0% found this document useful (0 votes)
43 views9 pages

Live Script Test

This document simulates transfer functions and applies feedback and corrective controls to analyze their step responses. It models a first order system, applies a proportional feedback controller, then models a second order system and applies the same controller to compare the step responses.

Uploaded by

Bati Omar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
43 views9 pages

Live Script Test

This document simulates transfer functions and applies feedback and corrective controls to analyze their step responses. It models a first order system, applies a proportional feedback controller, then models a second order system and applies the same controller to compare the step responses.

Uploaded by

Bati Omar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

simulation de fonction de transfert H=1/(1+s)

num=1

num = 1

den=[1 1]

den = 1×2
1 1

sys=tf(num,den)

sys =

1
-----
s + 1

Continuous-time transfer function.


Model Properties

simulation de fonction de transfert H2

sys1=zpk([-5],[-7,-20],5)

sys1 =

5 (s+5)
------------
(s+7) (s+20)

Continuous-time zero/pole/gain model.


Model Properties

step(sys)

grid

1
stepinfo(sys)

ans = struct with fields:


RiseTime: 2.1970
TransientTime: 3.9121
SettlingTime: 3.9121
SettlingMin: 0.9045
SettlingMax: 0.9993
Overshoot: 0
Undershoot: 0
Peak: 0.9993
PeakTime: 7.3222

sysBF=feedback(sys,1)

sysBF =

1
-----
s + 2

Continuous-time transfer function.


Model Properties

step(sysBF)

2
stepinfo(sysBF)

ans = struct with fields:


RiseTime: 1.0985
TransientTime: 1.9560
SettlingTime: 1.9560
SettlingMin: 0.4523
SettlingMax: 0.4997
Overshoot: 0
Undershoot: 0
Peak: 0.4997
PeakTime: 3.6611

C=20

C = 20

sysBFC=feedback(sys*C,1)

sysBFC =

20
------
s + 21

Continuous-time transfer function.


Model Properties

sysBFC=feedback(sys*C,1)

3
sysBFC =

20
------
s + 21

Continuous-time transfer function.


Model Properties

step(sysBFC)

stepinfo(sysBFC)

ans = struct with fields:


RiseTime: 0.1046
TransientTime: 0.1863
SettlingTime: 0.1863
SettlingMin: 0.8614
SettlingMax: 0.9518
Overshoot: 0
Undershoot: 0
Peak: 0.9518
PeakTime: 0.3487

on veut connaitre l'effet du correcteur propo sur un système de 2ème ordre BO

num1=1

num1 = 1

den1=[1 3 1]

4
den1 = 1×3
1 3 1

sys2=tf(num1,den1)

sys2 =

1
-------------
s^2 + 3 s + 1

Continuous-time transfer function.


Model Properties

sys2BOC=feedback(sys*C,0.1)

sys2BOC =

20
-----
s + 3

Continuous-time transfer function.


Model Properties

step(sys2BOC)

stepinfo(sys2BOC)

ans = struct with fields:

5
RiseTime: 0.7323
TransientTime: 1.3040
SettlingTime: 1.3040
SettlingMin: 6.0300
SettlingMax: 6.6623
Overshoot: 0
Undershoot: 0
Peak: 6.6623
PeakTime: 2.4407

sys2BOC=feedback(sys*C,0.5)

sys2BOC =

20
------
s + 11

Continuous-time transfer function.


Model Properties

sys2BOC=feedback(sys*C,0.5)

sys2BOC =

20
------
s + 11

Continuous-time transfer function.


Model Properties

step(sys2BOC)

6
stepinfo(sys2BOC)

ans = struct with fields:


RiseTime: 0.1997
TransientTime: 0.3556
SettlingTime: 0.3556
SettlingMin: 1.6445
SettlingMax: 1.8170
Overshoot: 0
Undershoot: 0
Peak: 1.8170
PeakTime: 0.6657

sys2BOC=feedback(sys*C,1)

sys2BOC =

20
------
s + 21

Continuous-time transfer function.


Model Properties

step(sys2BOC)

7
stepinfo(sys2BOC)

ans = struct with fields:


RiseTime: 0.1046
TransientTime: 0.1863
SettlingTime: 0.1863
SettlingMin: 0.8614
SettlingMax: 0.9518
Overshoot: 0
Undershoot: 0
Peak: 0.9518
PeakTime: 0.3487

sys2BOC=feedback(sys*C,1)

sys2BOC =

20
------
s + 21

Continuous-time transfer function.


Model Properties

step(sys2BOC)

8
stepinfo(sys2BOC)

ans = struct with fields:


RiseTime: 0.1046
TransientTime: 0.1863
SettlingTime: 0.1863
SettlingMin: 0.8614
SettlingMax: 0.9518
Overshoot: 0
Undershoot: 0
Peak: 0.9518
PeakTime: 0.3487

You might also like