg. identification rate
0.200
0.030
0.020
FPIR=0.100
0.010
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T = Threshold
0.002
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
visionlabs_4 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2
105
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.070
0.050
FPIR(N, T) =
0.030
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
vigilantsolutions_007 rankone_007 anke_002 everai_3 everai_1 veridas_002
False negative identification rate, FNIR(N, T > 0)
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.050 FPIR=0.100
0.030
0.020
0.010
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
incode_004 gorilla_005 sqisoft_001 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2
106
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.700
0.500
0.300
0.200
FNIR(N, R, T) =
0.100
0.070
FPIR(N, T) =
0.050
0.030
0.020
0.010
0.007
0.005
FRVT
cyberlink_000 acer_001 ntechlab_4 yitu_0 isystems_3 neurotechnology_5
False negative identification rate, FNIR(N, T > 0)
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.070 FPIR=0.100
0.050
0.030
0.020
0.010
0.007
0.005
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T = Threshold
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
scanovate_001 kneron_000 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
T > 0 → Identification
T = 0 → Investigation
0.010
0.007
0.005
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2
107
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.100
FNIR(N, R, T) =
0.070
0.050
FPIR(N, T) =
0.030
0.020
0.010
0.007
FRVT
0.005
0.500
-
False pos. identification rate
False neg. identification rate
0.300
0.100
0.070
0.050 enrollment_style
0.030 lifetime_consolidated
0.020
recent
0.010
0.007
0.005
0.050 FPIR=0.100
0.030
0.020
0.010
0.007
0.005
-
0.500
IDENTIFICATION
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T = Threshold
0.005
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
megvii_0 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
T > 0 → Identification
T = 0 → Investigation
0.010
0.007
0.005
05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2
108
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
11:12:06
2022/12/18
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.300
0.200
0.100
FNIR(N, R, T) =
0.070
FPIR(N, T) =
0.050
0.030
0.020
0.010
FRVT
0.007
-
0.300
False pos. identification rate
False neg. identification rate
0.100
0.070
0.050
enrollment_style
0.030 lifetime_consolidated
0.020 recent
0.010
0.007
0.070
0.050 FPIR=0.100
0.030
0.020
0.010
0.007
-
IDENTIFICATION
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
T = Threshold
0.007
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
acer_000 alchera_004 6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1.2 6 160 3e+ 6e+ 9e1 .2
0.300
0.200
0.100
0.070
0.050
0.030
0.020
T > 0 → Identification
T = 0 → Investigation
0.010
0.007
05 000
0 06 06 +06e+07 e+05 000
0 06 06 +06e+07
6e+ 160 3e+ 6e+ 9e1 .2 6 160 3e+ 6e+ 9e1 .2
109
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.03
0.02
0.01
0.70
0.50
0.30
0.20
FNIR(N, R, T) =
0.10
FPIR(N, T) =
0.07
0.05
0.03
0.02
0.01
FRVT
rankone_3 tevian_3 3divi_4 incode_2 hik_2 rankone_1
False negative identification rate, FNIR(N, T > 0)
-
0.70
False pos. identification rate
False neg. identification rate
0.50
0.10 enrollment_style
0.07
0.05 lifetime_consolidated
0.03 recent
0.02
0.01
0.10 FPIR=0.100
0.07
0.05
0.03
0.02
0.01
-
IDENTIFICATION
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.03
0.02
0.01
T = Threshold
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
yisheng_0 f8_001 6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.03
T > 0 → Identification
T = 0 → Investigation
0.02
0.01
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
Enrolled population size, N
Figure 44: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various
gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are
computed from the trials listed in rows 1-10 of Table 1. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and
110
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.03
0.70
0.50
0.30
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.10
0.07
0.05
0.03
FRVT
gorilla_3 rankone_0 mukh_002 innovatrics_2 3divi_0 3divi_1
False negative identification rate, FNIR(N, T > 0)
-
False pos. identification rate
False neg. identification rate
0.70
FPIR=0.100
0.10
0.07
0.05
0.03
-
IDENTIFICATION
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.03
T = Threshold
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
20face_000 tiger_0 6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
0.70
0.50
0.30
0.20
0.10
0.07
T > 0 → Identification
T = 0 → Investigation
0.05
0.03
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
Enrolled population size, N
Figure 45: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various
gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are
computed from the trials listed in rows 1-10 of Table 1. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and
111
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.70
0.50
FNIR(N, R, T) =
0.30
0.20
FPIR(N, T) =
0.10
0.07
0.05
FRVT
newland_2 shaman_3 dermalog_4 dermalog_0 synesis_0 shaman_0
False negative identification rate, FNIR(N, T > 0)
-
False pos. identification rate
False neg. identification rate
0.70
0.30
0.20 enrollment_style
lifetime_consolidated
0.10 recent
0.07
0.05
0.20 FPIR=0.100
0.10
0.07
0.05
-
IDENTIFICATION
0.70
0.50
0.30
0.20
0.10
0.07
0.05
T = Threshold
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
imagus_008 intsysmsu_000 6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
0.70
0.50
0.30
0.20
0.10
T > 0 → Identification
T = 0 → Investigation
0.07
0.05
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
Enrolled population size, N
Figure 46: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various
gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are
computed from the trials listed in rows 1-10 of Table 1. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and
112
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.7
0.5
0.3
0.7
FNIR(N, R, T) =
0.5
FPIR(N, T) =
0.3
FRVT
eyedea_0 quantasoft_1 verijelas_000 vigilantsolutions_2 ayonix_1 ayonix_2
False negative identification rate, FNIR(N, T > 0)
-
False pos. identification rate
False neg. identification rate
0.3
FPIR=0.001
FPIR=0.010
FPIR=0.100
ayonix_0 vd_0 microfocus_5 microfocus_0 microfocus_1 microfocus_2
0.7 enrollment_style
lifetime_consolidated
R = Num. candidates examined
N = Num. enrolled subjects
0.5 recent
0.3
-
IDENTIFICATION
0.7
0.5
0.3
T = Threshold
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
alchera_1 vocord_6 6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
0.7
0.5
T > 0 → Identification
T = 0 → Investigation
0.3
05 000
0 06 06 06 +07 e+05 000
0 06 06 06 +07
6e+ 160 3e+ 6e+ 9e+
1.2e 6 160 3e+ 6e+ 9e+
1.2e
Enrolled population size, N
Figure 47: [FRVT-2018 Mugshot Dataset] Threshold-based identification miss rates vs. number of enrolled subjects. The figure shows FNIR(N, T) across various
gallery sizes when the threshold is set to achieve the given FPIRs. The rank criterion is irrelevant at high thresholds as mates are always at rank 1. The results are
computed from the trials listed in rows 1-10 of Table 1. Less accurate algorithms were not run on large N, so results are missing. For clarity, results are sorted and
113
reported into tiers spanning multiple pages. The tiering criteria is complicated: First paging by FNIR(Nb , 1, 0), then sorting by median FNIR(Nb , T), Nb = 640 000.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 114
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.700
0.500
0.300
FNIR(N, R, T) =
0.200
0.100
FPIR(N, T) =
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
0.001
-
False pos. identification rate
False neg. identification rate
0.300
0.200
0.100
0.070 Dataset: 2018 Mugshot
0.050
0.030
0.020 Tier: 1
0.010
0.007
0.005
0.003 00640000
0.002
01600000
0.001
03000000
06000000
rankone_013 clearviewai_000 canon_002 canon_001 pangiam_000 dahua_004
12000000
0.700
0.500
0.300
0.200
R = Num. candidates examined
N = Num. enrolled subjects
0.100
0.070
0.050
enrollment_style
0.030 lifetime_consolidated
0.020
0.010 recent
0.007
0.005
0.003
0.002
0.001
-
IDENTIFICATION
vts_003 realnetworks_008 line_001 neurotechnology_012 sensetime_003 yitu_4
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
neurotechnology_010 dahua_003 sqisoft_002 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 48: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
115
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.050
0.030
0.020
FPIR(N, T) =
0.010
0.007
0.005
0.003
0.002
0.001
FRVT
ntechlab_009 cognitec_006 s1_003 cogent_006 cognitec_005 realnetworks_007
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.300
0.030
0.020 lifetime_consolidated
0.010
0.007
0.005
recent
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
T = Threshold
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
gorilla_007 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T > 0 → Identification
T = 0 → Investigation
0.002
0.001
04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 49: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
116
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.050
0.030
0.020
FPIR(N, T) =
0.010
0.007
0.005
0.003
0.002
0.001
FRVT
everai_paravision_004 innovatrics_007 revealmedia_000 veridas_003 cogent_005 dahua_002
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.300
0.030
0.020 06000000
0.010
0.007 12000000
0.005
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
T = Threshold
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
fujitsulab_001 visionbox_000 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T > 0 → Identification
T = 0 → Investigation
0.002
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 50: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
117
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.700
0.500
0.300
0.200
0.100
FNIR(N, R, T) =
0.070
0.050
0.030
FPIR(N, T) =
0.020
0.010
0.007
0.005
0.003
0.002
0.001
FRVT
idemia_007 hzailu_000 rankone_009 pixelall_003 decatur_000 line_000
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.030 lifetime_consolidated
0.020
0.010 recent
0.007
0.005
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
visionlabs_4 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 51: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
118
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.050
0.030
0.020
FPIR(N, T) =
0.010
0.007
0.005
0.003
0.002
0.001
FRVT
vigilantsolutions_007 rankone_007 anke_002 everai_3 everai_1 veridas_002
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.300
0.030
0.020 06000000
0.010 12000000
0.007
0.005
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
T = Threshold
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
cogent_2 cogent_3 sqisoft_001 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T > 0 → Identification
T = 0 → Investigation
0.002
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 52: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
119
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.700
0.500
0.300
0.200
0.100
0.070
FNIR(N, R, T) =
0.050
0.030
FPIR(N, T) =
0.020
0.010
0.007
0.005
0.003
0.002
0.001
FRVT
acer_001 ntechlab_4 isystems_3 yitu_0 cognitec_2 kneron_000
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.030 lifetime_consolidated
0.020
0.010 recent
0.007
0.005
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
T = Threshold
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
gorilla_004 neurotechnology_007 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 53: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
120
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.700
0.500
0.300
0.200
0.100
FNIR(N, R, T) =
0.070
0.050
0.030
FPIR(N, T) =
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
0.001
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.050
0.030 06000000
0.020
12000000
0.010
0.007
0.005
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
megvii_0 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
0.001
04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 54: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
121
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.001
0.700
0.500
0.300
0.200
0.100
FNIR(N, R, T) =
0.070
0.050
0.030
FPIR(N, T) =
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
0.001
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.050
0.030 06000000
0.020
12000000
0.010
0.007
0.005
0.003
0.002
0.001
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
T = Threshold
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
acer_000 alchera_004 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
0.003
0.002
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 55: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
122
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.700
0.500
0.300
0.200
FNIR(N, R, T) =
0.100
0.070
0.050
FPIR(N, T) =
0.030
0.020
0.010
0.007
0.005
0.003
0.002
FRVT
incode_2 3divi_4 hik_2 rankone_1 tevian_0 tevian_1
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.050 lifetime_consolidated
0.030
0.020 recent
0.010
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T = Threshold
0.002
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
yisheng_0 f8_001 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
T > 0 → Identification
T = 0 → Investigation
0.007
0.005
0.003
0.002
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 56: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
123
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
0.002
0.700
0.500
0.300
0.200
FNIR(N, R, T) =
0.100
0.070
0.050
FPIR(N, T) =
0.030
0.020
0.010
0.007
0.005
0.003
FRVT
0.002
0.700
-
False pos. identification rate
False neg. identification rate
0.500
False negative identification rate, FNIR(T)
0.070
0.050 06000000
0.030
0.020 12000000
0.010
0.007
0.005
0.003
0.002
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.005
0.003
T = Threshold
0.002
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
20face_000 tiger_0 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
T > 0 → Identification
T = 0 → Investigation
0.007
0.005
0.003
0.002
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 57: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
124
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
0.007
0.700
0.500
0.300
0.200
FNIR(N, R, T) =
0.100
FPIR(N, T) =
0.070
0.050
0.030
0.020
0.010
0.007
FRVT
dermalog_3 dermalog_0 shaman_3 dermalog_4 dermalog_2 imagus_008
-
0.700
False pos. identification rate
False neg. identification rate
0.500
0.100
0.070 06000000
0.050 12000000
0.030
0.020
0.010
0.007
-
IDENTIFICATION
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
0.010
T = Threshold
0.007
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
smilart_2 intsysmsu_000 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.700
0.500
0.300
0.200
0.100
0.070
0.050
0.030
T > 0 → Identification
T = 0 → Investigation
0.020
0.010
0.007
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 58: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
125
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
0.50
0.30
0.20
0.10
0.07
0.05
0.03
0.70
0.50
0.30
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.10
0.07
0.05
0.03
FRVT
smilart_1 vts_000 verijelas_000 vigilantsolutions_2 quantasoft_1 ayonix_1
-
False pos. identification rate
False neg. identification rate
0.70
False negative identification rate, FNIR(T)
0.30 enrollment_style
0.20
lifetime_consolidated
0.10 recent
0.07
0.05
0.03
Dataset: 2018 Mugshot
ayonix_2 ayonix_0 vd_0 microfocus_5 microfocus_0 microfocus_1 Tier: 12
0.70 00640000
0.50
01600000
0.30
03000000
R = Num. candidates examined
N = Num. enrolled subjects
0.20
06000000
0.10 12000000
0.07
0.05
0.03
-
IDENTIFICATION
0.70
0.50
0.30
0.20
0.10
0.07
0.05
T = Threshold
0.03
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
alchera_1 vocord_6 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.70
0.50
0.30
0.20
0.10
0.07
T > 0 → Identification
T = 0 → Investigation
0.05
0.03
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
False positive identification rate, FPIR(T)
Figure 59: [FRVT-2018 Mugshot Dataset] Identification miss rates vs. false positive rates. The figure shows miss rates FNIR(N, L, T) as a function of FPIR(N, T), with
N ranging from 640 000 to 12 000 000 as noted in rows 1-10 of Table 1. These error tradeoff characteristics are useful for applications where a threshold must be elevated
to limit false positives, such as when human reviewer labor is not matched to the volume of searches. Dark lines join points of equal threshold: If horizontal, FPIR(T)
126
rises with N, and mate scores are independent of N. Other algorithms adjust scores in an attempt to make FPIR independent of N.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 127
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.003
0.002
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
False negative identification rate (FNIR)
0.001
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
(00,02]
(02,04]
sensetime_007 cloudwalk_hr_000 paravision_009
0.005 (04,06]
(06,08]
(08,10]
(10,12]
(12,14]
R = Num. candidates examined
N = Num. enrolled subjects
(14,18]
0.003
0.002
-
IDENTIFICATION
0.001
T = Threshold
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
Rank
T > 0 → Identification
T = 0 → Investigation
Figure 60: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
enrollment.
128
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.005
0.003
FNIR(N, R, T) =
FPIR(N, T) =
0.002
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
(12,14]
(14,18]
0.003
-
IDENTIFICATION
0.002
T = Threshold
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 61: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
129
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.005
0.003
FNIR(N, R, T) =
FPIR(N, T) =
0.002
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
0.001 (years)
(00,02]
(02,04]
cogent_006 rankone_013 canon_001
(04,06]
(06,08]
(08,10]
0.005
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
-
0.003
IDENTIFICATION
0.002
T = Threshold
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 62: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
130
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.005
0.003
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
0.002
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
0.001 (00,02]
(02,04]
lineclova_002 maxvision_001 vts_003
(04,06]
(06,08]
(08,10]
0.005 (10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
-
IDENTIFICATION
0.003
0.002
T = Threshold
0.001
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 63: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
131
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.005
FNIR(N, R, T) =
0.003
FPIR(N, T) =
FRVT
0.002
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
(00,02]
(02,04]
realnetworks_008 pangiam_000 vnpt_002
(04,06]
(06,08]
(08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
0.005
(12,14]
(14,18]
-
IDENTIFICATION
0.003
0.002
T = Threshold
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 64: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
132
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.007
0.005
FNIR(N, R, T) =
FPIR(N, T) =
0.003
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.002
Time Lapse
(years)
(00,02]
(02,04]
neurotechnology_010 canon_002 rankone_012
(04,06]
0.007 (06,08]
(08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
0.005 (14,18]
-
IDENTIFICATION
0.003
T = Threshold
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 65: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
133
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.007
0.005
FNIR(N, R, T) =
FPIR(N, T) =
0.003
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
(00,02]
(02,04]
s1_003 ntechlab_011 dermalog_010
(04,06]
(06,08]
0.007
(08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
0.005
-
IDENTIFICATION
0.003
T = Threshold
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 66: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
134
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.007
0.005
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
0.003
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.007 (12,14]
(14,18]
0.005
-
IDENTIFICATION
0.003
T = Threshold
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 67: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
135
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.010
0.007
0.005
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
0.003
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
(00,02]
(02,04]
nec_2 irex_000 realnetworks_006
(04,06]
(06,08]
0.010 (08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
0.007
-
0.005
IDENTIFICATION
0.003
T = Threshold
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 68: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
136
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.010
FNIR(N, R, T) =
0.007
FPIR(N, T) =
0.005
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.003
(12,14]
(14,18]
0.010
-
IDENTIFICATION
0.007
0.005
T = Threshold
0.003
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 69: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
137
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.010
0.007
FNIR(N, R, T) =
FPIR(N, T) =
0.005
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.003
(12,14]
(14,18]
0.010
-
0.007
IDENTIFICATION
0.005
T = Threshold
0.003
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 70: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
138
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.010
FNIR(N, R, T) =
FPIR(N, T) =
0.007
FRVT
0.005
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
(00,02]
(02,04]
pixelall_004 dilusense_000 maxvision_000
0.020 (04,06]
(06,08]
(08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
0.010
-
IDENTIFICATION
0.007
0.005
T = Threshold
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 71: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
139
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.020
0.010
FNIR(N, R, T) =
FPIR(N, T) =
0.007
FRVT
0.005
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
(12,14]
(14,18]
-
0.010
IDENTIFICATION
0.007
0.005
T = Threshold
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 72: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
140
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.020
0.010
FNIR(N, R, T) =
FPIR(N, T) =
0.007
FRVT
False negative identification rate (FNIR)
0.005
-
False pos. identification rate
False neg. identification rate
Time Lapse
0.003 (years)
(00,02]
(02,04]
rankone_009 anke_002 dermalog_008
(04,06]
(06,08]
0.020 (08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
-
0.010
IDENTIFICATION
0.007
0.005
T = Threshold
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 73: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
141
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.030
0.020
FNIR(N, R, T) =
0.010
FPIR(N, T) =
0.007
FRVT
0.005
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
0.002 (years)
(00,02]
(02,04]
gorilla_005 ptakuratsatu_000 veridas_001
(04,06]
(06,08]
(08,10]
0.030
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
0.020 (14,18]
-
IDENTIFICATION
0.010
0.007
0.005
T = Threshold
0.003
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 74: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
142
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.030
0.020
FNIR(N, R, T) =
0.010
FPIR(N, T) =
0.007
FRVT
0.005
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
(12,14]
0.020 (14,18]
-
IDENTIFICATION
0.010
0.007
0.005
T = Threshold
0.003
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 75: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
143
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
FRVT
False negative identification rate (FNIR)
0.007
-
False pos. identification rate
False neg. identification rate
0.030 (12,14]
(14,18]
0.020
-
IDENTIFICATION
0.010
T = Threshold
0.007
0.005
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 76: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
144
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
FRVT
0.007
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.005
Time Lapse
0.003 (years)
(00,02]
(02,04]
pixelall_002 neurotechnology_5 toshiba_1
(04,06]
(06,08]
(08,10]
0.030 (10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
0.020
-
IDENTIFICATION
0.010
0.007
T = Threshold
0.005
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 77: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
145
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
0.010
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
0.005 (years)
(00,02]
(02,04]
neurotechnology_4 kedacom_001 lookman_005
(04,06]
(06,08]
(08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
0.030
(14,18]
0.020
-
IDENTIFICATION
0.010
T = Threshold
0.007
0.005
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 78: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
146
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
FRVT
False negative identification rate (FNIR)
0.007
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
0.003 (00,02]
(02,04]
cognitec_3 lookman_3 synesis_003
(04,06]
(06,08]
0.050 (08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
(14,18]
0.030
-
0.020
IDENTIFICATION
0.010
T = Threshold
0.007
0.005
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 79: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
147
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.070
0.050
0.030
FNIR(N, R, T) =
FPIR(N, T) =
0.020
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
0.007 (years)
(00,02]
(02,04]
pangiam_001 cogent_0 cogent_1
(04,06]
(06,08]
0.070 (08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
0.050 (14,18]
-
IDENTIFICATION
0.030
0.020
T = Threshold
0.010
0.007
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 80: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
148
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.070
0.050
0.030
FNIR(N, R, T) =
0.020
FPIR(N, T) =
0.010
FRVT
0.007
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.050 (12,14]
(14,18]
0.030
-
IDENTIFICATION
0.020
0.010
0.007
T = Threshold
0.005
0.003
0.002
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 81: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
149
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.100
0.070
0.050
0.030
FNIR(N, R, T) =
FPIR(N, T) =
0.020
FRVT
0.010
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.070
(12,14]
0.050 (14,18]
0.030
-
IDENTIFICATION
0.020
0.010
T = Threshold
0.007
0.005
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 82: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
150
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.100
0.070
0.050
0.030
FNIR(N, R, T) =
FPIR(N, T) =
0.020
FRVT
0.010
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
0.070 (12,14]
(14,18]
0.050
-
IDENTIFICATION
0.030
0.020
0.010
T = Threshold
0.007
0.005
0.003
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 83: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
151
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.200
0.100
0.070
0.050
FNIR(N, R, T) =
FPIR(N, T) =
0.030
0.020
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
(12,14]
0.100 (14,18]
0.070
-
0.050
IDENTIFICATION
0.030
0.020
T = Threshold
0.010
0.007
0.005
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 84: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
152
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.300
0.200
0.100
0.070
FNIR(N, R, T) =
FPIR(N, T) =
0.050
FRVT
0.030
False negative identification rate (FNIR)
0.020
-
False pos. identification rate
False neg. identification rate
(12,14]
(14,18]
0.100
-
0.070
IDENTIFICATION
0.050
0.030
T = Threshold
0.020
0.010
0.007
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 85: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
153
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.30
0.20
FNIR(N, R, T) =
0.10
FPIR(N, T) =
0.07
FRVT
0.05
False negative identification rate (FNIR)
-
0.03
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
0.01
(00,02]
(02,04]
camvi_4 camvi_5 noblis_2
(04,06]
0.70 (06,08]
(08,10]
0.50
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
(12,14]
0.30 (14,18]
0.20
-
IDENTIFICATION
0.10
0.07
0.05
T = Threshold
0.03
0.02
0.01
1 3 10 30 50 1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 86: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
154
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.7
0.5
FNIR(N, R, T) =
FPIR(N, T) =
0.3
FRVT
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
Time Lapse
(years)
(00,02]
1 3 10 30 50 (02,04]
vts_000 siat_2
(04,06]
(06,08]
(08,10]
(10,12]
R = Num. candidates examined
N = Num. enrolled subjects
0.7
(12,14]
(14,18]
0.5
-
IDENTIFICATION
0.3
T = Threshold
0.2
1 3 10 30 50 1 3 10 30 50
T > 0 → Identification
T = 0 → Investigation
Rank
Figure 87: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. rank by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
155
enrollment.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 156
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.300
0.200
0.100
0.070
0.050
0.030
FNIR(N, R, T) =
0.020
FPIR(N, T) =
0.010
0.007
FRVT
0.005
-
False pos. identification rate
False neg. identification rate
0.700
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
R = Num. candidates examined
N = Num. enrolled subjects
(14,18]
0.010
0.007
0.005
-
IDENTIFICATION
nec_005 cloudwalk_mt_001 sensetime_007 idemia_009
0.700
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
T > 0 → Identification
T = 0 → Investigation
0.007
0.005
01 .002.003 .005.007.010 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 .002.003 .005.007.010 .020.030 .050.070.100 .200.300 .500.700
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 88: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
157
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
sensetime_002 nec_2 rankone_013 kakao_001
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 89: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
158
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
paravision_005 lineclova_002 maxvision_001 griaule_001
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 90: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
159
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
canon_002 canon_001 vnpt_002 hzailu_001
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 91: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
160
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
microsoft_6 cyberlink_003 cib_000 vts_003
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 92: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
161
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
rankone_007 cyberlink_002 yitu_5 yitu_4
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 93: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
162
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
visionlabs_6 lookman_005 cognitec_004 pixelall_004
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 94: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
163
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
microsoft_3 anke_002 idemia_4 imperial_000
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 95: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
164
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
lookman_3 veridas_001 microsoft_0 idemia_5
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 96: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
165
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
rankone_5 cognitec_3 isystems_3 cognitec_2
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 97: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
166
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
ntechlab_4 isystems_2 nec_0 dermalog_007
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 98: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
167
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
ntechlab_0 anke_0 megvii_0 cognitec_1
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 99: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
168
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300
0.200
0.100
0.070
0.050
0.030
0.020
FNIR(N, R, T) =
FPIR(N, T) =
0.010
0.007
0.005
FRVT
realnetworks_004 realnetworks_003 rankone_0 realnetworks_2
0.700
-
False pos. identification rate
False neg. identification rate
0.500
0.300
0.200 Dataset: 2018 Mugshots
N = 3068801
0.100 (00,02]
(02,04]
0.070 (04,06]
0.050 (06,08]
(08,10]
0.030 (10,12]
0.020 (12,14]
(14,18]
R = Num. candidates examined
N = Num. enrolled subjects
0.010
0.007
0.005
-
0.700
IDENTIFICATION
0.500
0.300
0.200
0.100
T = Threshold
0.070
0.050
0.030
0.020
0.010
0.007
T > 0 → Identification
T = 0 → Investigation
0.005
01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700 01 02 03 05 07 10 .020.030 .050.070.100 .200.300 .500.700
0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0
Figure 100: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
169
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
11:12:06
2022/12/18
0.500
0.300
FNIR(N, R, T) =
FPIR(N, T) =
0.200
FRVT
-
False pos. identification rate
False neg. identification rate
0.100
0.030
-
IDENTIFICATION
0.020
T = Threshold
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
01 02 .003 .005 .007 .010 20 .030 .050 .070 .100 00 .300 .500 .700 01 02 .003 .005 .007 .010 20 30 .050 .070 .100 00 .300 .500 .700 01 02 .003 .005 .007 .010 20 .030 .050 .070 .100 00 00 .500 .700
0.0 0.0 0 0 0 0 0.0 0 0 0 0 0.2 0 0 0 0.0 0.0 0 0 0 0 0.0 0.0 0 0 0 0.2 0 0 0 0.0 0.0 0 0 0 0 0.0 0 0 0 0 0.2 0.3 0 0
Figure 101: [FRVT-2018 Mugshot Ageing Dataset] Identification miss rates vs. FPIR by time-elapsed. The oldest image of each individual is enrolled. Thereafter,
all more recent images are searched. Miss rates are computed over all searches noted in row 17 of Table 1 and binned by number of years between search and initial
170
enrollment. FPIR is computed from the same FRVT 2018 non-mates noted in row 3 of Table 1 with N = 3 000 000.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 171
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
280 280
280
FNIR (Rank = 1)
0.20
260
260 260
FRVT
0.15
-
False pos. identification rate
False neg. identification rate
0.05
Score
1.0 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
0.8
FPIR = 0.003
-
IDENTIFICATION
0.8 0.8
FPIR = 0.010
0.7
FPIR = 0.030
RANK 2 MEDIAN
T = Threshold
NONMATE
0.6 0.6
0.6
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 102: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
172
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2.0
11:12:06
2022/12/18
1.0
20000
1.8
15000
0.9 Dataset: 2018 Mugshots
Tier: 2
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
10000 1.6
0.15
FRVT
0.8
-
False pos. identification rate
False neg. identification rate
0.10
0.05
Score
1.0
1.0 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
0.9
FPIR = 0.003
-
0.8 0.8
IDENTIFICATION
FPIR = 0.010
0.8
FPIR = 0.030
RANK 2 MEDIAN
NONMATE
T = Threshold
0.7 0.6
0.6
0.6
0.4
T > 0 → Identification
T = 0 → Investigation
0.4
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 103: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
173
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2.0 1.0
20000
1.8 0.8
TVAL
15000
FPIR = 0.001
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
FPIR = 0.010
-
False pos. identification rate
False neg. identification rate
RANK 2 MEDIAN
NONMATE
0
Score
0.15
1.2
-
0.8
IDENTIFICATION
3.5 0.10
0.05
0.8
T = Threshold
0.6 0.00
3.0
0.4
0.4
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 104: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
174
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0
11:12:06
2022/12/18
3200
0.8
0.9 2800
0.20
FPIR(N, T) =
2400
0.8
0.15
FRVT
0.6
-
False pos. identification rate
False neg. identification rate
0.10
FPIR = 0.001
FPIR = 0.003
-
0.8
0.8
IDENTIFICATION
FPIR = 0.010
0.9
FPIR = 0.030
RANK 2 MEDIAN
NONMATE
0.6
T = Threshold
0.6
0.8
0.4
T > 0 → Identification
T = 0 → Investigation
0.4
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 105: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
175
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
3900
95
1.8
TVAL
3600 90
FPIR = 0.001
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
85
FPIR = 0.010
3300
-
False pos. identification rate
False neg. identification rate
0.9 0.9
0.15
0.9
-
IDENTIFICATION
0.10
0.8
0.8
0.8 0.05
T = Threshold
0.00
0.7
0.7
0.7
T > 0 → Identification
T = 0 → Investigation
0.6
0.6
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 106: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
176
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.9
8e+05
Dataset: 2018 Mugshots
3.5 Tier: 6
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.8
0.15
FRVT
7e+05
-
False pos. identification rate
False neg. identification rate
0.10
0.7
0.05
6e+05
Score
FPIR = 0.001
FPIR = 0.003
0.9 1.8
90
-
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
1.6
0.8 RANK 2 MEDIAN
NONMATE
80
T = Threshold
1.4
0.7
70
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 107: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
177
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0
11:12:06
2022/12/18
1.0 1.0
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.6 0.6
0.6
0.15
FRVT
-
False pos. identification rate
False neg. identification rate
0.10
0.05
Score
3200 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
4000
FPIR = 0.003
2800
-
0.8
IDENTIFICATION
3000 FPIR = 0.010
FPIR = 0.030
0.6
1000
2000
0.4
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 108: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
178
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
40000
11:12:06
2022/12/18
2.0
0.7
38000
1.8
TVAL
0.6
FPIR = 0.001
FNIR(N, R, T) =
36000
FPIR(N, T) =
1.6
FPIR = 0.003
FRVT
0.5 FPIR = 0.010
34000
-
False pos. identification rate
False neg. identification rate
RANK 2 MEDIAN
NONMATE
0.4 32000
Score
1.2
paravision_005 s1_003 sensetime_002 Dataset: 2018 Mugshots
Tier: 8
4.0 1.0
FNIR (Rank = 1)
0.20
R = Num. candidates examined
N = Num. enrolled subjects
0.9
0.15
0.8
-
IDENTIFICATION
0.10
3.5
0.8
0.05
0.6
T = Threshold
0.00
0.7
3.0
0.4
T > 0 → Identification
T = 0 → Investigation
0.6
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 109: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
179
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
10000 4.0
0.8
9000
8000 0.20
FPIR(N, T) =
0.15
FRVT
0.6
7000 3.0
-
False pos. identification rate
False neg. identification rate
0.10
6000 0.5
Score
FPIR = 0.001
0.725
FPIR = 0.003
1.8
-
0.8
IDENTIFICATION
FPIR = 0.010
0.700
FPIR = 0.030
RANK 2 MEDIAN
0.675 1.6 NONMATE
T = Threshold
0.6
0.650
1.4
0.4
T > 0 → Identification
T = 0 → Investigation
0.625
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 110: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
180
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
30 2.0
1.8
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
1.6
0.15
FRVT
20
0.6
-
False pos. identification rate
False neg. identification rate
0.10
0.05
15
Score
FPIR = 0.001
1.75
FPIR = 0.003
0.9
-
8e+05
IDENTIFICATION
FPIR = 0.010
1.50
FPIR = 0.030
RANK 2 MEDIAN
1.25 NONMATE
0.8
T = Threshold
7e+05
1.00
0.7
T > 0 → Identification
T = 0 → Investigation
0.75 6e+05
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 111: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
181
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2.0 10000
0.9
9000
1.8
TVAL
FPIR = 0.001
FNIR(N, R, T) =
8000
FPIR(N, T) =
FRVT
FPIR = 0.010
7000
-
False pos. identification rate
False neg. identification rate
RANK 2 MEDIAN
NONMATE
0.7
6000
Score
0.15
2.4
0.8 0.8
-
IDENTIFICATION
0.10
0.05
2.0
0.6
0.6
T = Threshold
0.00
0.4 1.6
0.4
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 112: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
182
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0
3750 0.9
0.8
0.20
FPIR(N, T) =
0.7
0.6
0.15
FRVT
3250
-
0.6
False pos. identification rate
False neg. identification rate
0.10
1.0 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
0.8
-
0.8
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
RANK 2 MEDIAN
0.6 NONMATE
5e−08
T = Threshold
0.6
0.4
T > 0 → Identification
T = 0 → Investigation
0.4
0e+00
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 113: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
183
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0
11:12:06
2022/12/18
1.0 1.0
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.8 0.8
0.8
0.15
FRVT
-
False pos. identification rate
False neg. identification rate
0.10
9e+05 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
-
8e+05
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
0.6
0.50
RANK 2 MEDIAN
NONMATE
T = Threshold
7e+05
0.4
0.25
T > 0 → Identification
T = 0 → Investigation
6e+05
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 114: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
184
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0
11:12:06
2022/12/18
2.0 100
75
0.8 1.8
TVAL
FPIR = 0.001
FNIR(N, R, T) =
50
FPIR(N, T) =
FPIR = 0.003
0.6 1.6
FRVT
FPIR = 0.010
-
25
False pos. identification rate
False neg. identification rate
0
Score
0.15
75
0.8
-
0.9
IDENTIFICATION
0.10
50 0.05
0.6
T = Threshold
0.8 0.00
25
0.4
0.7
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 115: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
185
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.8
0.9
3.5 Dataset: 2018 Mugshots
Tier: 15
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.6
0.15
FRVT
0.8
3.0
-
False pos. identification rate
False neg. identification rate
0.10
0.7
Score
1.0
18.5 TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
16.8
FPIR = 0.003
0.9
-
IDENTIFICATION
FPIR = 0.010
18.0
RANK 2 MEDIAN
NONMATE
T = Threshold
17.5
0.7
16.0
T > 0 → Identification
T = 0 → Investigation
0.6
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 116: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
186
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
20000
11:12:06
2022/12/18
1.0 100
0.9 95
15000
0.20
FPIR(N, T) =
10000
85
0.7 0.15
FRVT
-
False pos. identification rate
False neg. identification rate
0.10
0.05
75
Score
FPIR = 0.001
0.8
-
IDENTIFICATION
FPIR = 0.010
3.5
0.7
3.0
0.4
0.6
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 117: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
187
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
4.0 1.0
3750
0.9
3.5 Dataset: 2018 Mugshots
Tier: 17
3500 FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.15
FRVT
0.8
3250 3.0
-
False pos. identification rate
False neg. identification rate
0.10
0.7
Score
FPIR = 0.001
FPIR = 0.003
0.9 0.9
-
2000
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
0.8 0.8
RANK 2 MEDIAN
NONMATE
T = Threshold
1500
0.7 0.7
T > 0 → Identification
T = 0 → Investigation
1000
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 118: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
188
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2.0 1.0
3750
1.8 0.9
TVAL
FPIR = 0.003
0.8
1.6
FRVT
3250 FPIR = 0.010
-
False pos. identification rate
False neg. identification rate
0.7
3000 1.4 RANK 2 MEDIAN
NONMATE
Score
0.15
120
11.0
0.8
-
IDENTIFICATION
0.10
90 0.05
0.6 10.5
T = Threshold
0.00
60
0.4 10.0
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 119: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
189
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
95
2.4 2.4
0.20
FPIR(N, T) =
2.0 2.0
0.15
FRVT
85
-
False pos. identification rate
False neg. identification rate
0.10
80
0.05
Score
FPIR = 0.001
FPIR = 0.003
0.8 11.0
-
0.8
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
0.4
0.4 10.0
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 120: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
190
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.9 0.9
0.8 TVAL
FPIR = 0.003
FRVT
0.7 0.7
FPIR = 0.010
0.6
-
False pos. identification rate
False neg. identification rate
0.6 0.6
RANK 2 MEDIAN
NONMATE
Score
0.15
0.9
0.9
-
0.9
IDENTIFICATION
0.10
0.8 0.05
0.8
T = Threshold
0.00
0.8
0.7
0.7
T > 0 → Identification
T = 0 → Investigation
0.7 0.6
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 121: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
191
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2.0
9000
1.8
10000
TVAL
FPIR = 0.001
FNIR(N, R, T) =
7000
FPIR(N, T) =
FPIR = 0.003
1.6
FRVT
5000 FPIR = 0.010
-
False pos. identification rate
False neg. identification rate
5000
1.4
RANK 2 MEDIAN
NONMATE
0
Score
10000 0.15
150
-
0.9
IDENTIFICATION
0.10
149 0.05
5000
0.8
T = Threshold
0.00
148
0.7
T > 0 → Identification
T = 0 → Investigation
0 147
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 122: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
192
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
100
3750 3750
95
TVAL
3500 3500
FPIR = 0.001
FNIR(N, R, T) =
90
FPIR(N, T) =
FPIR = 0.003
FRVT
3250 3250
FPIR = 0.010
85
-
False pos. identification rate
False neg. identification rate
RANK 2 MEDIAN
3000 3000 80 NONMATE
Score
0.15
10000
0.9 9.75
-
IDENTIFICATION
0.10
0.8 9.50
0.05
5000
T = Threshold
0.00
0.7 9.25
0.6
9.00
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 123: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
193
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0 100
12000
0.9
80
8000 Dataset: 2018 Mugshots
Tier: 23
FNIR (Rank = 1)
FNIR(N, R, T) =
0.8 0.20
FPIR(N, T) =
60
0.15
FRVT
4000
0.7
-
False pos. identification rate
False neg. identification rate
0.10
1.0 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
FPIR = 0.003
-
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
0.8
0.7
0.7
T > 0 → Identification
T = 0 → Investigation
0.7
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 124: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
194
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0 2.0
4.0
0.8 1.8
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.6 1.6
0.15
FRVT
3.0
-
False pos. identification rate
False neg. identification rate
0.10
0.05
Score
1.0 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
90
FPIR = 0.003
0.8 0.9
-
IDENTIFICATION
FPIR = 0.010
FPIR = 0.030
80
RANK 2 MEDIAN
0.6 0.8 NONMATE
T = Threshold
70
0.4 0.7
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 125: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
195
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0 1.0
0.8
0.8 TVAL
0.8
FPIR = 0.003
FRVT
0.6 FPIR = 0.010
0.6
0.6
-
False pos. identification rate
False neg. identification rate
RANK 2 MEDIAN
NONMATE
0.5
0.4
Score
0.9 0.15
0.9
-
IDENTIFICATION
0.8 0.10
0.8
0.05
0.8
T = Threshold
0.7 0.00
0.6
0.7
0.6
T > 0 → Identification
T = 0 → Investigation
0.4
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 126: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
196
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0 1.0
15
0.8 0.8
0.20
FPIR(N, T) =
0.6
0.6
0.15
FRVT
5
-
False pos. identification rate
False neg. identification rate
0.10
0
Score
1.0
1.0 1.0
TVAL
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
0.9
0.9 FPIR = 0.003
0.9
-
IDENTIFICATION
FPIR = 0.010
0.8
FPIR = 0.030
0.8
0.8
RANK 2 MEDIAN
0.7 NONMATE
T = Threshold
0.7
0.6
0.7
T > 0 → Identification
T = 0 → Investigation
0.6
0.5
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 127: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
197
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.0 1000
20
750
0.8
TVAL
FPIR = 0.001
FNIR(N, R, T) =
500
FPIR(N, T) =
FRVT
FPIR = 0.010
250
-
False pos. identification rate
False neg. identification rate
RANK 2 MEDIAN
NONMATE
0 0
Score
FNIR (Rank = 1)
0.20
R = Num. candidates examined
N = Num. enrolled subjects
-
IDENTIFICATION
0.10
0.00
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 128: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
198
enrollment.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1.00 1.0
0.9
0.95
2030
Dataset: 2018 Mugshots
Tier: 28
0.8
FNIR (Rank = 1)
FNIR(N, R, T) =
0.20
FPIR(N, T) =
0.90
0.7 0.15
FRVT
2020
-
False pos. identification rate
False neg. identification rate
0.10
0.05
2010
Score
siat_2 vts_000 (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] 0.00
1.0
TVAL
60000
R = Num. candidates examined
N = Num. enrolled subjects
FPIR = 0.001
FPIR = 0.003
-
0.8
IDENTIFICATION
FPIR = 0.010
40000
FPIR = 0.030
RANK 2 MEDIAN
NONMATE
0.6
T = Threshold
20000
0.4
T > 0 → Identification
T = 0 → Investigation
(00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18] (00,02] (02,04] (04,06] (06,08] (08,10] (10,12] (12,14] (14,18]
Time lapse between search and initial encounter enrollment (years)
Figure 129: [FRVT-2018 Mugshot Ageing Dataset] Native mate scores vs. time-elapsed. The oldest image of each individual is enrolled. Thereafter, all more recent
images are searched. Mated score distributions are computed over all searches noted in row 17 of Table 1 binned by number of years between search and initial
199
enrollment.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 200
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.001
FNIR(N, R, T) =
FPIR(N, T) =
FRVT
0.100 ● ●
● ●
0.070 ● ●
0.050 ● ● ●
● ● ●
0.030
● ● ●
0.020 ●
●
-
False pos. identification rate
False neg. identification rate
● ● ●
Dataset: 2018 Mugshot, N = 1600000
0.005 ● ●
0.003
0.002
FPIR=0.0003
0.001 FPIR=0.0010
FPIR=0.0030
FPIR=0.0100
FPIR=0.0300
FPIR=0.1000
FPIR=0.3000
visionlabs_3 everai_1 microsoft_2 ntechlab_4
0.300
0.200
● ●
0.100 ● ● nim
0.070
R = Num. candidates examined
N = Num. enrolled subjects
0.050 ● ● ● ●
● ● ● ● ● 1
0.030 ● ● ● ●
0.020 ● ● ● 2
● ●
● ● 3
0.010 ● ●
0.007 ● ●
● 4
0.005
0.003 5,6
0.002 7+
-
0.001
IDENTIFICATION
04 e−04 e−03 e−03 e−02 e−02 e−01 e−01 e+00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
megvii_0 1e− 3 1 3 1 3 1 3 1 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
0.300
●
0.200 ●
●
0.100 ●
T = Threshold
0.070 ●
0.050 ●
0.030 ●
0.020
0.010
0.007
0.005
0.003
0.002
0.001
T > 0 → Identification
T = 0 → Investigation
04 0 4 03 03 02 02 01 e−01 e+00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3 1
Figure 130: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at
seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.
201
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.300
●
0.200
●
0.100 ● ●
0.070 ● ● ●
0.050 ● ● ●
● ● ● ●
0.030 ●
● ● ●
0.020 ● ● ●
● ● ● ●
0.010 ● ● ●
0.007
0.005
0.003
0.002
0.001
FNIR(N, R, T) =
0.500
0.300
0.200
● ●
FRVT
●
0.100 ● ● ●
● ●
0.070 ● ● ●
0.050 ● ● ●
● ● ● Dataset: 2018 Mugshot, N = 1600000
● ● ●
-
False pos. identification rate
False neg. identification rate
0.030 ● ● Tier=2
False negative identification rate, FNIR(T)
0.100 ●
● ● 2
0.070 ● ● ●
0.050 ● ● ●
● 3
0.030 ● ● ● ●
4
0.020 ● ● ● ● 5,6
0.010 7+
0.007
-
0.005
IDENTIFICATION
0.003
0.002
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 e−01 e+00
cogent_1 vocord_3 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3 1
0.500 ●
0.300
0.200
●
T = Threshold
0.100 ●
●
0.070
0.050 ● ●
●
● ●
0.030
0.020
● ●
●
0.010 ● ●
0.007
0.005
0.003
0.002
T > 0 → Identification
T = 0 → Investigation
0.001
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
Figure 131: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at
202
seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.700
0.500
0.300
0.200 ● ●
● ●
0.100 ● ●
0.070 ● ●
0.050 ● ● ● ●
● ● ● ●
0.030 ●
● ● ●
0.020 ● ●
● ●
● ●
0.010
0.007 ● ●
0.005
0.003
FNIR(N, R, T) =
0.002
●
0.700
0.500
●
0.300
FRVT
● ●
0.200
● ●
0.100 ● ● ●
● ● ● Dataset: 2018 Mugshot, N = 1600000
-
0.070
False pos. identification rate
False neg. identification rate
● ● ● Tier=3
False negative identification rate, FNIR(T)
● ●
0.700
0.500
nim
● ●
0.300 ● ●
● ● 1
●
R = Num. candidates examined
N = Num. enrolled subjects
0.200 ● ●
● ● ● ● 2
● ● ● ●
0.100
● ● 3
● ●
0.070
● ● ● 4
0.050 ●
● ● 5,6
0.030 ●
● 7+
0.020
-
0.010
IDENTIFICATION
0.007
0.005
0.003
0.002
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 e−01 e+00
incode_1 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3 1
0.700
0.500
●
T = Threshold
0.300
●
0.200 ●
●
0.100 ●
0.070
●
0.050
0.030 ●
0.020
0.010
0.007
0.005
T > 0 → Identification
T = 0 → Investigation
0.003
0.002
04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
Figure 132: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at
203
seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.500
0.300 ●
●
0.200
●
● ●
0.100 ●
● ●
0.070 ●
● ● ● ●
0.050
● ● ● ●
0.030 ● ●
●
● ● ●
0.020 ● ●
●
●
0.010
0.007 ●
0.005
FNIR(N, R, T) =
0.700
0.500
0.300
FRVT
0.200 ●
●
● ● ●
●
0.100 ● ● ● Dataset: 2018 Mugshot, N = 1600000
●
-
●
False pos. identification rate
False neg. identification rate
0.070 ● ● ● Tier=4
False negative identification rate, FNIR(T)
● ● ●
● ● 2
● ● ●
0.100 ● ● 3
● ●
0.070 ● 4
● ●
0.050 5,6
●
0.030 7+
●
0.020
●
-
IDENTIFICATION
0.010
0.007
0.005
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 e−01 e+00
yisheng_1 tiger_0 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3 1
0.700
0.500 ● ●
● ●
●
0.300 ● ●
T = Threshold
● ●
0.200
● ●
0.100 ● ●
0.070
●
0.050
0.030
0.020
0.010
T > 0 → Identification
T = 0 → Investigation
0.007
0.005
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00
1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+
Figure 133: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at
204
seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70
●
0.50 ●
●
●
0.30 ●
● ●
● ● ●
0.20 ●
● ●
●
● ●
0.10 ● ●
●
●
0.07 ● ●
0.05 ● ●
● ●
0.03
0.02
●
FNIR(N, R, T) =
0.70 ●
0.50
● ●
●
FRVT
● ● ●
● ● ●
0.30 ● ●
● ●
● ●
0.20 ● ● ● Dataset: 2018 Mugshot, N = 1600000
●
-
False pos. identification rate
False neg. identification rate
● ● Tier=5
False negative identification rate, FNIR(T)
● ●
0.70
● ● ● ● nim
0.50 ● ● ●
● ● ● ●
● ● ● ● ● 1
R = Num. candidates examined
N = Num. enrolled subjects
0.30 ● ● ● ●
● ● ● ● 2
0.20 ● ● ● ● 3
4
●
0.10 5,6
0.07 7+
0.05
-
IDENTIFICATION
0.03
0.02
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 e+00
vigilantsolutions_4 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1
0.70 ●
● ●
0.50 ●
T = Threshold
●
0.30 ●
0.20 ●
0.10
0.07
0.05
0.03
T > 0 → Identification
T = 0 → Investigation
0.02
Figure 134: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at
205
seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.70 ●
0.50 ●
●
● ● ●
0.30 ●
●
● ● ● ●
● ● ● ● ● ●
0.20 ● ●
● ●
● ●
0.10
● ●
0.07
● ●
0.05
FNIR(N, R, T) =
● ●
● ●
● ●
0.70 ● ● ●
● ● ●
● ● ●
FRVT
0.50 ●
● ●
● ●
-
False pos. identification rate
False neg. identification rate
Tier=6
False negative identification rate, FNIR(T)
FPIR=0.0003
0.10 FPIR=0.0010
FPIR=0.0030
0.07 FPIR=0.0100
0.05 FPIR=0.0300
FPIR=0.1000
FPIR=0.3000
vd_0 microfocus_4 ayonix_0 microfocus_3
● ● ● ● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ●
0.70 ● ● ● ● ● nim
● ●
0.50 ● ● 1
R = Num. candidates examined
N = Num. enrolled subjects
2
0.30 3
4
0.20
5,6
7+
0.10
-
IDENTIFICATION
0.07
0.05
04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 00 04 04 03 03 02 02 01 01 e+00
alchera_1 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1e+ 1e− 3e− 1e− 3e− 1e− 3e− 1e− 3e− 1
● ● ● ● ● ● ●
0.70
T = Threshold
0.50
0.30
0.20
0.10
0.07
T > 0 → Identification
T = 0 → Investigation
0.05
Figure 135: [FRVT-2018 Mugshot Dataset] Effect of enrolling multiple images for each identity. The plot shows an identification miss rates vs. false positive rates, at
206
seven operating thresholds. The enrolled population size is fixed. The images are enrolled with lifetime-consolidation - see section 2.3.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 207
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 208
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.011 veridas_003
11:12:06
2022/12/18
0.011 hyperverge_001
0.011 hzailu_001
0.011 cloudwalk_mt_001
0.011 cloudwalk_mt_000
0.011 hyperverge_002
0.011 microsoft_5
0.011 pixelall_005
0.011 neurotechnology_009
0.011 tech5_002
0.011 cyberlink_005
0.011 gorilla_007
0.011 kakao_000
0.01 0.010 rankone_012
0.010 visionlabs_010
FNIR(N, R, T) =
0.010 cogent_005
FPIR(N, T) =
0.010 everai_paravision_004
0.010 cognitec_005
0.010 yitu_2
0.010 mantra_000
FRVT
0.010 cubox_000
0.010 nec_3
0.010 vts_001
-
False pos. identification rate
False neg. identification rate
0.010 cloudwalk_hr_000
0.010 rankone_010
0.010 gorilla_008
0.010 cognitec_006
0.010 paravision_005
0.010 revealmedia_000
0.010 s1_003
0.010 ntechlab_008
0.010 irex_000
0.009 neurotechnology_010
0.009 realnetworks_007
0.009 tevian_007
0.009 s1_002
R = Num. candidates examined
N = Num. enrolled subjects
0.009 kakao_001
0.009 cyberlink_003
0.009 nec_2
0.009 visionlabs_011
0.009 nec_004
0.008 visionlabs_009
0.008 intema_000
-
IDENTIFICATION
0.008 yitu_4
0.008 firstcreditkz_001
0.008 ntechlab_010
0.008 cib_000
0.008 nec_006
0.008 paravision_007
0.008 griaule_001
0.008 ntechlab_009
0.008 neurotechnology_012
T = Threshold
0.008 realnetworks_008
0.008 pangiam_000
0.008 nec_005
0.008 maxvision_001
0.008 dahua_004
0.008 lineclova_002
0.007 cogent_006
0.007 line_001
0.007 paravision_009
T > 0 → Identification
T = 0 → Investigation
0.007 dahua_003
0.007 vts_003
0.007 clearviewai_000
0.007 deepglint_001
1 3 10 20
0.007 sensetime_004
Rank 0.007 ntechlab_011
Figure 136: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled
mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in
209
webcam images - see Figure 6.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.020 sensetime_002
0.019 everai_3
0.019 sqisoft_001
11:12:06
2022/12/18
0.019 ntechlab_4
0.019 rankone_007
0.02 0.019 visionlabs_5
0.018 remarkai_000
0.018 ntechlab_5
0.018 gorilla_005
0.018 cyberlink_001
0.017 megvii_2
0.017 incode_004
0.017 megvii_1
0.017 vigilantsolutions_008
0.017 qnap_003
0.017 vigilantsolutions_007
FNIR(N, R, T) =
0.017 daon_000
0.017 megvii_0
FPIR(N, T) =
0.017 ntechlab_6
0.017 ptakuratsatu_000
0.017 s1_000
0.017 tech5_001
FRVT
0.017 hik_5
0.017 hik_6
0.016 anke_002
-
False pos. identification rate
False neg. identification rate
0.014 yitu_5
0.014 vnpt_001
0.01 0.014 dermalog_009
0.014 innovatrics_005
0.014 neurotechnology_008
0.014 pixelall_003
0.014 veridas_001
-
IDENTIFICATION
0.014 veridas_002
0.014 s1_001
0.014 fujitsulab_000
0.014 line_000
0.014 xforwardai_000
0.014 imagus_006
0.014 visionlabs_008
0.014 trueface_000
0.014 griaule_000
T = Threshold
0.013 fujitsulab_001
0.013 hzailu_000
0.013 realnetworks_005
0.013 imagus_007
0.013 cogent_004
0.013 vts_002
0.013 pangiam_001
0.013 synesis_005
0.013 vixvizion_009
T > 0 → Identification
T = 0 → Investigation
0.013 rankone_009
0.013 xforwardai_001
0.012 ntechlab_007
1 3 10 20
0.012 verihubs−inteligensia_000
Rank 0.012 vnpt_002
Figure 137: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled
mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in
210
webcam images - see Figure 6.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.045 scanovate_000
0.044 gorilla_2
0.042 neurotechnology_3
11:12:06
2022/12/18
0.041 nec_0
0.041 rankone_5
0.05 0.040 innovatrics_4
0.040 scanovate_001
0.040 incode_3
0.039 lookman_4
0.039 idemia_5
0.038 allgovision_001
0.038 isystems_0
0.038 lookman_3
0.04 0.038 everai_0
0.038 tevian_4
0.038 anke_0
FNIR(N, R, T) =
0.038 anke_1
FPIR(N, T) =
0.038 alchera_004
0.037 dermalog_5
0.036 lookman_005
0.036 mukh_002
FRVT
0.036 acer_000
0.036 kedacom_001
0.03 0.035 alchera_3
-
False pos. identification rate
False neg. identification rate
0.034 fincore_000
False negative identification rate (FNIR)
0.027 vd_002
0.027 hik_3
0.027 kneron_000
0.027 hik_4
0.027 dermalog_007
0.026 turingtechvip_001
-
0.026 dahua_0
IDENTIFICATION
0.026 isystems_2
0.026 sqisoft_002
0.025 cognitec_2
0.025 cognitec_3
0.024 dermalog_6
0.024 neurotechnology_5
0.024 vocord_3
0.024 gorilla_004
T = Threshold
0.024 dahua_1
0.023 t4isb_000
0.023 intsysmsu_000
0.023 vocord_5
0.023 synesis_003
0.023 isystems_3
0.023 tiger_2
0.023 tiger_3
0.023 ntechlab_3
0.01
T > 0 → Identification
T = 0 → Investigation
0.022 tongyitrans_0
0.022 tongyitrans_1
0.022 aize_001
1 3 10 20 0.022 pixelall_002
Rank 0.022 toshiba_1
0.022 qnap_001
Figure 138: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled
mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in
211
webcam images - see Figure 6.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.621 kneron_001
0.608 vts_000
0.601 microfocus_5
11:12:06
2022/12/18
0.583 microfocus_6
0.551 vd_0
0.90 0.548 digidata_000
0.527 ayonix_2
0.80 0.527 ayonix_1
0.522 noblis_1
0.70 0.513 imagus_3
0.482 imagus_0
0.60 0.446 siat_2
0.443 eyedea_0
0.392 noblis_2
0.50 0.369 verijelas_000
0.361 synesis_0
FNIR(N, R, T) =
0.351 tiger_1
0.337 camvi_1
FPIR(N, T) =
0.40
0.333 siat_1
0.325 smilart_0
0.320 glory_0
0.319 shaman_4
FRVT
0.30 0.301 imagus_2
0.267 glory_1
0.262 shaman_0
-
False pos. identification rate
False neg. identification rate
-
IDENTIFICATION
0.100 incode_0
0.06 0.095 tiger_0
0.095 gorilla_1
0.093 imagus_008
0.05 0.090 camvi_3
0.090 aware_3
0.086 3divi_0
0.04 0.085 20face_000
0.078 realnetworks_0
T = Threshold
0.078 realnetworks_1
0.078 realnetworks_2
0.077 camvi_4
0.03
0.076 innovatrics_0
0.074 3divi_6
0.074 innovatrics_2
0.072 idemia_6
0.071 rankone_2
0.070 gorilla_3
T > 0 → Identification
T = 0 → Investigation
0.02
0.068 vocord_0
0.068 rankone_3
0.067 aware_5
1 3 10 20
0.066 tevian_0
Rank 0.062 3divi_4
Figure 139: [Webcam Dataset] Identification miss rates vs. rank. The results apply to cross-domain recognition in which webcams are searched against enrolled
mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose in
212
webcam images - see Figure 6.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 213
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.062 trueface_000
0.060 irex_000
11:12:06
2022/12/18
0.059 notiontag_000
0.058 rankone_010
0.058 fujitsulab_001
0.90 0.057 visionbox_000
0.80 0.056 kakao_000
0.055 veridas_003
0.70 0.055 dermalog_010
0.053 rankone_012
0.60
0.053 cyberlink_002
0.053 realnetworks_006
0.50
0.052 neurotechnology_009
0.051 visionlabs_008
0.40 0.051 vts_001
FNIR(N, R, T) =
0.051 innovatrics_007
0.051 cogent_004
FPIR(N, T) =
FRVT
0.046 dahua_002
0.20 0.045 ntechlab_008
0.045 cib_000
-
False pos. identification rate
False neg. identification rate
0.043 incode_005
0.042 revealmedia_000
0.041 cognitec_005
0.041 dahua_003
0.041 mantra_000
0.10
0.040 cyberlink_005
0.09 0.040 cognitec_006
0.08 0.037 everai_paravision_004
0.037 neurotechnology_010
0.07
0.037 s1_003
0.06 0.037 cogent_005
0.037 microsoft_6
0.05 0.036 cyberlink_004
R = Num. candidates examined
N = Num. enrolled subjects
0.035 cyberlink_003
0.034 rankone_013
0.04 0.033 vts_003
0.032 neurotechnology_012
0.032 tevian_006
0.03 0.032 vnpt_002
-
0.031 hyperverge_001
IDENTIFICATION
0.031 s1_002
0.030 pangiam_000
0.030 pangiam_001
0.02
0.029 realnetworks_008
0.028 xforwardai_001
0.028 griaule_001
0.027 visionlabs_010
0.027 hyperverge_002
T = Threshold
0.027 yitu_4
0.027 line_001
0.01 0.026 dahua_004
0.025 visionlabs_009
0.025 clearviewai_000
0.025 maxvision_001
0.025 paravision_007
0.024 paravision_005
0.023 cogent_006
T > 0 → Identification
T = 0 → Investigation
0.023 canon_001
0.022 ntechlab_009
0.022 tevian_007
0.020 canon_002
0.001 0.010 0.100 1.000 0.020 nec_2
False positive identification rate, FPIR(T) 0.020 visionlabs_011
0.019 paravision_009
Figure 140: [Webcam Dataset] Identification miss rates vs. false positive rates. The results apply to cross-domain recognition in which webcams are searched against
enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose
214
in webcam images - see Figure 6.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.166 allgovision_000
0.164 idemia_3
0.162 cognitec_3
11:12:06
2022/12/18
0.162 ntechlab_0
0.160 gorilla_004
0.90 0.159 visionlabs_4
0.80 0.158 tiger_2
0.158 tiger_3
0.70
0.158 hik_3
0.60 0.155 hik_0
0.154 vocord_3
0.152 dermalog_007
0.50
0.152 hik_4
0.148 vd_002
0.40 0.147 visionlabs_5
0.144 tevian_5
FNIR(N, R, T) =
0.143 aize_001
0.142 gorilla_005
FPIR(N, T) =
0.30
0.137 visionlabs_3
0.137 qnap_001
0.135 dahua_0
FRVT
0.130 vocord_5
0.20 0.129 neurotechnology_5
0.127 everai_1
0.126 isystems_2
-
False negative identification rate, FNIR(T)
False pos. identification rate
False neg. identification rate
-
0.03
IDENTIFICATION
0.105 ntechlab_4
0.102 ntechlab_5
0.101 deepsea_001
0.101 tongyitrans_1
0.02 0.100 vd_003
0.098 cogent_2
0.097 megvii_1
0.097 cognitec_004
T = Threshold
0.096 megvii_2
0.095 everai_3
0.095 cogent_3
0.095 rankone_007
0.01 0.095 line_000
0.094 ntechlab_6
0.093 dermalog_008
0.092 toshiba_1
0.090 visionlabs_6
0.090 visionlabs_7
T > 0 → Identification
T = 0 → Investigation
0.090 yitu_0
0.089 innovatrics_005
0.088 vigilantsolutions_007
0.001 0.010 0.100 1.000
0.086 hik_6
False positive identification rate, FPIR(T) 0.084 s1_000
Figure 141: [Webcam Dataset] Identification miss rates vs. false positive rates. The results apply to cross-domain recognition in which webcams are searched against
enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose
215
in webcam images - see Figure 6.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
0.814 imagus_2
0.813 verijelas_000
0.808 yisheng_1
0.772 imagus_008
11:12:06
2022/12/18
0.769 camvi_1
0.90 0.754 shaman_4
0.734 synesis_0
0.80 0.695 vigilantsolutions_0
0.660 vigilantsolutions_3
0.70 0.657 dermalog_0
0.657 dermalog_4
0.60 0.655 dermalog_3
0.646 synesis_3
0.50 0.626 3divi_3
0.621 shaman_0
0.619 vts_000
0.40 0.597 shaman_3
FNIR(N, R, T) =
0.591 alchera_2
FPIR(N, T) =
0.579 tiger_1
0.577 digidata_000
0.30 0.547 glory_0
0.543 eyedea_3
FRVT
0.537 glory_1
0.529 alchera_004
0.509 aware_4
-
False negative identification rate, FNIR(T)
False pos. identification rate
False neg. identification rate
0.500 tiger_0
0.365 siat_1
0.07 0.361 innovatrics_0
0.343 3divi_4
0.06 0.342 3divi_6
0.339 3divi_5
0.331 tevian_0
0.05
-
0.318 realnetworks_0
IDENTIFICATION
0.318 realnetworks_1
0.315 realnetworks_2
0.04
0.310 innovatrics_2
0.303 cognitec_0
0.298 aware_3
0.298 tevian_3
0.03
0.297 innovatrics_3
0.296 incode_1
T = Threshold
0.285 vocord_0
0.281 vd_1
0.269 incode_2
0.02 0.268 gorilla_2
0.266 neurotechnology_3
0.266 realnetworks_003
0.264 incode_3
0.263 realnetworks_004
0.261 rankone_2
T > 0 → Identification
T = 0 → Investigation
0.255 rankone_3
0.253 aware_5
0.240 scanovate_000
0.001 0.010 0.100 1.000 0.240 shaman_7
False positive identification rate, FPIR(T) 0.237 shaman_6
0.227 scanovate_001
Figure 142: [Webcam Dataset] Identification miss rates vs. false positive rates. The results apply to cross-domain recognition in which webcams are searched against
enrolled mugshots. The FNIR values are higher than those for mugshot-mugshot identification due to low image resolution, lighting and less constrained subject pose
216
in webcam images - see Figure 6.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 217
Figures 143 - 145 gives accuracy results for searching 100 000 mated and 100 000 non-mated profile-view images against
the same FRVT 2018 frontal enrollment dataset, N = 1 600 000, used in the main mugshot trials. This experiment
corresponds to row-13 of Table 1. An example of profile-view image is given in Figure 7.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
FRVT
0.0459 paravision_007 0.1346 s1_000
0.0460 visionlabs_010 0.1402 tech5_002
0.0463 cogent_006 0.1431 kneron_001
False negative identification rate (FNIR)
-
False pos. identification rate
False neg. identification rate
-
0.08 0.0560 gorilla_007 0.2012 realnetworks_006
IDENTIFICATION
0.0575 firstcreditkz_001 0.2116 megvii_2
0.0579 realnetworks_008 0.2118 griaule_000
0.07 0.0593 turingtechvip_001 0.2313 rankone_010
0.0612 gorilla_006 0.2358 t4isb_000
0.0618 hzailu_001 0.2365 dilusense_000
0.06 0.0626 kakao_000 0.2438 nec_3
0.0654 tevian_007 0.2485 acer_001
0.0665 microsoft_5 0.2586 innovatrics_005
T = Threshold
Figure 143: [Mugshot and profile-view dataset] Rank-based accuracy. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics
for frontal and profile-view searches into an enrolled set of N = 1 600 000 frontal images. Note that some algorithms fail on profile-view images with FNIR → 1 - this
evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c.
2010 algorithms. The best result is that 91% of profile-view searches yield the correct mate at rank 1, and better than 94% in the top-50 candidates.
218
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
1.00
0.90
0.80
0.70
0.60
FNIR(N, R, T) =
0.50
FNIR@FPIR = 0.002
N=1600000
FRVT
0.40
0.0963 cloudwalk_mt_000 0.3078 canon_001
0.1188 cloudwalk_hr_000 0.3523 microsoft_6
False negative identification rate, FNIR(T)
-
False pos. identification rate
False neg. identification rate
-
0.2490 firstcreditkz_001 0.5696 notiontag_000
IDENTIFICATION
0.2579 pangiam_000 0.5877 dilusense_000
0.10
0.2647 pangiam_001
0.09
0.08
0.07
T = Threshold
0.06
0.05
Figure 144: [Mugshot and profile-view dataset] Threshold-based accuracy. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteris-
tics for frontal and profile-view searches into an enrolled set of N = 1 600 000 frontal images. Note that some algorithms fail on profile-view images with FNIR → 1 - this
evaluation did not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c.
2010 algorithms.
219
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
0.010
0.009
0.008
0.007
0.006
0.005
0.004
FPIR(N, T) =
0.003
0.002
0.001
FRVT
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
-
False negative identification rate, FNIR(T)
False pos. identification rate
False neg. identification rate
0.010
0.009
0.008
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
-
IDENTIFICATION
sensetime_005 sensetime_008 sqisoft_002 t4isb_000 tevian_006 tevian_007 visionlabs_008 visionlabs_010
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
T = Threshold
3e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+003e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+003e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+00
vnpt_001 vnpt_002 xforwardai_000 xforwardai_001 xforwardai_002
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
3e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+003e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+003e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+003e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+003e−04
1e−03
3e−03
1e−02
3e−02
1e−01
3e−01
1e+00
T > 0 → Identification
T = 0 → Investigation
Figure 145: [Mugshot and profile-view dataset] Speed-accuracy tradeoff. For some of the more accurate Phase 3 algorithms the figure plots error tradeoff characteristics
for frontal and profile-view searches into an enrolled set of N = 1 600 000 frontal images. Some algorithms fail on profile-view images with FNIR → 1 - this evaluation did
not ask developers to provide profile-view capability. Some algorithms, on the other hand, give FNIR approaching that for frontal-view searches using c. 2010 algorithms.
Blue lines connect points of equal threshold from which it is evident that some algorithms would give markedly higher false positive outcomes if profile-view images
220
were searched in a system configured for frontal searches. This would be a vulnerability in an access control system.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 221
As in and prior tests, this section documents search speeds spanning three orders of magnitude. In applications where
search volumes are high enough, this will have implications for hardware requirements especially for large N or when
search duration is appreciably larger than the time it takes to prepare a template from the search image(s). Further,
given very large (and growing) operational databases, the scalability of algorithms is important. It has been reported
previously [8] that search duration can scale sublinearly with enrolled population size N. Further there has been con-
siderable recent research on indexing, exact [13] and approximate nearest neighbor search [1,13] and fast-search [14,16].
Figure 146 charts the search duration measurements presented earlier in Tables 2 - 4.
. Most algorithms scale linearly. For those in that category, there is a wide range in speed with search durations
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
ranging from 82 milliseconds for a 12 million gallery (for NEC-3) to more than 40 seconds (for Yitu-3, Toshiba-2)
and even higher for less accurate algorithms.
. Some developers (Camvi, Dermalog, EverAI, Innovatrics, and Visionlabs) provide algorithms whose template
search durations grow approimately logarithmically i.e. T (N )ã log N with the constant a varying between imple-
mentations. In the figure this model is fit using the point T (1) = 0, and T (640 000). This very sublinear behaviour
affords extremely fast search times in very large galleries. One caveat for the sublinear algorithms is that their
fast-search data structures can require considerable computation time - on the order of hours - for N in the mil-
lions, and this scales mildy super-linearly, i.e. O(N b ), b > 1. There are exceptions: the Camvi algorithms take
minutes; and Innvovatrics’ scale sublinearly.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 222
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
6e+03
3e+03
FPIR(N, T) =
1e+03
6e+02
3e+02
FRVT
6e+05
3e+05
1e+05
6e+04
3e+04
-
False pos. identification rate
False neg. identification rate
1e+04
6e+03
1e+03
6e+02
3e+02
1e+06
6e+05
3e+05
1e+05
6e+04
3e+04
1e+04
6e+03
3e+03
1e+03
6e+02
3e+02
-
IDENTIFICATION
dermalog_3 rankone_009 rankone_010 dermalog_007 rankone_011 rankone_012 aware_5
1e+06
6e+05
3e+05
1e+05
6e+04
3e+04
1e+04
6e+03
3e+03
1e+03
6e+02
3e+02
T = Threshold
rankone_4 innovatrics_007 rankone_007 idemia_0 idemia_008 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
1e+06
6e+05
3e+05
1e+05
6e+04
Dataset: Mugshots
3e+04
1e+04 Measured
6e+03
3e+03 Model: a log N
1e+03
6e+02 Model: a N
3e+02
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 + 05 +06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1.6e 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 146: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
223
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
6e+04
3e+04
1e+05
FPIR(N, T) =
6e+04
3e+04
FRVT
6e+06
3e+06
1e+06
6e+05
-
False pos. identification rate
False neg. identification rate
3e+05
1e+05
6e+04
3e+04
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
6e+04
-
3e+04
IDENTIFICATION
dahua_002 dermalog_010 vocord_2 dermalog_009 dermalog_008 ntechlab_5 ntechlab_6
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
6e+04
T = Threshold
3e+04
dahua_003 t4isb_000 aware_0 aware_2 aware_1 dahua_0 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e
1e+07
6e+06
3e+06
Dataset: Mugshots
1e+06
6e+05 Measured
3e+05
Model: a log N
1e+05
6e+04 Model: a N
3e+04
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 147: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
224
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
6e+04
3e+05
FPIR(N, T) =
1e+05
6e+04
FRVT
6e+06
3e+06
1e+06
-
6e+05
False pos. identification rate
False neg. identification rate
1e+05
6e+04
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
-
6e+04
IDENTIFICATION
nec_004 nec_006 visionbox_000 imperial_000 sensetime_002 ntechlab_0 incode_005
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
T = Threshold
6e+04
intellivision_001 isystems_3 isystems_0 dahua_004 tevian_2 dermalog_1 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e
1e+07
6e+06
3e+06 Dataset: Mugshots
1e+06 Measured
6e+05
3e+05 Model: a log N
1e+05 Model: a N
6e+04
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 148: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
225
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
1e+07
6e+06
3e+06
1e+06
FNIR(N, R, T) =
6e+05
3e+05
FPIR(N, T) =
1e+05
FRVT
1e+07
6e+06
3e+06
-
1e+06
False pos. identification rate
False neg. identification rate
6e+05
3e+05
1e+05
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
-
1e+05
IDENTIFICATION
fincore_000 3divi_0 megvii_2 megvii_1 paravision_005 glory_0 everai_paravision_004
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
T = Threshold
yisheng_0 cogent_1 cyberlink_003 idemia_3 acer_001 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
1e+07
6e+06 Dataset: Mugshots
3e+06
1e+06 Measured
6e+05 Model: a log N
3e+05
Model: a N
1e+05
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 149: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
226
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
innovatrics_0 innovatrics_1 dermalog_2 hyperverge_002 clearviewai_000 shaman_2 anke_0
1e+07
6e+06
3e+06
1e+06
FNIR(N, R, T) =
6e+05
3e+05
FPIR(N, T) =
1e+05
anke_1 cyberlink_001 hyperverge_001 cyberlink_000 gorilla_007 realnetworks_007 lookman_3
FRVT
1e+07
6e+06
3e+06
-
False pos. identification rate
False neg. identification rate
1e+06
3e+05
1e+05
kedacom_001 tech5_001 synesis_3 gorilla_005 3divi_4 vnpt_002 cogent_006
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+05
microsoft_1 vnpt_001 microsoft_2 synesis_005 hik_6 hik_5 neurotechnology_6
R = Num. candidates examined
N = Num. enrolled subjects
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
-
1e+05
IDENTIFICATION
neurotechnology_5 cognitec_006 paravision_007 mantra_000 vigilantsolutions_008 cogent_005 hik_4
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
T = Threshold
1e+05
neurotechnology_010 deepsea_001 lookman_4 lookman_005 neurotechnology_009 gorilla_006 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e
1e+07
6e+06
3e+06
Dataset: Mugshots
Measured
1e+06
6e+05 Model: a log N
3e+05 Model: a N
1e+05
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 150: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
227
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+07
6e+06
3e+06
FNIR(N, R, T) =
1e+06
6e+05
FPIR(N, T) =
3e+05
FRVT
1e+07
6e+06
3e+06
-
False pos. identification rate
False neg. identification rate
1e+06
6e+05
3e+05
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
-
IDENTIFICATION
qnap_000 microsoft_6 microsoft_3 fujitsulab_000 microsoft_5 realnetworks_005 vigilantsolutions_6
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
T = Threshold
vigilantsolutions_5 s1_003 fujitsulab_001 cognitec_0 cognitec_3 cognitec_2 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e
1e+07
6e+06 Dataset: Mugshots
3e+06
Measured
1e+06 Model: a log N
6e+05
Model: a N
3e+05
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 151: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
228
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
3e+07
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
cogent_004 glory_1 revealmedia_000 realnetworks_2 gorilla_3 vigilantsolutions_0 vigilantsolutions_2
3e+07
1e+07
6e+06
3e+06
FNIR(N, R, T) =
1e+06
FPIR(N, T) =
6e+05
3e+05
realnetworks_1 cogent_2 vd_003 vd_002 tongyitrans_0 vigilantsolutions_4 tongyitrans_1
FRVT
3e+07
1e+07
6e+06
-
False pos. identification rate
False neg. identification rate
3e+06
1e+06
6e+05
3e+05
vigilantsolutions_3 incode_0 hik_0 aware_3 hik_1 hik_2 sensetime_007
3e+07
1e+07
6e+06
3e+06
1e+06
6e+05
3e+05
sensetime_008 sensetime_006 sensetime_004 kneron_000 vd_0 s1_001 vts_003
R = Num. candidates examined
N = Num. enrolled subjects
3e+07
1e+07
6e+06
3e+06
1e+06
6e+05
-
3e+05
IDENTIFICATION
vts_001 vts_002 hzailu_000 alchera_3 noblis_2 microsoft_4 kneron_001
3e+07
1e+07
6e+06
3e+06
1e+06
6e+05
T = Threshold
3e+05
alchera_2 realnetworks_0 tiger_0 cyberlink_002 neurotechnology_0 neurotechnology_1 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e
3e+07
1e+07 Dataset: Mugshots
6e+06
Measured
3e+06
Model: a log N
1e+06 Model: a N
6e+05
3e+05
T > 0 → Identification
T = 0 → Investigation
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 152: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
229
by the template generation times shown in Table 26.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
6e+07
3e+07
1e+07
6e+06
3e+06
1e+06
6e+05
paravision_009 xforwardai_001 toshiba_0 sensetime_005 toshiba_1 xforwardai_000 alchera_1
6e+07
3e+07
1e+07
FNIR(N, R, T) =
6e+06
3e+06
FPIR(N, T) =
1e+06
6e+05
alchera_0 vd_1 hzailu_001 siat_2 siat_1 sensetime_003 maxvision_000
FRVT
6e+07
3e+07
-
False pos. identification rate
False neg. identification rate
1e+07
6e+06
1e+06
6e+05
yitu_3 staqu_000 yitu_2 gorilla_1 remarkai_000 remarkai_2 remarkai_0
6e+07
3e+07
1e+07
6e+06
3e+06
1e+06
6e+05
line_000 veridas_001 xforwardai_002 griaule_000 griaule_001 20face_000 alchera_004
R = Num. candidates examined
N = Num. enrolled subjects
6e+07
3e+07
1e+07
6e+06
3e+06
1e+06
-
6e+05
IDENTIFICATION
tech5_002 canon_001 s1_000 canon_002 newland_2 notiontag_000 verihubs−inteligensia_000
6e+07
3e+07
1e+07
6e+06
3e+06
1e+06
T = Threshold
6e+05
gorilla_0 smilart_4 smilart_5 intellivision_002 turingtechvip_001 quantasoft_1 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e
+05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07 +05 .6e+06 +06 +06 +07
6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e 6.4e 1 3.0e 6.0e 1.2e
Enrolled population size, N
Figure 153: [Mugshot Dataset] Search duration vs. enrolled population size. In red are the actual point durations measured on a single c. 2016 core. The blue shows
linear growth from N = 640 000. The green line shows logathmic growth from that point to N = 1 600 000. Note the sublinear growth from algorithms from Camvi,
Dermalog, EverAI, Innovatrics, and Visionlabs. The tiger 1 algorithm is also sublinear, but inaccurate and inoperable at N ≥ 3000000. This capability sometimes comes
at the additional expense of converting a linear gallery data structure into whatever fast-search data structure is used. Note that search times are sometimes dominated
230
by the template generation times shown in Table 26.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 231
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
2400
550 ●
30 ● 2300 ●
500 ●
29 ● ● 2200
2100 ●
450 ●
28 ● ● ●
640K 1.6M 3M 6M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
10000
5e+05 ● Measured 5e+05 ● Measured ● Measured
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● 3e+05 ● Model: a log N 5000 ● Model: a log N
Search
Search
Search
3e+05 ● ● ● ●
Model: a N Model: a N 3000 Model: a N
FNIR(N, R, T) =
●
1e+05
FPIR(N, T) =
1e+05 ●
5e+04 1000 ●
● ●
5e+04 ● ● ● ● ● ● ● ●
3e+04 500
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
FRVT
Gallery Size Gallery Size Gallery Size
-
False pos. identification rate
False neg. identification rate
Time (µs)
Time (µs)
11200
Insertion
Insertion
Insertion
● ● ●
8.75 ●
8 10800
8.50 ●
6 8.25 10400
●
4 ● 8.00 ● 10000 ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
● ●
1e+06 ● Measured ● Measured 1e+05 ● Measured
1e+06
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● Model: a log N ● ● Model: a log N
●
Search
Search
Search
5e+05 ● 5e+05 ● ● 5e+04 ●
Model: a N Model: a N Model: a N
3e+05 ● 3e+05 3e+04
R = Num. candidates examined
N = Num. enrolled subjects
● ●
1e+05 1e+05 ●
1e+04 ● ●
● ● ● ●
5e+04 5e+04
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size Gallery Size
-
IDENTIFICATION
rankone_5 visionlabs_7
0.050 ●
Time (µs)
Time (µs)
Insertion
Insertion
33000 ●
0.025
30000 ●
0.000 ● ● ● ● ●
27000 ●
−0.025
T = Threshold
−0.050 24000 ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
1e+06 ● 1e+06
● Measured ● Measured
Time (µs)
Time (µs)
Search
● 5e+04 ●
5e+04
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size
Figure 154: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized
gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion
time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000.
232
Generally, only the more accurate algorithms were run on galleries with N up to 12 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
1.025 30 3.025
1.000 ● ● ● ● ● 25 3.000 ● ● ● ● ●
0.975 20 ● ● 2.975
0.950 ● ● 2.950
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
● ● 5e+06 ●
● Measured ● Measured 3e+06 ● Measured
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● ● Model: a log N ● ● Model: a log N
1e+06 1e+06
Search
Search
Search
●
● Model: a N ● Model: a N ● Model: a N
FNIR(N, R, T) =
FRVT
Gallery Size Gallery Size Gallery Size
-
False pos. identification rate
False neg. identification rate
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
10 ● 7 ● 7.025
7.000 ● ● ● ● ●
9 ● 6 6.975
8 ● 5 ● 6.950
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
1e+07 ● ● 5e+06 ●
● Measured 1e+06 ● Measured 3e+06 ● Measured
5e+06
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● Model: a log N ● ● Model: a log N ●
3e+06
Search
Search
Search
● Model: a N ● 5e+05 ● Model: a N ● Model: a N ●
● 1e+06
R = Num. candidates examined
N = Num. enrolled subjects
1e+06 ● 3e+05
5e+05 ● 5e+05 ●
● 3e+05
3e+05 1e+05
● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size Gallery Size
-
IDENTIFICATION
ntechlab_6 tevian_5 vocord_5
13 ● ● 33 ● 16.0 ●
Time (µs)
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
12 ● ● 15.5
11 32
15.0 ●
10 31 14.5
T = Threshold
9
8 ● 30 ● ● ● ● 14.0 ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
3e+06 ● 3e+06 ● ●
● Measured ● Measured ● Measured
1e+06
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● Model: a log N ● ● Model: a log N ●
●
Search
Search
Search
1e+06 ● ● 5e+05 ●
Model: a N 1e+06 Model: a N ●
Model: a N
● ●
5e+05 3e+05
3e+05 5e+05 ● ●
●
3e+05
T > 0 → Identification
T = 0 → Investigation
1e+05
1e+05 ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size Gallery Size
Figure 155: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized
gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion
time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000.
233
Generally, only the more accurate algorithms were run on galleries with N up to 12 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
18 10.5 1.75
15 ● 10.0 1.50
12 9.5 1.25
9 ● 9.0 ● ● 1.00 ● ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
5e+06 ● ● 1e+07 ●
● Measured 5e+06 ● Measured ● Measured
3e+06 5e+06
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● 3e+06 ● Model: a log N ● ● Model: a log N ●
Search
Search
Search
● Model: a N ● Model: a N 3e+06 ● Model: a N
●
FNIR(N, R, T) =
● ●
1e+06 1e+06
FPIR(N, T) =
5e+05 ● ● 1e+06 ●
5e+05
3e+05 5e+05
● 3e+05 ● ●
3e+05
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
FRVT
Gallery Size Gallery Size Gallery Size
-
False pos. identification rate
False neg. identification rate
Time (µs)
Time (µs)
70
Insertion
Insertion
Insertion
11.75 60 ● ● 15
11.50 ●
50 10
11.25 5
40 ● ● ●
11.00 ● ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
● ● ●
● Measured 5e+06 ● Measured ● Measured
5e+06 3e+06 5e+06
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● Model: a log N ● ● Model: a log N
Search
Search
Search
3e+06 ● 3e+06 ●
● Model: a N ● Model: a N ● Model: a N
●
R = Num. candidates examined
●
N = Num. enrolled subjects
● 1e+06
1e+06 1e+06
● 5e+05 ● ●
5e+05 3e+05 5e+05
3e+05 ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size Gallery Size
-
IDENTIFICATION
sensetime_1 shaman_7 synesis_3
28 ● 4.00 ● ● ● ●
Time (µs)
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
2.025 27 3.75
2.000 ● ● ● ● ● 26 3.50
25 ● ● ●
3.25
T = Threshold
1.975 24
1.950 23 ● 3.00 ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
5e+06 ● 5e+06 ● 1e+07 ●
● Measured ● Measured ● Measured
3e+06 3e+06 5e+06
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● ● Model: a log N ● ● Model: a log N ●
Search
Search
Search
● Model: a N ● Model: a N 3e+06 ● Model: a N
1e+06 ● ● ●
1e+06
5e+05 ● ● 1e+06 ●
5e+05
3e+05 5e+05
T > 0 → Identification
T = 0 → Investigation
●
3e+05 ● ●
3e+05
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size Gallery Size
Figure 156: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized
gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion
time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000.
234
Generally, only the more accurate algorithms were run on galleries with N up to 12 000 000.
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
11:12:06
2022/12/18
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
14 ● ● ● 8
13 10 ●
12 ● 6
●
8
11 ● 4
10 ● 6 ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
● ● ●
3e+07 ● Measured 1e+07 ● Measured 1e+07 ● Measured
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● ● Model: a log N ● ● Model: a log N ●
Search
Search
Search
1e+07 ● Model: a N 5e+06 ● Model: a N 5e+06 ● Model: a N
FNIR(N, R, T) =
● ● 3e+06 ●
5e+06 3e+06
FPIR(N, T) =
3e+06 ● ● ●
1e+06 1e+06
1e+06 ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
FRVT
Gallery Size Gallery Size Gallery Size
-
False pos. identification rate
False neg. identification rate
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
23 ● 8.75
16
22 8.50
15 ● ● ● ●
21 8.25
14 ● 20 ● 8.00 ● ●
640K 1.6M 3M 6M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
5e+07 ● ● ●
3e+07 ● Measured ● Measured 5e+07 ● Measured
1e+07 ● 3e+07
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● Model: a log N ● Model: a log N ●
Search
Search
Search
● ● 5e+06 ● ●
1e+07 Model: a N Model: a N ● Model: a N ●
R = Num. candidates examined
N = Num. enrolled subjects
-
IDENTIFICATION
tiger_2 toshiba_0 vd_1
14 ● ● ●
Time (µs)
Time (µs)
Time (µs)
Insertion
Insertion
Insertion
●
13 ● 30
12 ● 20
28 ●
11 ● ●
15 ●
T = Threshold
10 ● 26 ●
9 ● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
● 5e+07 ●
3e+07 ●
● Measured ● Measured ● Measured
1e+07 3e+07 ●
Time (µs)
Time (µs)
Time (µs)
● Model: a log N ● ● Model: a log N ● Model: a log N ●
Search
Search
Search
5e+06 ● Model: a N ● Model: a N ● 1e+07 ● Model: a N
● 1e+07 ●
3e+06 ●
● 5e+06 5e+06 ●
3e+06 3e+06
1e+06
T > 0 → Identification
T = 0 → Investigation
● ● ●
640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M 640K 1.6M 3M 6M 12M
Gallery Size Gallery Size Gallery Size
Figure 157: [Mugshot Dataset] Gallery insertion duration vs. enrolled population size. This chart plots the time it takes to insert a single template into a finalized
gallery, illustrated over increasing gallery sizes. For reference, search times on finalized galleries of corresponding sizes are plotted right underneath. Gallery insertion
time plots were generated on algorithms that 1) successfully implemented gallery insertion with no errors and 2) that were run on galleries with N up to 12 000 000.
235
Generally, only the more accurate algorithms were run on galleries with N up to 12 000 000.
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 236
References
[1] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
[2] L. Best-Rowden and A. K. Jain. Longitudinal study of automatic face recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(1):148–162, Jan 2018.
[3] Blumstein, Cohen, Roth, and Visher, editors. Random parameter stochastic models of criminal careers. National
Academy of Sciences Press, 1986.
[4] Thomas P. Bonczar and Lauren E. Glaze. Probation and parole in the united statesm 2007, statistical tables. Tech-
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
[5] White D., Kemp R. I., Jenkins R., Matheson M, and Burton A. M. Passport officers’ errors in face matching. PLoS
ONE, 9(8), 2014. e103510. doi:10.1371/journal. pone.0103510.
[6] P. Grother, G. W. Quinn, and P. J. Phillips. Evaluation of 2d still-image face recognition algorithms. NIST Intera-
gency Report 7709, National Institute of Standards and Technology, 8 2010. http://face.nist.gov/mbe as MBE2010
FRVT2010.
[7] P. J. Grother, R. J. Micheals, and P. J. Phillips. Performance metrics for the frvt 2002 evaluation. In Proceedings of
Audio and Video Based Person Authentication Conference (AVBPA), June 2003.
[8] Patrick Grother and Mei Ngan. Interagency report 8009, performance of face identification algorithms. Face
Recognition Vendor Test (FRVT), May 2014.
[9] Patrick Grother, George Quinn, and Mei Ngan. Face in video evaluation (five) face recognition of non-
cooperative subjects. Interagency Report 8173, National Institute of Standards and Technology, March 2017.
https://doi.org/10.6028/NIST.IR.8173.
[10] Patrick Grother, George W. Quinn, and Mei Ngan. Face recognition vendor test - still face image and video
concept, evaluation plan and api. Technical report, National Institute of Standards and Technology, 7 2013.
http://biometrics.nist.gov/cs links/face/frvt/frvt2012/NIST FRVT2012 api Aug15.pdf.
[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016.
[12] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007.
[13] Masato Ishii, Hitoshi Imaoka, and Atsushi Sato. Fast k-nearest neighbor search for face identification using bounds
of residual score. In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pages
194–199, Los Alamitos, CA, USA, May 2017. IEEE Computer Society.
[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734,
2017.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification
FRVT - FACE RECOGNITION VENDOR TEST - IDENTIFICATION 237
[15] Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard. The megaface benchmark: 1
million faces for recognition at scale. CoRR, abs/1512.00596, 2015.
[16] Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical
navigable small world graphs. CoRR, abs/1603.09320, 2016.
[17] Joyce A. Martin, Brady E. Hamilton, Michelle J.K. Osterman, Anne K. Driscoll, , and Patrick Drake. National
vital statistics reports. Technical Report 8, Centers for Disease Control and Prevention, National Center for Health
Statistics, National Vital Statistics System, Division of Vital Statistics, November 2018.
[18] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British Machine Vision Conference, 2015.
[19] P. Jonathon Phillips, Amy N. Yates, Ying Hu, Carina A. Hahn, Eilidh Noyes, Kelsey Jackson, Jacqueline G. Cava-
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8271
zos, Géraldine Jeckeln, Rajeev Ranjan, Swami Sankaranarayanan, Jun-Cheng Chen, Carlos D. Castillo, Rama Chel-
lappa, David White, and Alice J. O’Toole. Face recognition accuracy of forensic examiners, superrecognizers, and
face recognition algorithms. Proceedings of the National Academy of Sciences, 115(24):6171–6176, 2018.
[20] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and
clustering. CoRR, abs/1503.03832, 2015.
[21] Jeroen Smits and Christiaan Monden. Twinning across the developing world. PLOS ONE, 6(9):1–5, 09 2011.
[22] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level per-
formance in face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR ’14, pages 1701–1708, Washington, DC, USA, 2014. IEEE Computer Society.
[23] A. Towler, R. I. Kemp, and D White. Unfamiliar face matching systems in applied settings. Nova Science, 2017.
[24] Working Group 3. Ed. M. Werner. ISO/IEC 19794-5 Information Technology - Biometric Data Interchange Formats - Part
5: Face image data. JTC1 :: SC37, 2 edition, 2011. http://webstore.ansi.org.
[25] David White, James D. Dunn, Alexandra C. Schmid, and Richard I. Kemp. Error rates in users of automatic face
recognition software. PLoS ONE, 10:1–14, October 2015.
[26] Bradford Wing and R. Michael McCabe. Special publication 500-271: American national standard for information
systems data format for the interchange of fingerprint, facial, and other biometric information part 1. Technical
report, NIST, September 2015. ANSI/NIST ITL 1-2015.
[27] Andreas Wolf. Portrait quality - (reference facial images for mrtd). Technical report, ICAO, April 2018.
[28] D. Yadav, N. Kohli, P. Pandey, R. Singh, M. Vatsa, and A. Noore. Effect of illicit drug abuse on face recognition.
In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1–7, Los Alamitos, CA, USA, mar
2016. IEEE Computer Society.
2022/12/18 FNIR(N, R, T) = False neg. identification rate N = Num. enrolled subjects T = Threshold T = 0 → Investigation
11:12:06 FPIR(N, T) = False pos. identification rate R = Num. candidates examined T > 0 → Identification