INTERNATIONAL BACCALAUREATE
Mathematics: analysis and approaches
MAA
EXERCISES [MAA 2.8]
EXPONENTS
Compiled by Christos Nikolaidis
A. Practice questions
1. [Maximum mark: 15] [without GDC]
a
Find the following values in the form of an integer or a fraction of integers.
b
33 = 3 2 = 3 3 =
2 2 3
1 2 2
= = =
3 3 3
2 2 3
1 2 2
= = =
3 3 3
1 3 1
42 = 42 = 4 2 =
1
1 1
25 2
25 2 = 25 2 = =
4
2. [Maximum mark: 6] [without GDC]
a
Find the following values in the form of an integer or a fraction of integers
b
32 23 = 3 5 3 3 = 3 5 3 3 =
54 23 74 72
30 03 = = =
2 2 53 7 77
2 1
3 1 2 3 = 3 2 3 = =
3 1
Page 1
[MAA 2.8] EXPONENTS
3. [Maximum mark: 9] [without GDC]
a
Find the following values in the form of an integer or a fraction of integers
b
1
30 2 15 2 12 2
= = =
15 2 30 2 3
1
2
1 3
7 0.3 7 0.7 = 72 72 = 7 2 7 =
2 3 33 4 3 33
7 2 7 1 = = =
63 63
4. [Maximum mark: 15] [without GDC]
Express the following in the form of a single power ( x y )
1
a6a 2 = a6a = (a 2 ) 6 =
a6
a =
6 2
a =
2 6
a2
=
a2a6 a 2b 6
a 2a3a = = =
a5 b 2 a 3 b 4
5 10
3 3
a 5 =
a5 =
a 1 2
=
a n 5 a 8
a x 3 a 1 x = = =
a n3 a 10
5. [Maximum mark: 8] [without GDC]
Given that A 0 , B 0 , C 0 , simplify the expressions
A 6 B 3 C 10
C 5 A2 B
A 2 B AB 3
AB
2 A A( 4 B ) (2 A) 2
2A
A 4 B 3 A3 B 4
A B
Page 2
[MAA 2.8] EXPONENTS
6. [Maximum mark: 5] [without GDC]
Consider the following powers of e :
1
x
A. e 2 B. e 2 C. e x D. e x E. e 2 F. e 2 x G. e x 2
Find the equivalent expressions in the table below, by stating the corresponding letter.
1 e2 x 1 ex
e
x 2
ex ex e2 e e 2 ex
7. [Maximum mark: 8] [without GDC]
(a) The graphs of 6 functions are shown below
Match the graphs (a) (b) (c) (d) (e) and (f) to the following functions
y 2x y 5x y ex y 2x y 5x y e x
(b) Complete the following table (it contains the common details for all six graphs)
y – intercept
Horizontal asymptote
Domain
Range
Page 3
[MAA 2.8] EXPONENTS
8. [Maximum mark: 10] [without GDC]
Let f ( x) 4 x .
The points A(-1,a), B(1,b) and C(2,c) of the graph are shown in the diagram below.
(a) Write down the coordinates of the y-intercept of the graph. [1]
(b) Write down the value of a in decimal form. [2]
(c) Write down the values of b and of c . [2]
(d) Write down the equation of the horizontal asymptote. [1]
(e) On the diagram above, sketch the graph of f . [2]
(f) Write down the domain and the range of f . [2]
9. [Maximum mark: 6] [without GDC]
The graph of f ( x ) 2 2 passes through the points A(1, a ), B(2, b ) and C(3, c ).
x
(a) Find the values of a , b and c . [2]
(b) Sketch the graph of the function. Indicate the y -intercept, the horizontal
asymptote and the points A, B, C of the graph. [4]
a …………
b …………
c …………
Page 4
[MAA 2.8] EXPONENTS
10. [Maximum mark: 6] [without GDC]
The graph of f ( x ) 2 x 2 passes through the points A(1, a ), B(2, b ) and C(3, c ).
(a) Find the values of a , b and c . [2]
(b) Sketch the graph of the function. Indicate the y -intercept, the horizontal
asymptote and the points A, B, C of the graph. [4]
a …………
b …………
c …………
11. [Maximum mark: 18] [without GDC]
Solve the equations
(a) 2 2 x 21 x [3]
(b) 2 2 x 81 x [3]
(c) 4 2 x 81 x [3]
(d) 8 x 3 16 x [3]
1
(e) x
4 x 3 [3]
2
(f) 2 x 41 x [3]
12. [Maximum mark: 15] [without GDC]
Solve the equations
(a) 25 x1 53 [3]
1
(b) 25 x 1 [3]
5x
(c) 25 x 1 5 x [3]
2
(d) 25 x 125 x [3]
2
5 x
(e) 7x 1 [3]
Page 5
[MAA 2.8] EXPONENTS
B. Exam style questions (SHORT)
13. [Maximum mark: 9] [with GDC]
Let f ( x ) e x 2 . The points A(1, e +2) and B(2,b) of the graph are shown in the
diagram below.
(a) Write down value of b
(i) in exact form (ii) correct to 3s.f. [2]
(b) Write down, correct to 3.s.f.,
(i) the value of f (1) (ii) the value of f 1 (6) [2]
(c) On the diagram above, sketch the graph of f . Indicate the y-intercept and the
horizontal asymptote of the graph. [3]
(d) Write down the domain and the range of f . [2]
14. [Maximum mark: 5] [without GDC]
Find the exact solution of the equation 9
2x
27 (1 x ) .
15. [Maximum mark: 5] [without GDC]
2x
1
Solve the equation 9 x 1
3
16. [Maximum mark: 5] [without GDC]
2
Solve the equation 25 x 5
17. [Maximum mark: 5] [without GDC]
2
Solve the equation 4 x 8 x .
18*. [Maximum mark: 5] [without GDC]
2 x 1
x2 3 1
Solve the equation 5 .
25
Page 6
[MAA 2.8] EXPONENTS
C. Exam style questions (LONG)
19. [Maximum mark: 12] [without GDC]
For each of the following functions sketch the graph and complete the table
(a) f ( x ) 2e x 3 (the point A lies on the curve).
y - intercept:
horizontal asymptote: Exact value of b :
Domain: Range:
[6]
(b) f ( x ) 2e x 3 (the point A lies on the curve).
y - intercept:
horizontal asymptote: Exact value of b :
Domain: Range:
[6]
Page 7
[MAA 2.8] EXPONENTS
20*. [Maximum mark: 12] [with GDC]
Consider the function y f ( x) with f ( x) 10e0.3 x 5
(a) Write down the domain of f . [1]
(b) Find the y-intercept of the graph. [2]
1
(c) Find (i) f (5) correct to 3sf. (ii) f (100) correct to 3sf. [3]
(d) Find the first integer value of x for which the value of y will exceed 120. [2]
(e) Find the value of f (20) and deduce the equation of the horizontal asymptote of
the graph. [2]
(f) Write down the range of f . [2]
Page 8
[MAA 2.8] EXPONENTS
SOLUTIONS
Compiled by: Christos Nikolaidis
A. Practice questions
1.
1 1
3 3 = 27 3 2 = 3 3 =
9 27
2 2 3
1 1 2 4 2 8
= = =
3 9 3 9 3 27
2 2 3
1 2 9 2 27
=9 = =
3 3
4 3
8
1
1 3 1
42 =2 42 =8 4 2 =
2
1 1
1 1 25 2 5
25 2 =5 25 2 = =
5 4 2
2.
1
3 2 2 3 = 72 3 5 3 3 = 9 3 5 3 3 =
9
54 23 74 72
30 0 3 = 1 = 10 =1
2 2 53 7 77
8 3 2 1 3
3 1 2 3 = 3 2 3 = 1
=
3 8 3 2
3.
1
30 2 15 2 12 2
=4 =4 =2
15 2 30 2 3
1
2
1 3 1
7 0.3 7 0.7 = 7 7 2 7 =
7 2 7 2 = 49 7
2 3 33 4 3 33
7 2 7 1 = 7 =1 =8
63 63
4.
1
a6a2 = a8 a6a = a7 (a 2 ) 6 = a 3
a6
a
6 2
= a 12 a = a
2 6 12
a 2
= a4
a2a6 a 2b 6
a 2 a3a = a 6 = a3 = a5
a5 b 2 a 3 b 4
5 10
3 3
a 5 = a3
a 5 = a6
a 1 2
= a2
a n5 a 8
a x 3 a 1 x = a 4 n 3
= a2 10
= a2
a a
1
5.
A 6 B 3 C 10 4 2 5
A B C
C 5 A2 B
A 2 B AB 3 2
A B
AB
2 A A(4 B) ( 2 A) 2
1 2B 2 A
2A
A 4 B 3 A3 B 4 3 3
A B
A B
6.
1 e2 x 1 ex
e
x 2
ex ex e2 e e 2 ex
1
x
F. e 2 x D. e x C. e x A. e 2 B. e 2 G. e x 2 E. e 2
7. (a)
y 2x y 5x y ex y 2x y 5x y ex
(c) (a) (b) (d) (f) (e)
(b)
y – intercept y 1
Horizontal asymptote. y0
Domain x R
Range y0
8. (a) y 1 (b) 0.25 (c) b 4 c 16 (d) y 0 (f) x R y 0
9. (a) a 4, b 6, c 10
(b) y-intercept: (0,3), horizonta asymptote: y 2
2
10. (a) a 0, b 2, c 6
(b) y-intercept: (0, -1), horizonta asymptote: y 2
11. (a) 2 2 x 21 x 2 x 1 x 3 x 1 x 1 / 3
(b) 2 2 x 81 x 2 2 x 2 33 x 2 x 3 3 x 5 x 3 x 3 / 5
(c) 4 2 x 81 x 2 4 x 2 33 x 4 x 3 3x 7 x 3 x 3 / 7
(d) 8 x 3 16 x 2 3 x 9 2 4 x 3x 9 4 x x 9
1
(e) x
4 x 3 2 x 2 2 x 6 x 2 x 6 6 3 x x 2
2
x
x
(f) 2 x 41 x 2 2 2 2 2 x 2 2 x x 4 4 x 5x 4 x 4 / 5
2
12. (a) 25 x 1 5 3 5 2 x 2 5 3 2 x 2 3 2 x 1 x 1 / 2
1
(b) 25 x 1 5 2 x 2 5 x 2 x 2 x 3 x 2 x 2 / 3
5x
x
x
(c) 25 x 1 5 x 5 2 x 2 5 2 2 x 2 4 x 4 x 3x 4 x 4 / 3
2
2 2
(d) 25 x 125 x 52 x 53 x 2 x 2 3 x x(2 x 3) 0
x 3 / 2 or x 0
2
5 x 2
(e) 7 x 1 7x 5 x
7 0 x 2 5 x 0 x ( x 5) 0
x 0 or x 5
3
B. Exam style questions (SHORT)
13. (a) (i) b e 2 2 (ii) b 9.39
(b) f (1) e 2 4.72 , f 1 (6) 1.386294... 1.39
(c) y-intercept: (0,3), horizontal asymptote: y 2
(d) Domain: x R , Range: y 2
3
14. 9 2 x 27 (1 x ) 34 x 333 x 4 x 3 3 x 7 x 3
x
7
2x
1
15. 9x–1 = 32x–2 = 3–2x
3
1
2x – 2 = –2x x =
2
1
2 2 1 1
16. 25 x 5 52 x 5 2 2 x 2 x2
2 4
1
x
2
2 2
17. 4 x 8 x 2 2 x 23 x 2 x 2 3 x x(2 x 3) 0
x 3 / 2 or x 0
2 x 1
2
3 1 2
18. 5x 5x 3
5 4 x 2 x 2 3 4 x 2 x 2 4 x 5 0
25
x 5 or x 1
4
C. Exam style questions (LONG)
19.
(a) y- intercept: (0,5) (b) y- intercept: (0,-1)
h. asymptote: y=3 value of b: 2e+3 h. asymptote: y= -3 value of b: 2e-3
Domain: xR Range: y>3 Domain: xR Range: y> -3
20. (a) xR
(b) y 15
(c) (i) f (5) 49.8 (ii) x 7.50
(d) x 8.14 so x 9
(e) y 5.02 , the horizontal line is y 5
(f) y 5