Solution 1246883
Solution 1246883
SAMPLE PAPER -2
                                                                                                    Class 11 - Mathematics
                                                                                                                      Section A
                2
1. (a) 2 n
                2     2
              (b − a )
2.   (a)
                2     2
              (b + a )
3.
     (c) no solution
                                      x+7
     Explanation:                     x−8
                                                   > 2
           x+7
     ⇒               − 2 > 0
           x−8
           x+7−2(x−8)
     ⇒
                    x−8
                                          >0
           x+7−2x+16
     ⇒
                    x−8
                                          >0
           (23−x)
     ⇒
               x−8
                          > 0 [∵           a
                                               b
                                                       > 0 ⇒ (a > 0 and b > 0) or (a < 0 and b < 0)]
     ⇒ (23 - x > 0 and x - 8 > 0) or (23 - x < 0 and x - 8 < 0)
     ⇒ (x < 23 and x > 8) or (x > 23 and x < 8)
     ⇒ xϵ (8, 23)
                2x+1
     Now        7x−1
                          >5
           2x+1
     ⇒
           7x−1
                      -5>0
           2x+1−5(7x−1)
     ⇒
                     7x−1
                                           >0
           2x+1−35x+5
     ⇒
                    7x−1
                                          >0
           (6−33x)
     ⇒
               7x−1
                           > 0 [∵                  a
                                                   b
                                                        > 0 ⇒ (a > 0 and b > 0) or (a < 0 and b < 0)]
     ⇒ (6 - 33x > 0 and 7x - 1 > 0) or (6 - 33x < 0 and 7x - 1 < 0)
                      6
     ⇒ (x <     and x > ) or (x >      and x < )   1                      2                     1
                     33                            7                      11                    7
           1                          2
     ⇒         < x <
           7                      11
     ⇒ x ∈ (
                      1
                      7
                          ,
                              11
                                  2
                                      )    [Since x >                2
                                                                     11
                                                                           and x <          1
                                                                                            7
                                                                                                is not possible]
     Hence, the solution of the system                                            x+7
                                                                                  x−8
                                                                                           > 2,
                                                                                                    2x+1
                                                                                                    7x−1
                                                                                                                > 5   will be (8, 23) ∩ (       1
                                                                                                                                                7
                                                                                                                                                    ,
                                                                                                                                                        2
                                                                                                                                                        11
                                                                                                                                                             ) = ϕ
4.
     (b) 120
     Explanation: We have, 6 objects {C}, {H}, {E}, {E}, {S}, {E} and there are 3 E's.
     So, the number of words that can be formed out of the letters of the word ‘CHEESE’ is
         6!
     =   3!
     = 120
5.
     (d) 5n
                                           n
     Explanation: ∑                        r=0
                                                        r
                                                       4 .
                                                            n
                                                                Cr =4         0
                                                                                  ⋅
                                                                                      n
                                                                                          C0 + 4
                                                                                                    1   n
                                                                                                        ⋅   C1 + 4
                                                                                                                       2   n
                                                                                                                           ⋅   C2   + ... + 4
                                                                                                                                            n   n
                                                                                                                                                ⋅       Cn
     = 1 + 4. C + 4  n
                              1
                                           2
                                               .
                                                   n
                                                        C2   + .... + 4        n      n
                                                                                      ⋅   Cn
     = (1 +         4)n = 5n
6.   (a) 2x + y = 4
     Explanation: Suppose the line make intercept ‘a’ on x-axis. Then, it makes intercept ‘2a’ on y-axis.
                                                                                                            y
     Thuse, the equation of the line is given by +     = 1
                                                                                                x
a 2a
                                                                                                                                                                     1 / 11
                                                                                                  All the very best
      It passes through (1, 2), so, we get
      1           2
          +            = 1 or a = 2
      a           2a
                                                                                                 y
      Thus, the required equation of the line is given by                                x
                                                                                         2
                                                                                             +
                                                                                                 4
                                                                                                     = 1   or 2x + y = 4
 7.
      (d)   3
            a
                       3
 8.   (a) 486
      Explanation: Given T4 = 54 and T9 = 13122.
                8
                           13122
      ⇒
            ar
                3
                      =
                              54
                                    = 243 ⇒ r
                                                        5     5
                                                            = 3     ⇒        r=3
            ar
∴ a × 33 = 54 ⇒ a = 54
                                                 27
                                                       =2
      Therefore, a = 2 and r = 3.
      ∴   T6 = ar5 = (2 × 35) = (2 × 243) = 486.
      Therefore, the required 6th term is 486.
 9.
      (d) (–2, 0, 7)
      Explanation: Let 'L' is the point of foot of perpendicular of (-2, 8, 7) on the xz-plane on the xz plane, y = 0
      So, co-ordinate of L is: (–2, 0, 7)
10.
      (d) 2
      Explanation: lim                     sin 2x
                                             x
                                   x→0
                           sin 2x
      = lim 2 (                     )
                              2x
          x→0
= 2 × 1
      =2
11.
      (b) 8
      Explanation: Arrange the given data in ascending order, we get
      3, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 12
      Total terms, n = 13 (odd)
                                   n + 1
      ∴   Median = (                2
                                           )   th term
            13 + 1
      =(          2
                          )th term = 7th term = 8
12.
      (d)   10
              1
10
                                                                         7
                                                                             and tan β =         1
                                                                                                 3
                                        2 tan β
      Now, tan 2β =                            2
                                     1− tan        β
                1
          2×
      =
                3
                1
          1−
                9
                                                                                                                           2 / 11
                                                                               All the very best
          2
= 3
= 3
          4
                                                           tan α+tan 2β
      ∴ tan(α + 2β) =
                                                        1−tan α tan 2β
              1        3              25
                   +
= 7
                   1
                       4
                           3
                                =     28
                                      25
          1−           ×
                   7       4          28
      =1
      tan(α + 2β)                      = 1 = tan                        π
                                                                        4
                                           π
      ⇒ α + 2β =
                                           4
                           π
      ⇒ α =                     − 2β
                           4
                               π
      ⇒ 2α =                        − 4β
                               2
                                                   π
      ⇒ cos 2α                     = cos(          2
                                                           − 4β)             = sin 4β
      ∴ cos 2α = sin 4β                                
14.
      (b) -23 < x ≤ 2
                                                                3(x−2)
      Explanation: −15 <                                                5
                                                                                 ≤ 0
                               5               3(x−2)               5                5
      ⇒ −15 ⋅                        <                          ⋅           ≤ 0 ⋅
                               3                   5                3                3
      ⇒ -25 < (x - 2) ≤ 0 + 2
      ⇒ -25 + 2 < x - 2 + 2 ≤ 2
⇒ -23 < x ≤ 2
15.
      (b) 350
      Explanation: Total no of Men = 7
      Total no. of women = 5
      Required number of ways = C ×                                              7
                                                                                     3
                                                                                         5
                                                                                             C2
              7!                5!                 7×6×5                    5×4
      =                ×               =                            ×
            3!4!               2!3!                 3×2                      2
= 7 × 5 × 10 = 35 × 10 = 350
16.
      (c) x2 = ab
      Explanation: Here, a, x, b are in GP ⇒                                                   x
                                                                                               a
                                                                                                   =
                                                                                                       b
                                                                                                       x
                                                                                                             2
                                                                                                           ⇒ x   = ab   .
17.
      (c) 3 units
      Explanation: Given point is P(3, 4, 5)
      ∴ Distance of P from yz-plane
         −−−−−−−−−−−−−−−−−−−−−−    −
                2         2
      = √(0 − 3) + (4 − 4) + (5 − 5)
                                    2
                                                                                              [using distance formula]
         –
      = √9             = 3 units
18.
      (d)     10
                  3
                                                       (1−cos 2x) sin 5x
      Explanation: lim                                              2
                                       x→0                      x       sin 3x
                                2
                       2 sin        x sin 5x
      = lim
                               2
          x→0               x       sin 3x
                                           2
                                   2 sin       x       sin 5x
                                                   (                )×5
                                      x2                   5x
      = limx→0
                                                sin 3x
                                           (                )3
                                                   3x
                       2
            10× 1 ×1
      =
                  1×3
            10
      =
              3
19.   (a) Both A and R are true and R is the correct explanation of A.
      Explanation: 8x + y - 4 = 0, 4x + 7y - 4 = 0
                      −8                                   −4
      m1 =             1
                               = -8, m2 =                   7
                           m1 − m2
      tanθ =           1+m1 m2
                                                                                                                            3 / 11
                                                                                                   All the very best
                                    4                −56+4
                           −8+
tanθ = 7
                                         4
                                                 =     7
                                                      7+32
                     1+(−8)(−                )
                                         7             7
                     −52
            tanθ =    39
                     −4
            tanθ =    3
                      −1       −4
            θ = tan        (        )
                               3
   We know : P (A  ¯
                     ∩ B) = P(B) - P(A ∩ B)
   P (A ∩ B) = 0.1
      ¯
                                                                                                        Section B
21. We have to prove                cos 8A cos 5A−cos 12A cos 9A
                                                                                      = tan 4A
                                        sin 8A cos 5A+cos 12A sin 9A
   Take LHS
        2 cos 8A cos 5A−2 cos 12A cos 9A
   =        2 sin 8A cos 5A+2 cos 12A sin 9A
                      {cos(8A+5A)+cos(8A−5A)}−{cos(12A+9A)+cos(12A−9A)}
   ⇒        LHS =     {sin(8A+5A)+sin(8A−5A)}+{sin(9A+12A)+sin(9A−12A)}
                               13A+21A                     21A−13A
                      2 sin(                     ) sin(                 )
            LHS =
                                        2                     2
   ⇒
                                   3A+21A                 21A−13A
                      2 sin(                     ) cos(                 )
                                        2                    2
   = tan 4A = RHS
   Hence proved.
22. Let AB be the given line segment making intercepts a and b on the x-axis and y-axis respectively.
                                                                  x         y
   Then, the equation of line AB is                               a
                                                                       +
                                                                            b
                                                                                = 1
        2
              = 2    and       2
                                        = 3
   ⇒ a = 4 and b = 6
   Hence, the required equation of the given line is
    x          y
        +           = 1
    4          6
   ⇔ 3x + 2y - 12 = 0
   Hence, the required equation is 3x + 2y - 12 = 0
                                             √3x2 −1+ √2x2 −1
23. We have to find lim                               4x+3
                               x→∞
                                                                                                            OR
   We have,
   (LHL of f (x) at x = 1)
   = lim f (x) = lim f (1 - h) = lim 5(1 - h) - 4 = lim 1 - 5h = 1
                −           h→0                            h→0                              h→0
        x→1
( RHL of f(x) at x = 1)
                                                                                                                    4 / 11
                                                                                           All the very best
   =   lim       f(x)
             +
       x→1
24. Total number of words that can be made with the letters of the word STRANGE = 7! = 5040
    Number of words in which vowels always come together = 1440
    Therefore the number of words in which vowels do not come together = 5040 - 1440 = 3600
25. We have to find the probability of getting all the four cards of the same suit.
   Since 4 cards can be drawn at a time from a pack of 52 cards in 52C4 ways.
   Required probability = P ( A ∪ B ∪ C ∪ D )
   = P(A) + P(B) + P(C) + P (D) [By addition Theorem]
             13C4                    44
   = 4(                ) =
             52                     4165
                  C4
                                                                                                                OR
   Suppose E be the event that a doublet of prime number appear.
   ∴ E = {(2,2), (3,3), (5,5)}
   n(E) = 3
                            3               1
   ∴ P (E) =                     =
                           36               12
                                                                                                      Section C
26. We have, f(x) =                             x
(1+ x2 )
                  2
                           ⇒    x2y - x + y = 0
        (1+ x )
                                        2
                  1± √1−4y
   ⇒ x =
                           2y
                                                ................(i)
   It is clear from equation (i) that x will take real values, when
   (1 - 4y2) ≥ 0 and y ≠ 0
   ⇒ (4y2- 1 ) ≤ 0 and y ≠ 0
   ⇒ (2y + 1)(2y - 1) ≤ 0 and y ≠ 0
                        ) ≤ and y ≠ 0
                           1                        1
   ⇒   (y +     ) (y −
                           2                        2
   ⇒        −
                  1
                  2
                       ≤ y ≤
                                            1
                                            2
                                                    and y ≠ 0
                           −1       1
   ⇒        y ∈ [               ,       ] − {0}
                            2       2
   Also, x = 0 ⇒ y = 0
                                    −1          1
   ∴   range (f) = [                2
                                            ,
                                                2
                                                    ]
                                                                            −1
   Hence, dom (f) = R and range (f) = [                                     2
                                                                                 ,
                                                                                     1
                                                                                     2
                                                                                         ]
                                                2
        9
   ⇒        < x < 8
        2
                                                                                                                     5 / 11
                                                                                             All the very best
      ⇒ x = 5 and 7
      Thus required pairs of odd positive integers are 5, and 7.
                                                                                                              OR
      Here 3x - 7 > 5x - 1
      ⇒ 3x − 5x > −1 + 7
⇒ −2x > 6
                          5                    5             5         5       5          3   2   5           1   4
      (x + y)                  + (x − y)               =   2 [ C0 x        +       C2 x y         +       C4 x y ]
                                   5               3   2           4
                  =           2 (x     + 10x y             + 5xy
                                         –
      P utting                 x   =    √2 and y            =    1, we get
        –     5    –     5                                         – 5               – 3              –
      (√2 + 1) + (√2 − 1) =                                  2 [ (√2)          + 10(√2)           + 5√2]
28.
                            –       –                          –
              =       2 [4 √2 + 20 √2 +                      5√2]
                     –
              =   58√2
                                                                                                              OR
      To prove:               (23n   - 7n -1) is divisible by 49, where n ∈ N
      (23n - 7n -1) = (23)n – 7n - 1
      = 8n - 7n - 1
      = (1 + 7)n - 7n - 1
      Now using binomial theorem..
              nC 1n + nC 1n-17                 + nC21n-272 + …… +nCn-17n-1 + nCn7n - 7n-1
      ⇒         0       1
       1
              +
                      1
                              = 1 ...(i)
       4              9
          2
              +
                      2
                              = 1 ...(ii)
      a           b
                  4
                          and b2 =         1
                                           9
                                               ⇒ a= √
                                                             1
                                                             4
                                                                 and b = √
                                                                                    1
                                                                                    9
                                                                                         ⇒ a=
                                                                                                      1
                                                                                                      2
                                                                                                           and b =    1
3 3
2 2
                                                                                                                          6 / 11
                                                                                        All the very best
    iv. Coordinates of the foci
        As we know that
        Coordinates of foci = (± c, 0)
        Now c2 = a2 - b2 =
                                                                 1           1                         9−4                           5                     √5
                                                                 4
                                                                     −
                                                                             9
                                                                                 ⇒ c
                                                                                              2
                                                                                                  =
                                                                                                        36
                                                                                                                ⇒ c
                                                                                                                         2
                                                                                                                             =
                                                                                                                                     36
                                                                                                                                             ⇒ c =
                                                                                                                                                           6
                                                                                                                                                                    ....(iii)
                                                                                         √5
        ∴       Coordinates of foci = (±                                                 6
                                                                                              , 0)
     v. Eccentricity
                                                                                                                        √5
                                                                                                  c                                  √5
        As we know that, Eccentricity =                                                                                                        [from (i)]
                                                                                                                        6
                                                                                                      ⇒ e=                       =
                                                                                                  a                     1                3
                                                                 OR
   Let AB be the parabolic arch having O as the vertex and OY as the axis.
   The parabola is of the form x2 = 4ay
   Now CD = 5 m ⇒ OD = 2.5 m
   BD = 10 m
   ∴   Equation of parabola is x                                         2
                                                                             = 4 ×
                                                                                                  5
                                                                                                  32
                                                                                                       y
            2           5
   ⇒ x          =           y
                        8
Let PQ = d ⇒ NQ = d
                                                                                     2
                                                                                         , 2)
                                                                                                        5
   Since point Q lies on the parabola x                                                       2
                                                                                                  =
                                                                                                        8
                                                                                                            y
                    2                                            2
         d                      5                            d               5                2              –
   ∴ (          )       =           × 2 ⇒                            =           ⇒ d              = 5 ⇒ d = √5
         2                      8                            4               4
                                                             –
   Thus width of arc = √5 m = 2.24m approx.
30. Let A(0, 7, -10), B(1, 6, -6) and C(4, 9, -6) be three vertices of triangle ABC. Then
                        −−−−−−−−−−−−−−−−−−−−−−−−−
                                                2                                2              2   −−−−−−− −     −−     –
   AB = √(1 − 0)                                    + (6 − 7)                        + (−6 + 10) = √1 + 1 + 16 = √18 = 3√2
                        −−−−−−−−−−−−−−−−−−−−−−−−−
                                                2                                2                              2      −−−−−− −     −−     –
   BC = √(4 − 1)                                    + (9 − 6)                        + (−6 + 6)                     = √9 + 9 + 0 = √18 = 3√2
                        −−−−−−−−−−−−−−−−−−−−−−−−−
                                                2                                2                                  2      −−−−−−−− −     −−
   AC = √(4 − 0)                                    + (9 − 7)                        + (−6 + 10)                        = √16 + 4 + 16 = √36 = 6
    Now AB = BC
    Thus, ABC is an isosceles triangle.
31. Let the two positive numbers be a and b
                                        a+b                                      −
                                                                                 −
   Therefore A =                            2
                                                        and G = √ab
                                    −−−−−−−−−−−−−                                               −−− −−−−
   Now, A ± √(A + G)(A − G)                                                                       2
                                                                                         = A ± √A − G
                                                                                                       2
                            −−−−−−−−−−−−−  −
                                   2
       a+b                    a+b       −−
   =    2
                ± √(              ) − (√ab )
                                        2
                                            2
                            −−−−
                               2
                                 −−−−−−−
                                    2
= a+b
        2
                ± √
                                a + b +2ab
                                            4
                                                             − ab
                            −−−−
                               2
                                −−−−−−
                                    2
= a+b
        2
                ± √
                                a + b +2ab−4ab
                                                    4
                            −−−−−
                                            2
       a+b                      (a−b)                        a+b                 a−b
   =    2
                ± √
                                        4
                                                    =
                                                                 2
                                                                     ±
                                                                                     2
                                                                                                                                                                                7 / 11
                                                                                                                    All the very best
          a+b+a−b                      a+b−a+b
      =         2
                           and                  2
= 2a
          2
               = a     and         2b
                                    2
                                            = b
                                                                                                                                  Section D
32. We have,
      LHS = cos 20° cos 40° cos 60° cos 80°
      ⇒ LHS = cos 60° (cos 20° cos 40°) cos 80°
⇒ LHS = 1
                          2
                               ×
                                       1
                                       2
                                             (2 cos 20° cos 40°) cos 80° [∵ cos                                            π
                                                                                                                           3
                                                                                                                                =
                                                                                                                                    1
                                                                                                                                    2
                                                                                                                                        ]
⇒ LHS = 1
                          4
                               [{cos (40° + 20°) + cos (40° - 20°)} cos 80°] [∵ 2 cos A cos B = cos (A + B) + cos (A - B)]
                          1
      ⇒   LHS =           4
                               {(cos 60° + cos 20°) cos 80°}
      ⇒   LHS =           1
                          4
                               {(   1
                                    2
                                            + cos 20°) cos 80°}
      ⇒   LHS =           1
                          4
                               {   1
                                   2
                                         cos 80° + cos 80° cos 20°}
      ⇒   LHS =           1
                          8
                               {cos 80° + 2 cos 80° cos 20°}
      ⇒   LHS =           1
                          8
                               [cos 80° + {cos (80° + 20°) + cos (80° - 20°)}]
      ⇒   LHS =           1
                          8
                               {cos 80° + cos 100° + cos 60°}
      ⇒   LHS =           1
                          8
                               {cos 80° + cos (180° - 80°) + cos 60°}
      ⇒   LHS =           1
                          8
                               {cos 80° - cos 80° + cos 60°} [∵ cos (180° - x) = -cos x]
      ⇒   LHS =            1
                           8
                               ×
                                        1
                                        2
                                               =
                                                         1
                                                        16
                                                                 = RHS
                                                                                                                                            OR
      LHS = cos2x × cos                                 x
                                                        2
                                                                −cos3x × cos
                                                                                                      9x
                                                                                                      2
                                                        x                     9x
      =   1
          2
               [2 cos 2x × cos                          2
                                                             - 2 cos           2
                                                                                    ×           cos 3x] [multiplying numerator and denominator by 2]
      =   1
          2
               [cos (2x +                x
                                         2
                                             )      + cos (2x −                     x
                                                                                    2
                                                                                        )       - cos (       9x
                                                                                                               2
                                                                                                                    + 3x)       - cos (     9x
                                                                                                                                            2
                                                                                                                                                 − 3x)   ] [∵ 2cos x × cos y = cos(x + y) + cos(x − y) ]
      =   1
          2
               [ cos   5x
                        2
                               + cos             3x
                                                    2
                                                            - cos        15x
                                                                          2
                                                                                   - cos         3x
                                                                                                 2
                                                                                                      ]
      =   1
          2
               [cos    5x
                       2
                               - cos         15x
                                                2
                                                        ]
                                    5x          15x                           5x        15x
                                           +                                       −
                                                                                                                                                        x+y              x−y
      =   1
          2
               [- 2 sin (           2
                                            2
                                                    2
                                                            ) sin(
                                                                               2
                                                                                    2
                                                                                            2
                                                                                                 )]       [∵cos x − cos y = −2sin                   (
                                                                                                                                                         2
                                                                                                                                                              ) ⋅ sin(
                                                                                                                                                                          2
                                                                                                                                                                               )]
                                    −5x
      = - sin 5x sin (                  2
                                                ) = sin5x × sin
                                                                                                 5x
                                                                                                  2
                                                                                                          [∵ sin(−θ) = −sin θ]
      = RHS
      ∴ LHS = RHS
Hence proved.
33.                                                                                                                                                                                      15
                                                                                                                                                                                                           i
                                                1                                                              −105
      ∴   Mean = a + b (                     N
                                                        ∑ fi ui )             = 67.5 + 15 (                        230
                                                                                                                         ) = 67.5 − 6.85 = 60.65
      and Variance (σ                  2
                                           )= b
                                                            2
                                                                [
                                                                     1
                                                                     N
                                                                         ∑ fi u
                                                                                        2
                                                                                        i
                                                                                                − (
                                                                                                          1
                                                                                                          N
                                                                                                              ∑ fi ui ) ]
= 225 [ 733
                    230
                            − (−
                                             105
                                             230
                                                        ) ]
                                                                                                                                                                                                           8 / 11
                                                                                                               All the very best
   = 225(3.187 − 0.2025) = 671.51
                           −−−− −−−−    −−−−−
   ∴ Standard deviation = √V ariance = √671.51 = 25.91
                                                                                           OR
   Let the other two observations be x and y
   Therefore, our observations are 5, 7, 9, x and y
   Mean =                  Sum of observations
5 5 - 6 = -1 (-1)2 = 1
7 7-6=1 (1)2 = 1
9 9-6=3 (3)2 =
x x-6 (x - 6)2
y y-6 (y - 6)2
                                                                                                  ∑ (xi − x̄)
                                                                                                                2
                                                                                                                    = 11 + (x - 6)2 + (y - 6)2
                                                        2
                                       ∑ ( x1 − x̄)
   So, Variance, σ             2
                                   =
                                                  n
                           2               2
            11+(x−6) +(y−6)
   4 =
                          5
   ⇒ 2xy = 81 - 45 ⇒ 2xy = 36
                                       18
   ⇒   xy =18 ⇒ x =                    y
                                                .......... (iii)
   After Putting the value of x in eq. (i) we get
                                                 2
                                                                   y2 + 18 = 9y
        18                             18+y
   ⇒          + y = 9⇒                                = 9 ⇒
         y                                  y
   ⇒ y2 - 9y + 18 = 0 ⇒ y2 - 6y - 3y + 18 = 0
   ⇒ y(y - 6) - 3(y - 6) = 0 ⇒ (y - 3) (y - 6) = 0
   ⇒  y - 3 = 0 and y - 6 = 0 ⇒ y = 3 and y = 6
   For y = 3
             18       18
   x =            =           = 6
             y        3
                                                                                                                                                 9 / 11
                                                                              All the very best
                                                  2+(−2)                1+3
         Coordinates of F are F (                     2
                                                                   ,
                                                                            2
                                                                                ),        i.e., F(0, 2)
         ⇔ 4(y - 5) = 3(x - 4) ⇔ 3x - 4y + 8 = 0
        Hence, the equation of median CF is 3x - 4y + 8 = 0.
    ii. Draw BL ⊥ AC , Then, BL is the altitude through B.
                                  5−1
         Slope of AC =            4−2
                                           = 2
                                              6
                                                       1
                                                                   3
                                                                        = −1 ⇒ m = −3
          x−1
                 = −3 ⇔ −3(x − 1)                     = (y - 4) ⇔ 3x + y - 7 = 0
         Hence, the equation of the right bisector of BC is 3x + y - 7 = 0.
35. We have, f(x) = sinx + cosx
   By using first principle of derivative
                            f (x+h)−f (x)
     ′
   f (x) = lim
                                 h
                 h→0
                              sin(x+h)+cos(x+h)−sin x−cos x
         ′
   ∴ f (x) = lim
                                                  h
                       h→0
               [ sin x⋅cos h+cos x⋅sin h+cos x⋅cos h− sin x⋅sin h−sin x−cos x]
   = lim                                              h
                                                                                                                 [∵ sin ( x + y ) = sin x cos y + cos x sin y and cos ( x + y ) = cos x cos
     h→0
   y - sin x sin y]
               [(cos x⋅sin h−sin x⋅sin h)+(sin x⋅cos h−sin x)+(cosx⋅cosh−cosx)]
   = lim
                                                           h
         h→0
                                                               1−cos h                                           1−cos h
   = (cos x − sin x) − sin x ⋅ lim (                                            ) − cos x ⋅ lim (                                )
                                                                       h                                               h
                                                  h→0                                                      h→0
                                                                       2 h                                                 2 h
                                                           2sin                                                    2sin
                                                                        2             h                                     2            h
   = (cos x − sin x) − sin x ⋅ lim                                              ×             − cos x ⋅ lim                      ×
                                                                       h              4                                    h             4
                                                  h→0      h×                                                h→0   h×
                                                                        4                                                   4
                                                                                                   2                                                                2
                                                                                          h                                                                 h
                                                                                    sin                                                               sin
                                                       1                                  2                                          1                      2
   = (cos x − sin x) − sin x ⋅ 2 ⋅                             lim (                           )       × h − cos x ⋅ 2 ⋅                 lim (                  ) h
                                                       4                              h                                              4                  h
                                                               h                                                                         h
                                                                   →0                                                                         →0
                                                                                      2                                                                 2
                                                               2                                                                         2
                                      1                                                                1                                     sin x
   = (cos x − sin x) −                     ⋅ sin x ⋅ (1) × 0 − cos x ⋅                                     ⋅ (1) × 0 [∵ lim                          = 1]
                                      2                                                                2                                      x
                                                                                                                                 x→0
   = (cos x - sin x) - 0 - 0
   = cos x - sin x
                                                                                                                                                                                     10 / 11
                                                                                          All the very best
                                                                                                         Section E
36. Total letters in the word PERMUTATIONS = 12.
    Here T = 2
   (i) Now first letter is P and last letter is S which are fixed.
   So the remaining 10 letters are to be arranged between P and S.
   ∴ Number of Permutations
   =
        10!
         =                             = 1814400
                       10×9×8×7×6×5×4×3×2!
2! 2!
   (ii) There are 5 vowels in the word PERMUTATIONS. All vowels can be put together.
   ∴ Number of permutations of all vowels together = P
                                                                                                5
                                                                                                     5
        5!
   =          = 5 × 4 × 3 × 2 × 1 = 120
        0!
   Now consider the 5 vowels together as one letter. So the number of letters in the word when all vowels are together = 8.
   ∴ Number of Permutations =
                                                            8!         8×7×6×5×4×3×2!
                                  =                      = 20160
                                                            2!                    2!
   the word is = (2 + 3) = 5 And also 5 letters can be written in 5! Ways. Therefore, the number of words can be formed is = (21C2 ×
   5C ×        5!) = 252000
     3
37. Let AOB be the cable of uniformly loaded suspension bridge. Let AL and BM be the longest wires of length 30 m each. Let OC
    be the shortest wire of length 6 m and LM be the roadway.
    Now AL = BM = 30 m, OC = 6 m and LM = 100 m.
    ∴ LC = CM =      LM= 50 m    1
Let O be the vertex and axis of the parabola be y-axis. So the equation of parabola in standard form is x2 = 4ay
                                                    4×24
                                                            =
                                                                 625
24
   So equation of parabola is x                       2
                                                           =
                                                                 4×625
                                                                  24
                                                                           y ⇒ x
                                                                                       2
                                                                                           =
                                                                                               625
                                                                                               6
                                                                                                     y
                                                                             6
                                                                                  y
       i. P (E ∪ F )             ′
                                     = 1 − P (E ∪ F )
        = 1 − (P (E) + P (F ) − P (E ∩ F ))
               1
        =
               5
                                     P (E∩ F)
    ii. P (        F
                   E
                       ) =
                                      P (E)
               5             1
        =              =
               3             3
                                                                                                                              11 / 11
                                                                                      All the very best