Orthorhombic system
Axes length : a ≠ b ≠ c
Axial angles: α = β = δ= 90o
Elements of symmetry:
Axes of symmetry: 3     (a,b,c) axes
Planes of symmetry : 3m (1 Horizontal + 2 Vertical)
Center of symmetry: +ve
                Crystal forms
1. Basal pinacoid (001) 2 faces
2. Front pinacoid (100) 2 faces
3. Side pinacoid (010) 2 faces
4. Orthorhombic prism (hk0) 4 faces
5. a-dome (0kL) 4 faces
6. b-dome (h0L) 4 faces
7. Orthorhombic bi-pyramid (hkL) 8 faces
               Tetragonal system
Axes length : a = b ≠ c
Axial angles: α = β = δ= 90o
Elements of symmetry:
Axes of symmetry:
1    c,4     (2     (a,b) axes + 2   from Equitable)
Planes of symmetry :
5m (1 Horizontal + 4 Vertical)
Center of symmetry: +ve
                   Crystal forms
1.   Basal pinacoid (001) 2 faces
2.   Tetragonal prism 1st order (hh0) 4 faces
3.   Tetragonal prism 2nd order (100) 4 faces
4.   Di-tetragonal prism (hk0) 8 faces
5.   Tetragonal bipyramid 1st order (hhL) 8 faces
6.   Tetragonal bipyramid 2nd order (h0L) 8 faces
7.   Di-tetragonal bipyramid (hkL) 16 faces
                Cubic system
Axes length: a = b = C
Axial angles: α = β = δ= 90o
Elements of symmetry:
Axes of symmetry:
3    (a,b,c) axes, 4 from corners or solid angles,
6     from Equitable
Planes of symmetry :
9m (1 Horizontal + 4 Vertical + 4 Inclined)
Center of symmetry: +ve
                    Crystal forms
1. Cube (100) 6 faces
2. Octahedron (111) 8 faces
3. Rhombic Dodecahedron (110) 12 faces
4. Tetra-Hexahedron (hk0) 24 faces
5. Tris-octahedron (hhL) 24 faces
6. Icosi-tetrahedron (hLL) 24 faces
7. Hex-octahedron (hkL) 48 faces
Orthorhombic system                        Cubic system
1. Basal pinacoid (001) 2 faces            1. Cube (100) 6 faces
2. Front pinacoid (100) 2 faces            2. Octahedron (111) 8 faces
3. Side pinacoid (010) 2 faces             3. Rhombic Dodecahedron (110) 12 faces
4. Orthorhombic prism (hk0) 4 faces        4. Tetra-Hexahedron (hk0) 24 faces
5. a-dome (0kL) 4 faces                    5. Tris-octahedron (hhL) 24 faces
6. b-dome (h0L) 4 faces                    6. Icosi-tetrahedron (hLL) 24 faces
7. Orthorhombic bi-pyramid (hkL) 8 faces   7. Hex-octahedron (hkL) 48 faces
Tetragonal system
1. Basal pinacoid (001) 2 faces
2. Tetragonal prism 1st order (hh0) 4 faces
3. Tetragonal prism 2nd order (100) 4 faces
4. Di-tetragonal prism (hk0) 8 faces
5. Tetragonal bipyramid 1st order (hhL) 8 faces
6. Tetragonal bipyramid 2nd order (h0L) 8 faces
7. Di-tetragonal bipyramid (hkL) 16 faces
               Hexagonal System
Axes length : a1= a2= a3  c
Axial angles:  = = 90°, δ = 120°
Elements of symmetry:
Axes of symmetry:
1     c,6     (3     (a1, a2, a3 ) axes + 3   from Equitable)
Planes of symmetry :
7m (1 Horizontal + 6 Vertical)
Center of symmetry: +ve
                   Crystal forms
1.   Basal Pinacoid (0001) 2 Faces
2.   Hexagonal Prism first order (h0hˉ0) 6 faces
3.   Hexagonal Prism second order (hh2hˉ0) 6 faces
4.   Di-hexagonal Prism (hkiˉ0) (12) faces
5.   Hexagonal Bi-Pyramid first order (h0hˉL) 12 faces
6.   Hexagonal Bi-Pyramid second order (hh2hˉL) 12 faces
7.   Di-hexagonal Bi-Pyramid (h k iˉL) 24 faces
                Trigonal System
Axes length : a1= a2= a3  c
Axial angles:  = = 90°, δ = 120°
Elements of symmetry:
Axes of symmetry:
1     c ,3      (a1, a2, a3 ) axes
Planes of symmetry :
3m = 3 Vertical Planes coincide on Equitable
Center of symmetry: +ve
                    Crystal forms
1.   Basal Pinacoid (0001) 2 Faces
2.   Hexagonal Prism first order (h0hˉ0) 6 faces
3.   Hexagonal Prism second order (hh2hˉ0) 6 faces
4.   Rhombohedron (h0hˉL) 6 Faces
5.   Rhombohedron (0hhˉL) 6 Faces
6.   Di-Trigonal Scalenohedron (h k iˉL) 12 faces
                     Crystal Systems
  System        No. of       Axes             Angles             Unique Symmetry
                 axes       lengths
   Cubic                   a=b=c           =  = δ = 90°         Three 4-fold axes
 Tetragonal                a=bc           =  = δ = 90°         4-fold axis with c
                Three                                             a, b (2-fold) axes
Orthorhombic     axes      a≠bc           =  = δ = 90°         Three 2-fold axes
 Monoclinic                abc         = δ= 90°,   90°       2-fold axis with b
  Triclinic                abc               δ 90°               None
 Hexagonal                 a1= a2= a3    = = 90°, δ = 120°      6-fold axis with c
               Four axes       c                              a1= a2= a3 (2-fold) axes
  Trigonal                 a1= a2= a3    = = 90°, δ = 120°     3ˉ-fold axis with c
                               c                              a1= a2= a3 (2-fold) axes