Reduction Formulae
Reduction Formulae
Discipline Courses-I
                             Semester-I
                          Paper: Calculus-I
                     Lesson: Reduction Formulae
                Lesson Developer: Sada Nand Prasad
College/Department: Department of Mathematics, Acharya Narendra Dev
                            College (D.U.)
Table of Contents:
1. Learning Outcomes
After reading this chapter, you should be able to understand how to derive
reduction formulae for the following functions
          sin x dx ,
               n
           cos x dx ,
                   n
           tan x dx ,
                   n
           sec x dx ,
                  n
           sin x cos x dx ,
                  n         m
             log x  dx ,
                        n
    
          
              2
           sin
                   n
                       x cos m x dx etc.
           0
2: Introduction:
3: Reduction Formulae:
                            n           n
Thus if we apply this formula repeatedly, the exponent can be reduced to 0
or 1, accordingly n is even or odd.
We can also use this technique to evaluate the integrals of the type
        sin x cos x dx
            m     n
on n, which is exponent of x.
Let
       I n   sin n x dx   sin n 1 x sin x dx                      (n > 1)
                                  n              n -1
(we can rewrite sin                   x as sin          x sin x)
                                                 
                                           d sin n 1 x
                          x  sin x dx    
                                                                            
                                                                 sin x dx  dx 
                   n 1
       I n  sin
                                               dx
                                                                           
            sin n 1 x cos x   n 1  sin n  2 x cos x cos x dx
                                                          
            sin n 1 x cos x   n 1  sin n  2 x 1  sin 2 x dx      
            sin n 1 x cos x   n 1  sin n  2 x dx   n 1  sin n x dx
            sin n 1 x cos x   n 1 I n  2   n 1 I n
Let
        I n   cosec n x dx   cosec n  2 x cosec2 x dx
By using method of integration by parts, we get
                           x  cosec x dx    
                                                         
                                              d cosecn  2 x                                 
                                                                                                dx 
                                                                                
                     n2
      I n  cosec                     2
                                                                                  cosec 2
                                                                                          x dx
                                                   dx                                         
                                                                                              
           cosec n  2 x cot x   n  2   cosec n  3 x cosec x cot x cot x dx
      I n   n  2  I n   cosec n  2 x cot x   n  2  I n  2
                                   cosec n  2 x cot x  n  2 
                          In                                   In2                                  ... (2)
                                         n 1             n 1
Let
       I n   cos n x dx   cos n 1 x cos x dx
using method of integration by parts, we get
                         x  cos x dx    
                                                    
                                          d cos n 1 x                    
                                                                             dx 
                                                                 
                  n 1
      I n  cos                                                    cos x dx
                                             dx                            
                                                                           
          cos n 1 x sin x   n 1  cos n  2 x sin x sin x dx
                                                         
          cos n 1 x sin x   n 1  cos n  2 x 1  cos 2 x dx      
          cos n 1 x sin x   n 1  cos n  2 x dx   n 1  cos n x dx
          cos n 1 x sin x   n 1 I n  2   n 1 I n
                    cos 3 x sin x 3
         cos x dx  4  4  cos x dx
              4                          2
Let
        I n   sec n x dx   sec n  2 x sec 2 x dx
                                                    
                                           d sec n  2 x
                          x  sec x dx    
                                                                                 
                                                                      sec x dx  dx 
                    n2
        I n  sec                    2                                     2
                                               dx
                                                                                
           sec n  2 x tan x   n  2   sec n  3 x sec x tan x tan x dx
                                                             
           sec n  2 x tan x   n  2   sec n  2 x sec 2 x 1 dx       
           sec n  2 x tan x   n  2   sec n x dx   n  2   sec n  2 x dx
           sec n  2 x tan x   n  2  I n   n  2  I n  2
         I n   n  2  I n  sec n  2 x tan x   n  2  I n  2
                                sec n  2 x tan x  n  2 
                        In                               In2                                        ... (4)
                                      n 1          n 1
Let
                                       
              tan n  2 x sec2 x 1 dx   tan n  2 x sec2 x dx   tan n  2 x dx              ...(5)
                                        tan n 1 x
Similarly,  tan n  2 x sec2 x dx                k
                                           n 1
                                tan n 1 x
         I n   tan n x dx                In2                                       ...(6) ,
                                  n 1
Let
                         7                        7         5
                           7         5        3
                      tan x tan x tan x
                                                 tan 2 x dx
                         7         5         3
                     tan x tan x tan 3 x
                          7         5
                  
                        7
                             
                                   5
                                        
                                            3
                                                         
                                                   sec 2 x  1 dx    
                    tan x tan x tan 3 x
                         7         5
                                               tan x  x
                        7         5         3
                          4                         4        2
                       cot 4 x cot 2 x
                                         log sin x
                         4           2
Let
        I n    log x  dx
                       n
                                                       d  log x  n    
         I n    log x  dx   log x           dx   dx
                                                      
                        n                   n
                                                 dx                  dx
                                                                        
                                                       1
               x  log x   n   log x               x dx  x  log x   n I n 1
                                n               n 1                       n
                                                       x
         I n    log x  dx  x  log x   n I n 1 ,
                            n                      n
                                                                                                       ...(9)
Which is the required reduction formula for                                     log x        dx .
                                                                                            n
                                    x m 1              n                      n 1 1
           x  log x  dx                 log x         x m 1  log x 
             m          n                           n
                                                                                      dx
                                    m 1               m 1                         x
                                      x m 1              n
          x m  log x  dx                 log x          x m  log x 
                                                                              n 1
                                                              
                            n                         n
                                                                                   dx
                                      m 1               m 1
 is the required reduction formula for                             x  log x         dx .
                                                                     m             n
Let
         I n, m   sin n x cos m x dx
If m = 1, then
                                        sin n 1 x
                                                    k , where n   1
         I n ,1   sin n x cos x dx   n  1
                                       1n sin x  k , where n   1
                                       
So, we take m > 1, and we get,
      I n, m   sin n x cos m x dx   cos m 1 x  sin n x cos x  dx
By using method of integration by parts, we get,
                   cos m 1 x sin n 1 x m 1
                                              I n , m  2  I n , m  ,
                          n 1            n 1 
                      m 1          nm           cos m 1 x sin n 1 x m 1
        I n, m           I n, m       I n, m                            I n, m  2
                      n 1          n 1                 n 1            nm
                        cos m 1 x sin n 1 x m 1
       or , I n , m                              I n, m  2                             ...(10)
                               nm             nm
Example 7: Evaluate
        sin
               4
                   x cos 2 x dx
                           cos3 x sin 3 x 3
        sin x cos x dx                    sin 2 x cos 2 x dx
            4      2
                                 6         6
                               cos3 x sin 3 x 1   cos3 x sin x 1             
                                                                cos 2 x dx 
                                     6         2        4        4             
                               cos3 x sin 3 x   cos3 x sin x 1 1
                                                             1  cos 2 x  dx
                                     6                8       8 2
                             cos3 x sin 3 x   cos3 x sin x 1    1
                                                          x  sin 2 x
                                   6                8       16  32
                              1    1                         6                6     
                               x  cos x  cos 2 x sin 3 x  cos 2 x sin x  sin x 
                             16    6                         8               16     
                                                                                            
                         
                              1
                             16
                                   1
                                                                6
                                                                                     6
                                x  cos x  1  sin 2 x sin 3 x  1  sin 2 x sin x  sin x 
                                   6                             8                   16     
                              1    1                             3          3 3 
                               x  cos x sin 5 x  sin 3 x  1    sin x     
                             16    6                             4          4 8 
                              1    1               1         3      
                               x  cos x sin 5 x  sin 3 x  sin x 
                             16    6               4         8      
                          sin n x m  m 1 cos n x m 1 m  2         
                      xm
                             n
                                    x
                                   n        n
                                                  
                                                    n   x cos n x dx 
                                                                      
                            sin n x m x m 1 cos n x m  m 1 m  2
                       x                                        x cos n x dx
                         m
                               n             n2             n2
                         n x m sin n x  m x m 1 cos n x m  m 1 m  2
                                                                  x cos n x dx
          m
        x   cos n x dx
                                        n2                    n2
is the required reduction formula for  x m cos n x dx .
we have
                                                       /2                      
           2
                        sin n 1 x cos x     n 1 2 n  2        n 1 2 n  2
       0                                  
                                               n 0
                                                                
                                                                   n 0
                                                                        sin x dx, n  2.
              n
          sin   x dx                                sin    x dx
                                n         0
                       n 1 n  3 n  5 3 1  2
                                           dx, when n is even and n  2.
          2           
                        n    n  2   n  4    4 2 0
        0 sin x dx  
              n
                                                  
                       n 1 n  3 n  5 4 2 2
                                            sin x dx, when n is odd and n  3.
                       n n2 n4 5 3 0
                      
                          n 1 n  3 n  5 3 1 
               
                          n  n  2  n  4  4  2  2 , when n is even and n  2.
             2
                         
       or ,  sin x dx  
                 n
0 2
                                          
                              
                                                                  
                                        2                                       2
          0  n  x sin x
                         
                                     n 1 x sin x dx   n    n  n 1  x n  2 sin x dx
                                                 
                       n  1     2              n   2
                             0                               2
                                      0
                                                                              0
                      n 1
                  
        I n  n    n  n  1 I n  2
                 2
                                                     n 1
                                      
        I n  n  n 1 I n  2  n  
                                     2
                                                              
                                                                  2
5.2: Reduction formula for                                     cos
                                                                      n
                                                                          x dx,
                                                              0
                             n 1 n  3 n  5 3 1 
       
                             n  n  2  n  4  4  2  2 , when n is even and n  2.
           2
                            
              cos n x dx  
        0                    n 1  n  3  n  5  4  2 , when n is odd and n  3.
                            
                             n n2 n4 5 3
                                                                                                                        
                                                          2                         2                   2                      2
Example 10: Evaluate (i)  sin x dx, (ii)  sin x dx, (iii)  cos x dx, (iv)  cos 6 x dx
                                                               9                         10                   5
0 0 0 0
                        0
                                               9 7 5 3 315
(ii) we have
                        
                            2
                                                   9 7 5 3 1  63
                         sin            x dx               
                                    10
                        0
                                                  10 8 6 4 2 2 512
(iii) we have
                        
                            2
                                               4 2 8
                         cos            x dx   
                                    5
                        0
                                               5 3 15
(iv) we have
                        
                            2
                                               5 3 1  5
                         cos            x dx      
                                    6
                        0
                                               6 4 2 2 32
                                                                   
                                                                       2
5.3: Reduction formula for                                          sin
                                                                           n
                                                                               x cos m x dx, where n and m are positive integers
                                                                   0
                                                 cos m 1 x sin n 1 x n 1
        sin x cos x dx                                               
                                                                         nm 
                                                                               sin n  2 x cos m x dx
            n     m
nm
                                                 
Taking the limits 0 to                             on both sides, we get,
                                                 2
                    /2                                                                  /2    /2
                                              cos m 1 x sin n 1 x     n 1
                                                                                                sin
                                                                                                            n2
       In, m               sin x cos x dx 
                                n           m
                                                                                                                 x cos m x dx     ...(12)
                    0
                                                    nm              0
                                                                         nm                    0
             n 1
        In, m   I n  2, m                                                                                                       ...(13)
             nm
interchanging n to n-2, n-4, n-6 and so on, we obtain
                       n 3                            n 5                            n7
       I n  2, m          I n  2, m , I n  4, m        I n  6, m , I n  6, m        I n  8, m ...
                      mn2                           mn4                           nm6
                   2                                    1
       I3, m         I1, m , when n is odd , I 2, m      I0, m , when n is even,
                 3 m                                  2m
                                   /2                                              /2                             /2
                                                  1
                   0
       Also, I1, m                      sin x cos m x dx 
                                                         , and I0, m                    sin 0 x cos m x dx        cos
                                                                                                                            m
                                                                                                                                x dx
                                               m 1                                 0                               0
       Substituting for I 0, m , I 2, m , and I1, m , I 3, m , we get ,
                                                                            /2
                       n 1   n3   n5     1
              I n, m                                                   cos
                                                                                              m
                                                                                                  x dx, when n is even
                       nm nm 2 nm4 2m                                    0
                              n 1    n3       n5        2   1
       and I n , m                                          , when n is odd
                              n  m n  m  2 n  m  4 3  m m 1
                    n 1     n3      n5        1     m 1 m  3 1 
        I n, m                                            , when n is even, m is even
                   nm nm 2 nm4 2m                 m m2 2 2
                      n 1    n3      n5         1    m 1 m  3 2
       and I n , m                                         , when n is even, m is odd
                     nm nm 2 nm4 2m                m m2 3
                                                                                                              
                                                                           2                                       2
Example 11: Write down the value of (i)  sin x cos x dx, (ii)  sin 6 x cos 8 x dx       4          5
                                                                       0                                        0
                          
                              2
                                                           3 1 4 2 8
Solution: (i)              sin              x cos 5 x dx     
                                         4
                                                                       ,
                          0
                                                           9 7 5 3 315
                      
                          2
                                                            5 3 1 7 5 3 1  5
(ii)                   sin               x cos 8 x dx             
                                     6
                                                                                   ,
                      0
                                                           14 12 10 8 6 4 2 2 4096
Summary:
                      csc n  2 x cot x  n  2 
         csc x dx                               csc n  2 x dx
              n
                              n 1          n 1
                     sec n  2 x tan x  n  2 
      sec n x dx                              sec n  2 x dx ,
                           n 1           n 1
                               cot n 1 x
         cot x dx                         cot n  2 x dx
              n
                                 n 1
                            cos m 1 x sin n 1 x m 1
          sin x cos x dx                             sin n x cos m  2 x dx , m  1
                   n         m
                                   nm             nm
    
                                        cos m 1 x sin n 1 x n 1
                                     
                                              nm
                                                              
                                                                nm  sin n  2 x cos m x dx , n  1
Exercises:
(1) Evaluate :
                                                          128    8                 6         24        16     
   (3)     Show that
                                        1         1
            tan          x sec 4 x dx  tan 5 x  tan 3 x
                      2
5 3
   (4)    Evaluate :
                  /2                                                           /2
                         sin 15 x dx                                               cos
                                                                                           10
           (a)                                                           (b)                       x dx
                  0                                                                0
                  /2                                                           /2
   (5)    Evaluate
                  /4                                                          
                   tan                                                         cos
                                   5                                                       2
           (a)                         x dx                             (b)                    5 x dx
                  0                                                            
                  /2                                                           /4
                         csc 4 x dx                                             sec
                                                                                           6
           (c)                                                           (d)                   x dx
                 /4                                                               0
                                                                              n           n2            n2
   (8)    Obtain a reduction formula for                                                 cos
                                                                                                   m
                                                                                                       x sin n x dx
   (9)    Obtain a reduction formula for                                                 cos
                                                                                                   m
                                                                                                       x sin n x dx
                           
                               2
                                                                                                           n 1        1
   (10)    If I n             x sin           x dx and n  1, then provethat I n                             In2  2
                                            n
                              0
                                                                                                            n         n