Group 1
Group Members
Task: Determine the exact length of the hypotenuse using the Pythagorean Theorem.
Group 2
Group Members
Task: Label the hypotenuse and all other sides and angles.
Group 3
Group Members
Task: Write the primary trigonometric ratios for 45 ° (SOH-CAH-TOA)
Group 1 C.
Direction: Together with your group, do the activity, and use a protractor to
find the measures of the angles of the triangle.
A.
1. ∠L = _____
2. ∠M = _____
3. ∠N= _____
1. ∠A = _____
2. ∠B = _____
3. ∠C = _____
B.
1. ∠D = _____
2. ∠E = _____
3. ∠F = _____
Group 2 C. Given:
Direction: Find the length of the indicated side. Remember the right
triangle theorem.
A. Given:
If t=3 √ 3
Find the value of s.
Find the value of m.
B. Given:
Find the value of r.
Group 3 sin 45 ° =¿ ¿ sec 45 °=¿ ¿
cos 45 °=¿ ¿ csc 45 °=¿ ¿
Direction: Given the angles of the triangles below, find the values of
tan 45 °=¿ ¿ cot 45° =¿ ¿
the six trigonometric ratios. Write the six trigonometric ratios with
rationalized denominators.
C. Let a be the leg of 45 ° −60 °−90 ° Triangle.
A. Let a be the leg of 30 °−60 °−90° Triangle.
sin 30 °=¿ ¿ sec 30 °=¿ ¿ sin 60 °=¿ ¿ sec 60 °=¿ ¿ ¿
cos 30 °=¿ ¿ csc 30 °=¿ ¿ cos 60 °=¿ ¿ csc 60 °=¿ ¿
tan30 ° =¿ ¿ cot 30 ° =¿ ¿ tan60 ° =¿ ¿ cot 60 ° =¿ ¿
B. Let a be the leg of 45 ° −45 °−90 ° Triangle.
Group 1 Group 2
Case 1: (Error analysis) Case 2: (Formulating own problem)
Agnes drew the triangle below. Gina said that Write a real-life problem that you can solve
the lengths couldn’t be correct. With which using 30 °−60 °−90° triangle with a 12-meter
student do you agree? Explain your answer. hypotenuse. Illustrate the problem with your
complete solution.
Given:
Find:
Solution:
Given:
Find:
Solution:
Group 3
Case 3: (Geometry in 3 dimensions)
Find the length of d, the diagonal of a cube.
a. Calculate the diagonal for side length 5 units.
b. Calculate the diagonal for the side length 7
units.
Use the formula for the diagonal of a cube,
which is d= √ 3 side length.
Given:
Find:
Solution: