0% found this document useful (0 votes)
312 views11 pages

Vector Properties and Algebra

This document discusses vectors and their properties including addition and subtraction of vectors. Vectors have magnitude and direction and can be represented by directed line segments. The document covers different types of vectors such as position, displacement, and force vectors. It also describes vector operations like addition, subtraction and multiplication of vectors.

Uploaded by

ankan2881
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
312 views11 pages

Vector Properties and Algebra

This document discusses vectors and their properties including addition and subtraction of vectors. Vectors have magnitude and direction and can be represented by directed line segments. The document covers different types of vectors such as position, displacement, and force vectors. It also describes vector operations like addition, subtraction and multiplication of vectors.

Uploaded by

ankan2881
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

17

9,S, ~ ~ •c14 ~ ~ (Sonui rocts abou t voc«>rs) I


(l) ..O~ c.,ah (Colllne1tr vector■):
,..,-.,r«a
'JflITTlll1I\ cwtl~ ~, C'NtJI~~~ ..Q1111fit• C:,~Jl4Clb CJSt, lit'! I
~.S '1t. Sr.I •• b,

'ltATJ. ~
AC . BD
~ 11Tf.si4"1i~hl ('8tl~
c, ~ \ll•Cll~II ~ I
cl - ~ ..a«11~ C18tJf 1$;1 ~
Ill~ ~91~~~ 9ITt'ff I a Jl~
j1
bfc /
ct:¥'"'~~ - ~ b ~ b ..a~ O r.'il!NU ~"lh~ I i
~ .,tC \It~ ah Clli'1NCIBI ~ J1lll ~ A1: Jl't CB
('lt,iitlltl 15i~'rf ~'fh 1
~ .lJ..it \ll<K'llb <:altml ~..a.~.~ 't1l1I ~ '1111.\Stil (like vectors).,,
~ IA .sm.1 \tt'lllt'lt'll'U'Y, n
~1'1IC•HI 'llfol~ ~ ~~ k = ➔
~i ~k~Jld~mfi'tllnl'llf•P lill.'oMII

I.Al
(li) ....._..,. . ~ ~ ~ (Null a nd unit vectors) :
~ I al"ll~C'1ll'511Nfil'tA Jl~~~B111if f~t"Pl111\?Cll m~~ ~ ~~'1311
~~ ~Ol'I ,..,
~ '1111•11ilf.\S!l '11$'1 f.l1"l ~'f-u ~ lAlll !{It~ lf1'6111 ~
~ c."5til'l,t9111"1Jflt'1!'~~,w 15i"'1'14>!1 ~ 1'c14ttf4>!1 C'&l'!lt♦ c<l-~ C'oltllll 'lcwt

~-_,11..,.-v... mlfllt ~~115i♦jq<f>!I


t ~- ➔
CIS°btcp O ("fO)ffl'! fflS!"! ~WI ~ ~ •
-15jcjij4qljl
cdl~1 'Gli01i0 'lqii'j ~~~(proper vectors) I
....._..... c:4tH ~ (Properties of null vector) :

(i) ct+ 0 = (t ; 15i-ft~~~ ft--mi-~115i<l>t(<1•1nfflClll11m:t'I,~ (tc.'&tlf


~ I

<ii>-: - er=-::~~-: ~151•1(411 ~ m 1 1 ~ - : "5k~ ,


.. ""0
(iii) \ - .=-0. ,, h -'="
; 'dl♦lq<lli:l(.IS~t♦ c~C'il'!T'l'l! 11-i("f{J~)ffll"l.'1~~'cWl<i~
~

Ce"tcff ~~ I
(1v)
. 0 (.... 0 ; ~ "5' ilt41 "fU ffl'1 1111 ~ "l.'W"l lb/<l5lq<IS'
o ) = -+ ., R C'5' Cll!I 'lliR "U I
~~, e;,al11c♦ ~1:11 ~ ~ 1~ "5tc-11-11 fltillfii-t 6 ~ f.lt4~~s w;u I C11 •
!ff ffl'I A c\S'ttl¥!115ifis1J.C"' ~ c.'Slllt• ~~w cJl1t a Clnl'l, t = a•A
y (lU) ~f.111-1111 .-.. ~ ~ ~ ~ (Ortho1onal unlt
vector or base vector):
lffl, f.at~!l ~-~ f.i~l!lC.H ~ 0 I X, Y ~ Z-""
J
cqfis13.CII( ~ ~ 11llfBlt'il i,j ~~ ii I 2.4 ~~ ~] I
.iil JI~ c.'Sh,ffetc• ~ -u~c,11.i,11
C\Sh~ ~ ~ 1 \lj~

(11- ~ ~ ~ ~ ~ ~ ~ -ei-. ~ ~ Vo'ttff

~(multiple)l ~~~~C'ollf A.Jffl~«iKI

S.201- 2
I II

A:
A
. A• ' '
.
AC I ♦
A', •
"',
.t, I ~
.
J t A, JI
-;(, • Ar h r J.' <1)1, A,.. A, tP:• A, r.s,r-~ ~ I

A. C'tltq 1n TOT ia iRl'lic>i I .4• 1 m I A' I •


9
JA~ +A! • A:
~ <""11 c- -irr C11R cr1 "'""~- ~ l atm~r.JC" a .
C"'O
c.,,'ltl,
~'1. ffe, • .fCl!lf tCf 'f:Cfi1,_. .trPf atf I
~JR • .t =ai +zi -2•
~ . I A' I • J,3' ~ -♦<-'Ir •./17 .

(Iv) <l4tli teftw1 (!qu.allty of veccon) :

'!f'C'6'1J "ii~-;: •~>fCPpic,~'""~~-o~~~ ,


➔ .... ,d--""1'1Rf
2.5~~ AB~CDMUC:"fl 1m~,6.x
....... 0M~
-, ➔
ON ca.,a.,...1'1"
[WI
....

B D 'iftll>jl!?J,l.~)~~'tlfis'f"'ftlf 1w.if.f ~ Ok•


"' • M L n ~ , ➔--
b co't?-HPRA WM~ lift;.~
... -,
a IA\ 1

,___ _ _tAu
c o
-, = KL
_ _ _ __, OM
1/
K
-+'11,......,c.
zc.111~ I
~~~~~u.-wi~ii!R 1C:1. ,,, .
.at'!fl;l r. 6'741~ ~ ~ . " t C ~ ~l~2,5~
OIT'CJ ~. AB
➔ -+
= co ;
➔ ➔
oN .. KL ; , ON ,
....
=, a1.

(v) ~ C'$ (Oppo•ite vecton) :


tit C'ofc-ll4 ~ 'fliR ~~ ~~ <t!I.~ 11111 G ~~ Cffl I
-, ➔ c;;..._-+ -,
a col tU~b Cet?ltJO(.,.~ U- a , 2.6-.it- LM ,lg\ NK r.'ick•UJ
..... -+ .-::1, ➔ .... ➔
~ C$ I 1f1t LM C4-!:t• a~ NK = - a ; ML = - a ; um
.... -+
KN =- a.
➔ ➔ ➔
'1'{111 ((lfn,I ClWJPl~ - (- a ) =....a <B<:\ I- a I =I a I
2.4. C-o1CUI 2'•fit<6if I
( i) C ~ ~ (Polar vector) : ~ ~ ~ fil<, ~ ~ c'e';hto ~ 9 ,
~ ~4 C ~ ~~c.q~'fl'J'l~ l f.ll"Zl,~ . ~'l.~ ~IX -~ ~ ~
~,p,:i,~. ~-4 ~ X-1'.H «1'81 @ 1~ ·y :a• <JsiWJI ~~~n :JRtillll,itl
~~ Y-~~~~ I
19

(ii)~ ~ (Axial vrclor) :


~ ~~ .Q;T;J ~1t ~M 9fl<ill 1il'll' ~ -:.To{ <1 "?t"i;'i" ~ - a-.+,~ C'0"l7< '~
~ ' 1 . ~ l~nfibfl'fl~'I eslt>r., m C"ff'll1 Co~ .nJ • .tlClfi!I fiJl 1'!1?.1$1 ~ 1 ..er?":~ ~~
~ (axial vcct.orJ I
~ C4tml ~1111 'QiClllti•II ~1!1 71ri- I ~ (.'11if<f~ t;~~I 'iJ~ t"f'J ~,: ~ f;lm: m
"Im! I ~'11 C1!C~ffl ~ ~~~ ~ { J \l'ffr.'ITIJ "lfiM ~ .... ~I ii,
~ ~ Cll~ ~ ~ t ~ cllf<l<f. r.-:~-.r.1 ~'t ~~
'El~- Jltl ~ mf"1 :1tJ I
~ r-'ft~if ~11 C~ ,w, ~-411W,Ji f.lir.l (Lhumb ruleJ
!fC111~1 ~ ~ l~~~'f"ll"-~~ ~ >r-/l~ltdl ~
C3!C'lq:r,JJr,l}'l'.llltlJ!'l"fot~~. ~~-utr,p11'!ffel~~ t-011.!t-&
~ Clf'l111~ ~~m,rn~11m~.,,~~<fn 2.7) 1
.al<fimt'l ~ Cll~~ ro'h~1<11 1~ ~ ~ ~. 0
c<il'lf~ '?RI<!, (<$'If~ ~ ' I ~ ~ ~ I ~ C~ft?lsl
~~~.<ll~tt.1M:rc:iid~~ctret:'I<~~ !ni.1
~~) c l!fcll1t ~ ~ ~ 1R , ~'6!lr.,:i~ q.,(r,<t ZJR.®'l.t ~ ilftMFn ; , i ~ ~Ji::0
~~ ~ ~ ~ ~ Ce!cs1~1 af6,11A~~~ 1

2.5. C'4i'IFil !JRt C'51l ~ C1l1'51 (Addition of scalars and vectors} :


~1frlimfirc,,14 ~~Cll.~~11JP;.hl! hl ~ ,'31T?!l'~~W.W'.!lf'f>!.lt,~ ~
C111~cflm,1t1t01!1 >fllr-1 1c ; r . r - i , ~ ~ ~ l l ~ 5~. 1ozr:.~ 1s!!f.'~.~
c,nt l5s! = (5 + 10 + 15) = 30 Zi-1 I ~ m ~ . ~ "lff.J:'?Jq, ; ; i t ~ ~ ~ ~ V.1
1161111b'1 f.lc(;r~ ~~i'!I~ 5 'il~ l"l'i 71lj-s,e 1J' -i""'flJ~lif.i 3 r;<i;J ,,.,;; ;m:'l!, ~
~,tlt<BI ~ ClfC~~ (5 - 3) = 2 'ii~ I ~~1?:t-!. W'l c-0 .i.:ei.,1!,s: "1 ~~ ~ ~~ m'III
'<11111 1IR1 ~ I ~ '!t"it 1C>s1~ Clll'-1 ~ l!TV "II ~ C~ ~ 1:i~ ~ 'I q \ <l1l1 ; o1':R ,;cY.1
m~t
"41 lll?it.-,!I L<ll'SJ <JI ~ 7fl1 I
~ f f C<ll~ ~ ~~f.fil"ll ffi""1 ~ ~ 1~ -.;r,:i.;ji-~.:;~e
~f<1-c:q-5--i1 ~ m t ~ mfcrn Clll'I R•llll ~ -ii='<>'•"' ~ ,...c-t ~ : (i) rfflJ ':fl Oaw of
triangle), (ii) >ilSIIGfff ,pi (law of parallelogram)~ (iii) ~1:li (law of polygon) t
(i) ~ 'lil (Law of triangle) :
~ Gl'fCllll a;il-J.>IICI ~ ~ "1'{ i&-ff+.it® feii~ ~ Ccltc• 4\'r-1 E ffl ~
'ffll'I R"'lll&c;i ~1f-!hl ~ ~ <s ~ ~ c$ ~ c◄fl'l(ijii\ ~ i'l1iit c<FC1t◄i ~
cwllc:11Tt'1'1fii1'~~ 1
"IC'l~. A B - ~ (w.12.S) IA~~.re B •."l<l#i ~ert~1~J?.;~ ~ ,.~~ BC
c ~lf~H~C<l.~Qf<--:. B.!'i<:"~S:": C . .a~
,~1c11'!lC<11~f--~~m
A~ C-~~~ ABC li'~~~ I~ 1'.! 'l,'U
-,
-. -. _...__ ~ <=--- C
AB~ BC C-:ifi:hilr.¢ "11~ ~ ~ "'l ~,..,.,. 9".~ ~ A
ltO

11111ffl'lcN t
,., ,... fl't~ "'~ C.'fQII flfl.
t/ .. t/ "11~111 o' •
1•1
,,. I
. 1 //

If ,,_1"11) ,. ,.. JI (:A' ~11111 ~t, tl'I,


" (J

• t -, ' .,.
o, b ,l - o
'l'f~ra An , ,,,. • <:A u
t..rw I ~tif1 .,,. l'f( r.11,~'1 ft •ll!J ~-..<re•
1tfli 1/lt•I .n'1, ~,qlJC"I "1111~ ~

#lil1J"llrt ,Jlk H•k«n 10 Qr,h1r) ~ •rffl 'llt ~nat 'IJf~ 'l!l(ll "lJlll, ~r.4 .)r fit;lff) cntn-,,
1 t "I I
(II) ~fn ,,l
(I.aw or
puruHol oaitrum) 1
lj ..~ filtr<fl I 'lffit (1'fQl1 'llllflfjCfl r{f ,nslfiff ~ft \l1t-t
fife-• 'lf8 '"<fflt\1 "'- (I

,--~ - - - - -,- •om.1~41 ~.,-. fffl ~)llflt-w 41'1(


i
7I
'illt'il '41 fitr-• llfm C"fl~ 'lft 1'1f41f c,tlJ a.tllf "ti I

OA "11t (;;I "6li!U ..q~~ ~ 0 Ct.


~r.w ,1£1(.lfrt "'111 r-1-, 11QJ1a1C'Jl A ~.,t a,1fPIPlfff~
llQI 'fill,

,r ,. u i1Mt on ,~"1t.•rc-~ 'ffirf~ "'i tftlf f.mi OACB~

____n_,,;.;1;.;.;•11;..__ ___,J 'fil!Ctt Jt.A( <)(1 111i;;1-<s flfr.,r, tff11 c<itm.1' lt~fl'I ~ ,
- , ... ~ ♦ -➔
:, OA + 0 /J • OC '<M'II ,7 t- 7i • /l
~CffCflCl\ll't~lf. 11/ 1.. Ju~ ➔ b~+2ob cm•O" -'f'lt ~~~ too ♦ a ~
(Ill) '1tft11 ~ (Law 1>0lyicon) 1 or
'ftllf 'llfit• C'i111 c.tr.ttf C'ft'P,., 'li"f11 ~
"'';!fa
.,.-p ~'W1R'l 11Tlf 1~ , , ,nn
~ ?(CU '>flt fl:111 .D1P11"11• 1;,11arrt ~ Atf11 ~ ~l:"1. JI 'Pl~~ 1ITl ffl:ll'l'l •1i
1'\~ 'Jal -4\ ~ lfl •~ I

'11NIO'l-•11""11Cl
..c..-_ ...
a
... -, -t
I ' ti 2, 0 I I ~ U ,c "°' ~ -
f>T~ ~ f 1',Qfl l'R~o,'1 lllffl ~ l',,.. 2.lO(•)J~
rQ,...

,~~A,_O ,llfr• (i:1 2.HJ(b)J o;t 1 cs'h"'1•~ OA, =


... -+
t 1u 1A1 ~~t.\•
A 1"'~ cah .ri• 111~ A I1t2 • a2U 191.r@'IM ,\
Bo.1 ... ...
A2 ,~C-"11it~ma 3 ('¥'h~~ ~A3
I
• a➔3 " I ~ C l { a➔-- -+ I
4 <.11'1wtft A 3 A 4 ,:,th I
~ nt-1 'ff I o.CI~ ill(II calm "'1fit ~ 0 ,.q'lft

C"A~CRMllf~ A,.~'R t.alC'lfQ OA4


... <•>
C4ltff ;: J• <i2 ~ ~'1,fi111 Ctn•f'11'1 C'ITlVft1I L..-_ _ _ _ fn_i._1_0_ __ __,J

...,Ji -•
O ➔ .... ➔
...
,4, ■ a I + o 2 + a 3 +a• . '1'1'1Al'll81C'I
-t ... ... ...
...,"'''- • .. ' • " n = a I + a 2 + •••.•• + a 11 , ·"""-
0," ..,.11..,. ~
'?1:ICII 1'IJ9I ( ' l ' h ~ '"1(11( ffll !PJ1"1~18TJll~~ (polygon) ~<lltf I
• ••111•.cw~or.-.i~,
22 <1'1f'4•r,1

~ bq ~ ~ ~ C'8trnl ~~A l~~ c<Sl tllll c-1.ifii·~ A 2 ffi .a-41t ~


.... ~ 11
A 1A-i •t16"J213(n)] 1
1111
z.
~

0
(IA
.II
X

C1
i

.... ....
"J.'1'MC<I' XO ~ a .r1C9f ffl ~ 1
➔ ➔ 1 · -+ ➔
2.14 -r-m OB=
.... ....
OA.4'!:il~ OB= 4. 0A ; OC = 3 OA
2 0
➔ ➔
~ OE = 1.50A I D
fA2. 1◄
~ ~ -:.~ ~ ~:t~'Sl, ~qir(i ""c<S,,.h"' . C""<!' ~ ------J
~ llllC-tJl-<1<11 (reciprocal) ffll 11'1 <I'll! I ('ll'lr,i, "1 + x = l .i.
X
• C"lfh ~ ~ ( L a w s of vector algebra) :
1. "+ 1 = 6 + 71 .... e 1 1 1 ~ ~ ~ .
2. r/ + ( 6 + ? ) = (r/ + 6) + ? = (71 + ? ) + 6 -+ C(l1~111C<1lPIW11'11 f.wil I
3. m 71 = ctm -+ 1'1C.;if ~~ 1
4. m (n 71) = (mn) ct ➔ t'TC-HP!mt~ f.wq 1
5. (m + n) 71 = m 71 + n 71 ➔ <I~ (distributive) f.ml I
6· m( 7I + 6 ) = m ct + m 1 ➔ <1-t;i (distributive) f.ml 1
(Si>ftlmf '{Jli<I~ ~ ~ ~ qfffl 'lffil I <!l' ·1.~''-'" IW~"""'"'<l
la!~ ffT"1 ....-...,.~.,,,.,,
- ......_ ..., "'' "'" '
l.'el:!<
~ >il ffl
"!-ll4il'IC4i

r
\

~~ "~•11t!l11 ~ ~ ~ ~ 1C't1Pl. 7J + 7J "' -t ~ .l'o!ll•n4t~n >1,-1r;,n ~


"4m 7/ =7 - 6 I
2.9. c<&IC1BI ~911(111 (Com ponen ts of a vector) l
(i) ll111r-.• c:itt"i lill<IN ~ ~ 7J ·~ 2.16 "~ $t;;ll ~ ClNtt<n ~ h'tcit~lll
At~'5Cl11 ~O~lilt~l'4"1(inltial point) tmr y

OP~~~ 911fi't ff, 7J t1Jtc1111 ~ ~ P
(terminal point) ~ ~1-ilitjl _,.(11
(o.r, Oy- a) (o,. a,,. a,)
.p
~ i a.c, j a._,. ~ k a:. ~ -;/ (li!IICH cilflJ.tltil I
X·'lll"II', Y•'lll"II' ~ Z-'111"11'~ ~~("! Ci6f1I I
l
~~. i a.r• Ja1 ~ k a,.,~~ t1Jt11-,ffel11 i ,..X
;:;:.r+7.:+.\7 .,
~ Cl!i'IT -;/ qsrof'1-.
Z
··-·········;.;···· ..··········J
I a,
j a,
71 ~Rl!Am 1711 = Ja.!+a;+a; . fA t.16
~ 71 C'6hlt OX, OY~ oz~~Ct, p~( yc.1'1~ (n2.15), ~~

cos (X : %
- , cos p : "-
V
~ cos Y: '-z
a a a·
cos a , cos P<!!<fl. cos y~11r-!~ cl C'SltH ~ C♦i>dt,, (direction cosine} <11'11 U I
'1-Q.t-•~~ !l'lil1'1 ~ ~ cos2
.. a + cos2 p +
y = 1. cos 2
• ~-'1511 (Position vector) ;"Bet m, (Displacement vector):
C'IITCill~ (P)~llf (x,y, z)~. OW"{ ~ffllf,ft r -QJ<ll'll~~A"i_11~R-twh
(position vector)~ ~ -c.tl' (1'8dius vector).
7 = i .x + J.y + .\.z.......... (i)
y z

P(x,y.z)

,i.,::;=------x ~ - - ---Y

z
1n 2.10
➔ ➔ ➔ ....
P 1 ~P2 ~~~WIJ(.xpy 1,z1) ~ (x2, Y2, zz ) ~. OP1 = '1 ~ OP2 = '2

~ M"rQCilll ~ C15b (1A 2.16] t~ .


14

..-.!111, n(7 - ;;) = m(;:;- 7)


_. ....
-..,.,,, ➔
r ~ +N'1 (..c
= -"------=- '11"1 m + n. ~ 0) ....•. (i"")
w
m+n .... -+
C11fiL4.B C3Nll'lf~~ u~ m = wa ~ ('Jlt«il 7 =
71 72
; •

S. l 0. 111' ~t11 iJI 'J."I""' (Product of two vectors) :


?it c:etcn ,rtilt'I~ (i)~~~~(ii).ait~ ~,9(t'l!9flfi1- .
•,ru ~~~'Gt~ (dot product)~ IM~ltt<!i ~ U ~ t"I ... ◄◄◄ iit
1f"1'11(cross product)~~ 'l'f-!~~ (.) ~Cek,rr-.c◄~IC\!5(x) ilf nu
~~,
~ ~ ~ 1J:'tlPI I
➔ ➔
A ~ B 1{ftC6,CiBlldl~al C◄ll't9~.~1{1t"6JcH ~,~=A.Bcoae;•
- _.,.
\i,yijl♦ tMICW 'li~C4ll c.l NI U A➔➔ ➔ ➔
•B -~'QA Gt B ) l(~ I

2.18 ~ fR lllli<!illl A.s = A.B. cos 8.


...
·- .,.-
..., >iQ.C.,ic~llTV
i. C11, A➔ ,B
➔ =➔
B . A➔ ~.._'1ict:!i ,ffef.fl
~ ""'"<llffl-. lffilQ.~ ~ 'J.'l11'1 ffl ~ 1~.nu ~
,<1...
~ Rf.ho, m (co mmutative law)~ 5'C1'1 I
~~ "fl Q.C\'5"~ 111ll' C1I 1{ft C:'6 ftll ~ "'1'1 8 ~ ,~'------X
➔.... • 0 A
coe 9 =A.B fQs.1a
AB
25

A =0 ~ .1 = 0 ~ .8 =90° i 8 =90° '{(1'I ~ llTll C'ehtiG t'fll""'11.lBI ~ 1'l'"lt


\ti&i◄ "'Cll~'i"'1P'!~~I
(,.) ~ 8 = 0 ~t. C'6tiNG ~ . ~ ISTtlffl ~ 'l~ Cl6'tNCH 'ifi/1/lC-lf 11fil!Ti15
iJ."l+ciil "'11T-1-.til'I COB 0° =1 ~t. A.1 =A.B~. lJ.1t Cob vllt 4 lG!il >MO11l'1 ~l!Trnf
~ '1"""' c<eliNCH tffllif1t-lf , i ~ '>rllA ~ 1~"'In llfit = t B
~ ~~ cetNv
~U'm A.B = A.A = A2
('If) ~ Qc ,t.ilt. c'ilii4~.l!I~ ~ • • 1!-.r.; cos 8 =cos it =- I ;~ A.B =
- AB"!\ <af,11Jii4l1 C'¥tfttH ~ 'J.Cflfl'I~ "'lii"l"IIC-111 C-lt·1l.~'f'llt-l I
(11) ,.....if)tliiql\S ~ .ii 1ITTf ~. i , j ~ ic llfit ~ "iBl""'1fl♦ 1111leei~ ~ ~ ~
~ ~ ' m, i .i = j .i = ic.ic = 1 ~ . ~ ~ffl c.'61tli ◄(1..-rf 'JPltil l
(• ) ~ i, ] ~ i. 9fsl""'1Cilii'!f~i111\!lf9.(c1i) <c11,ffe~~~llnr l_j : ] j = k.i
= o~. C1' ~ttt~ C1lc11 c,pn 'J."1P'I -t-111
➔ • ➔
Examples : (1) Q,-4QflJ11TC-l'I-.U cdl A= ai - 2) + ic ~\ c.h B = 2a1
+ a) - 4k 9f~"""'tli~~? [C.U.2001)
➔ ➔ ➔➔
Ii A~ B ~C16'1119'1'""1lilii'l'N~~~"l.~"fU'U I :. A .B =O
~. (~t -2 ] +A ).(2a t +a] - 4k ) =O
~.2a2 (i.i)- 2a(j:j)- 4(k .k)= O [i _j = j.ic =~=OJ
~ . 2a2 - 2a - 4=0
~ . (a - 2)(a+ 1)=0
~.a = 2~ - l .
➔ • • ➔ • •
(Z) s-41 "'11t111m IF{J c-11•1,-,.., A = i + :c} + k ~ B = Si - 2 J - 2 k •9f«'"'""i..,""'ti i
12

11iJ$\◄ ~ f _ _ [C.U. 2007) [Ana. :L = 1)


'11 ~ ~ lcll-J.>t"'1 -♦ii" I
2.11. C'¥iilf "l,.llf1rll ~~ ~ ~ oC1f (Scalar product obeys
distributive law) I
➔,,.,....,... ➔ ➔
181T ~. p C'ti'ltH t9Ar Q ~ R c-e•tc-11-11 ~91 {projection) ll,q@lll OM~ MN
➔ ➔ ,,,...,...,,.. ➔ ➔
{1R 2.19] I ~ . Q ~ R C'ti'ttff ~ ( Q + R ) I R

P "5ltiHI ~tff -'ll ~ ~ ONI
➔ ➔ ➔
~ . ~ p ~ ~ 06k ( Q + R) "fl'~
0 M N p
➔ ➔ ➔ !Aus
'J.'f.-r = P .(Q + R)
➔ ➔ ➔
= p .( Q + R) .ml' at'llfff
➔ ➔ ➔ ➔
= p xON= P(OM+MN)= P.OM. + P.MN
. , r ""'
..
, ._,, A": r "'
'
...
l'IQ•
.
.-.1"f'11, " f ' f . t ~ ~ d
.. . ..
In· P~• PR
. __..

0 ft!ill "ti ('( ( a n ~ ~ 'If' l~ W'


-♦ ...
P , R • S) • Q ( ~ ..
·~. - ·.
~~~~a I P ♦ ijH • ~
...
Q\ • ~I
. ... • -4 --4

• P R • P , S • q It • ~
...... ..
i
e ... ...Gf'h ¥iltA9 1 1Ct-il ~QII.JN "'1tlt A9ffl TIii! 1 ' ~
-·,. " ....Q t'W•n1C• ~ M.♦ fice .-. """' ,.. u=. "111 «'I
"
f • I "• ♦
.
/ / '~
. ♦
.
• ~# ...._
.
I Q ♦ j (J, ♦ l 'J,

Q r 11

,,. ,·
• I'I QI ; ; • P.~.. j ~ 1• Q.1 i, ,.. P.<J, j ; ~
I

• r.Q1 j .j • 1\Q.j 4 • P.Q~A ; + l'_<J, i, j • '•~ «'

- ~Q.•~~·~~ •
Ju
j •A • • l ~ ; j • j j, • • ~ " OJ
(

._...,1'
,' I •

c-.-.. ;

~ T""" ~ , i t . ~ 111jA,i11 '9fl("NCAiQ ... ...


'J"l'"'Q( ifl- "" 'Ii
.....
Atq rQ • l'.Qroae.

!_Q P.Q,. + P1 Q1 + P#Q•


~ . N»t• n• I
2
I
( P,.1 + PJ + P. ) 2 .(Q: + Q; + Q:)
2

• ~ i◄¥CG; ... "'4 I


'fl c.t<w ~ t,+cw,, >K'4k,. l lf!U'I ~., ~ f'5<111tf 11lfil OX ~
- Nlli--

~ .., F . . dlit'CA {t4 -,y~ s V'
-f ~
m . ~ ___
,
flffllf = F.S cca ea, "ll'll~II

1fi'll' .,~ti ~ 9 H;'lllluti ~ '11f"" ~ ~ -.f. 'f"<III( ~ I


➔ ➔
Sf\'IWIC\ , ~ (P ) . , ~ ( F ) ~ ~ ' I t (V) "51t1BI c..-mi 'tl+lfllJIIIIII!.
➔➔
P = F.V

I .JI. cwtl-.t ~ 'r'*'• (Vector or Cross Produ ct) Z


➔ . •
~-
'1"' ~·· ·
' ....
A '41't 8 .a1J ~ 'ltf1Jt1'1lf 111-l :: I Jl.... )( B I '"' AB 81n 811 . . . . . ,

O~h 1 .c~ iJ ..-.v... oC'lbfflA111~W.ttJ1~ ,i~ ('ol«vC 'l \tc;-,, ~


~ . , . . ~ , , lf!:tlflf ~lt1U C""1 OJ f >< n (1P'll ,ll ,\► ~'>I fi) I 't X 8
t
r
f

27

llll~~ ~A JR\ B <.'8'1!iil!l ( V-~ ~ ~ 'di~· JP!\ A CIIW' i1 41'1 firtlfl ~


\SI-Mll<¥ill3!"1Tfflt'ltCtJ1ms1lll.<I ('l'\ei~spl ~ 2.20) I A• B
A XB Jl"ll\ B x1 t.~~ ~ '
Cl5'h ,r,«a,,i '1(111~ 1Sl'1'611.<1 "1'1ti116.ff ~ ON11llC<I
~'5Tffl~C'oh-C<ltW-111~~•1~~
'J{W C'olm "1~Hll.f (order} ~ '1\1111.cfI <.'8ICH
"ltfi@ii <l.,.,1(.11 \!JT-l•~t-JRI ~ ~ ~ 1 1 T l 1.
~ ~ ~ "I@. 1 x s =- 1 x 1. ¥ffi\,
B•A
J
~'l.~~All"ll~~-11 1
c.....
'ili.PNIV t C.) -a ➔ ➔
'll "I A x B =0181' ~
..,.
A =0 _ _ _ _fAuo
__ _ _ ____.

ISf1IAt B = 0 ~ 8 = 0~1tm ;
8 = 0 ~ It l{t'f C16lll◄ II 'llllll111'1 ~ ~ '1111*1'1 M"lh~ 1'1f I ~ ;_t >\ilRSl1'1
c,sfc,1,1 t'ok ~ "t'O celtH lfllTOI 1111111A1 11.ft ~ 'lilR!llli1 :tt"I, ~ ~ 1l_Wll "f!J
m,
(-.f) C.'e'h◄II "'il"""ICM 1o1R;111 ~ . 8 = ~ ~\ sin 8 = 1 ; .t/t"Ril A x B = A.B
~ Cffli 'llTII' (:'q, A. B ~ (A 1 )~ ~ l'o'1i 911ll'"'1ffi♦ lblfis61'4 lfRP11<t!l (rig.ht
X
banded) ~ 'IT-I <Ila!' {fA 2.20] I

.. (11) i
~
, j ~ j, ...~.. "11'11""'1ffi♦
~ ... ...'dlfis.,._. l$IRII...~... ~ . ~9ft;mr
.. ... 0011001.. 1.~.. ~ '<lTV .
i )( J = - J X i =
k ,; j )( k = - k X j =
i ~ k X i =- i X k = j
(,r) '<II' loi,Fi"'l~ zrt:11111 ~ ~ f x f = j x j = k x k = 0, ffl'f ain 0° =0
➔ ➔ ➔ ~
C•) A x B = A . B sin 8 \'611T1f 9fit sin 8 = AlBB.
Example : ~ 9fwllt.tll c."1'0 QI ~ Q,Cttl ~

8
: A = si! B = s i~ c· [Burd. U. %005) ; [C.U. ZOO%, '06]
fi1ti,tit~~,
➔ ➔ ➔
Ii ~. A, B ~ C ~ ~ .q:~ ~ Ul'{Ctfll ~ .m MtFtio ~ [1A
➔ ➔ ➔
2.21] ~ A = B + C ...... (i)

~9ftft '1~♦11t-111 ffl "1lt'( B c.'otlU ~ '1"f
➔ ➔ ➔ ➔ ➔
m. A x B = (B + C) x B .....
➔➔ ➔ ➔➔➔ ➔➔

-+
~ .A xB=BxB+CxB =Cx B
-+
.
[B X B = OJ
fA 1.11 ~"it-silt >tfrflti\ m 9f1T.1'1f'~-1 f<lt<lb-il ~ ~
➔ ➔ ➔➔
AB ain ( A .B ) = C.B sin (C.B )
~ 29

Exomple : C1fCt'O (11, A x (0 + C) + J.1 x( C + A) + °' (A 'iJ ) x


rc.u. 200-cJ
=0

➔ ➔ ➔ ➔➔➔ -t
\Sa C:8b ~'l,'ftil'lf ~~ 'fl ~ A >< ( 11 + C) = A x /J + A >< C,
-+ ➔ -+ -+ ➔ -+ ➔ ➔ ➔➔ ➔➔ -+ -+
8 >< ( C + A) + D x C ::: D x A "1'll~ C >< ( A >< 8 ) = C x A + C x D
-+ ➔ ➔ ➔ ➔➔ ➔➔ ➔➔ ➔ ➔
Ctl1'111R'C9'~, (A>< B + A >< C) + (8 x C +B >< A) + (C >< A + C .( B)
➔➔➔ ➔ -+-+ ➔ -+ ➔ -+-+-+
=( A xB+B x A )+(A >< C+ C><A)+ ( B xC+ Cx B)
➔➔➔ -+ -+ ➔➔➔ -+-+ -t ➔
=( A x B - A >< B) +( A >< C - A x C) + (8 xC + B >< C)
=O
➔ ➔ ➔ ➔ ➔ ➔ ➔ ➔ ➔
~ . A x ( 8 + C) + B x (C +A)+ C x (A + B) = 0.
e f.li'ltll 'IIINl•lt ~ ffl't ~ 'J."l'PC-,1 ~ I
(~ ~ <.'S'tt.1111 •t1<1¥1t<11 <.'Sf!Nt!Hl 'dilUl!ll♦lll ~"11Wt1 (rectangular componenta) 'l!t9ft'lf
• . ➔ ➔
A;i""fi\
0 81
~,o1,. .,l{!""C•"f !PIil"! ~ 11111': A "5'h ~ B (.ISiCiBI ~IJNll<llliil ~911~ f.r.i{~:
➔ ➔
A
!' -:-
= ' Az + J .A._, + k ~ ~~ ..
B = l• .B:x + J~ .By + -
k .Bz
➔ ➔ • ... ... - •
:. A X B = ( i .Al' + j .A._, + k Az) X ( i . Bx + j .By + h .Bz)
= (A,rB1) i x ij + (Ax82) i >< k
+ (A,rBy) i x

+ (A,,B) j )( ; + (A,B,) j X j + (A.,,.B,) j )( k


+ (Azll) k X i + <Az81) k x j + (Az.B1) k x k
= i (A,,Bz -AzH,) + j(A/J;r: - Az81 ) + k(Az81 -A,,BJ
[·: i x i = j x j = k x k = O~ i x j = - j x f = k ~
~~ .,.,,.,..., fiiottll~-OIC~'!I ~ firtlt'f ~ ~ Wl 'lit~ m' I

i J k
A x B = Ax Ay A 1
Bx B, B1
➔ ➔ ➔ ➔
['I: ( A x B)2 + (A . B)2 (A.. B sin 8)2 + (A..B cos 8)2= =A2.B2•
~'111~~ (identity)~ ~ I]
• eol'f ".l"f1,Ci1tl ~.. I
(i) ~ ~ ~ W (Moment of a force or a torque) :

lfif, cf'f P ~~ A ~ mt ~ I ~ 0 ~ 'ITC~ lbll<I~ .. """' (A 2.24) I
~ fnt ~ t9P.f A~~-~ (position vector) = "1.
~ li'lf.t, 0 ~"ITC1'ft'lf 'q'(ll'!f $1flp ~ ~ 't = cf'f X Q.~ ~ ~ fnT CNl1f
• ) ➔ ➔
if't-~ =P ( r sm 8 = r >< p .

You might also like