Aspect Math
Aspect Math
© Medistry 1
Mn
„ wkÿ‡Ki weKí (Mí bvwK mZ¨!!!!)
GKRb M„nwkÿK †hgb K‡i Zvi wkÿv_©xi cwiPh©v K‡i, nv‡Z-Kj‡g MwYZ †kLvq ASPECT MATH
kZfvM †Póv K‡i‡Q wVK †Zgb K‡iB GWwgkb MwYZ‡K wkÿv_©x‡`i mvg‡b Dc¯’vcb Ki‡Z| Zvi wKQz
bgybv wb‡P Dc¯’vcb Kiv n‡jv|
1 2 3
EXAMPLE 02 4 5 6 wbY©vq‡Ki gvb KZ?
0 8 0
Procedure With Steps and Figure
†h fv‡e AsKwU Ki‡Z n‡e: cv‡ki wPGwU fv‡jv K‡i jÿ Ki| c×wZwUi myweav :
†Kvb mvwi Kjvg GK Kivi †Kvb Sv‡gjv/Tension _v‡K bv|
0
48 †hvMdj
cix¶vi n‡j wM‡q ‡PvL eyu‡S AsK Kiv ïiy Ki‡Z cvi‡e| 1 2 3 0
4 5 6
gy‡L gy‡L Kiv m¤¢e| 40 sec Gi †ewk mgq jvM‡e bv| cix¶vq G ai‡bi AsKB †ewk we‡qvM
0 8 0
Av‡m |
1 2 3
Step-1: 1st Ges 2nd Row `ywU cv‡ki wP‡Îi gZ wb‡P wb‡P wjL| 4 5 6 0
96
Step-2: Zvici Ggb fv‡e Zxi KvU‡Z n‡e †hb cÖwZwU Zx‡i wZbwU K‡i msL¨v _v‡K | 0 †hvMdj
Step-3: cÖwZwU Zx‡ii msL¨v¸‡jv Avjv`v Avjv`v fv‡e ¸b K‡i †hvM Ki |
Step-4: AZtci wb‡Pi Zx‡ii †hvMdj n‡Z Dc‡ii Zx‡ii †hvMdj we‡qvM Ki‡e| hv
wbY©vq‡Ki gvb = (0 + 96 + 0) – (0 + 48 + 0) = 48
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT MATH g¨vwRK¨vj †cÖ‡R‡›Ukb
© Medistry 3
GWwgk‡b Ggb A‡bK g¨v_ Av‡m, hvi DËi AvcvZ`„wó‡Z GKwU g‡b n‡jI Avm‡j DËi nq Ab¨wU| wkÿv_©x‡`i CONCEPT wK¬qvi bv _vKvq
fzj DËiwU †`q Ges cieZ©x‡Z †iRvë †`‡L AvkvnZ n‡q hvq| P‡jv †`‡L †bB GB mKj Ø›Ø ASPECT MATH wKfv‡e mgvavb K‡i‡Q!!!!!
EXAMPLE 02 lim |x| = ?
x0 x
A. 1 B. –1 C. 1 D. wjwg‡Ui Aw¯ÍZ¡ †bB
†Zvgv‡`i A‡b‡Ki Kv‡Q g‡b n‡Z cv‡i, Wvbw`KeZ©x wjwgU w`‡q mgvavb Ki‡j Ans: 1
evgw`KeZ©x w`‡q mgvavb Ki‡j Ans: –1
Avevi, A‡b‡KB fve‡Z cvi Ans: 1 n‡e wKš‘ Avmj welqwU wfbœ|
Explanation : y = f(x) dvskbwUi x = a we›`y‡Z wjwg‡Ui Aw¯ÍZ¡ _vK‡e hw` Wvb w`KeZ©x I evg w`K eZ©x wjwgU mgvb nq|
A_©vr, lim + f(a) = lim – f(a) nq
xa xa
Zvn‡j Gevi †`‡L †bqv hvK mwVK DËi wK n‡e?
–x
L.S.L = lim – = lim – (–1) = – 1
xa x xa
x
R.S.L = lim + = lim + (1) = 1
xa x xa
GLv‡b, lim – f(x) lim + f(x) ∵ Wvbw`KeZ©x I evgw`KeZ©x wjwgU mgvb bq ZvB Ans: wjwg‡Ui Aw¯ÍZ¡ †bB|
xa xa
Gevi †`L‡j Concept clear bv _vK‡j DËwU ev` n‡q †hZ|
x–2
EXAMPLE 01 f(x) = 2x – 4 dvskbwUi †iÄ KZ? ax + b
†Zvgiv hviv GB f(x) =
cx + d
dvsk‡bi
1 1 1 1 Technique
A. B. R – – C. R – D. j‡e x Gi mnM
2 2 2 2 e¨envi Ki‡e| †iÄ = R –
n‡i x Gi mnM
1
Zv‡`i g‡Z Ans: R – 2 hv fzj
M‡í
M‡í
wØc`x we¯Í…wZ
eo fvB‡qi Av‡M †QvU fvB‡qi we‡q: (mv‡_ wØc`xi µwgK c`)
wkÿv_©x eÜziv, ejZ †Zvgvi Av‡k cv‡k †Kvb family †Z †QvU fvB Zvi eo fvB‡K †i‡L we‡q K‡i †dj‡j MÖv‡gi †jvK‡`i K_vi Kvi‡Y eo fvB evmv‡Z
Problem •Zwi K‡i bv? wK K‡i? nv K‡i|
ej‡Zv H mgq cwiw¯’wZ ¯^vfvweK K‡i †K? †n †Zvgiv wVKB e‡jQ, `v`v †QvU bvZxi cÿ wb‡q welqUv wVK K‡i, ZvB bv?
Zvn‡j welqUv †Kgb `vovq †`L‡Zv Math-G †M‡j?
2q c` (†QvU) eo fvB
1g c` (eo) = `v`v-†QvU fvB
`v`v †QvU fvB eo fvB
EXAMPLE 03
3 + x -Gi we¯Í…wZ‡Z x7 I x8 Zg c‡`i mnM mgvb n‡j n = ? [mvaviYZ (axp + bxq)n AvKv‡i _vK‡e]
n
2
1
2
(2q c‡`i x Gi mnM) 8 (eo fvB)
=
3 (1g c‡`i x Gi mnM) n – 7
GiKg gRvi gRvi wUªKm
`v`v †QvU fvB wk‡L AsK Ki GK wbwg‡l
1 8
= n – 7 = 48 n = 55
6 n–7
`v`v
Ex: (1 + x)44 Gi we¯Í…wZ‡Z 21 Zg I 22 Zg c` mgvb n‡j, x = ?
(20 + 1) (21 + 1)
x 21 21 7
=
†QvU eo = =
1 44 – 20 24 8
nv‡Z
nv‡Z
K¨vjKz‡jkb wkLvB
c„w_exi †Kvb msL¨v‡K 9 Øviv fvM gv‡b `kwg‡Ki c‡i H msL¨v evi evi Av‡m|
1 cÖ‡qvM :
†hgb: 9 = 0.111....
wØc`x we¯Í…wZi avivq
2 Ex : 0.3 + 0.03 + 0.003 + .....
= 0.222....
9
= 0.333 .....
3 1
= = 0.333..... 3 1
9 3 = = nv... nv... Kx gRv GZ mnR?
9 3
5
= 0.55....
9
6 2
= : 0.666....
9 3
nv... nv... Avwg `yó 9, hv‡K Dc‡i ivwL, `kwg‡Ki c‡i Zv‡KB evi evi wdwi‡q †`B|
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT MATH g¨vwRK¨vj †cÖ‡R‡›Ukb
© Medistry 5
1. AšÍt¯úk©x e„Ë r1
c1 c2
r2 1wU c1c2 = r1 – r2
r1 r2
3. ci¯úi¯úk©xe„Ë c1 c2 3wU c1c2 = r1 + r2
r1 r2
4. KLbI ¯úk© Ki‡ebv Ggb 2wU e„Ë c1 c2
4wU c1c2 > r1 + r2
r1
5. GKB †K›`ª wewkó wfbœ e¨vmv‡a©i e„Ë c1 mvaviY ¯úk©K †bB c1c2 r1 r2
c2
r2
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
6 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
GiKg Av‡ivI KwZcq Tricks hv †Zvgvi Problems Solving Gi MwZ evwo‡q w`‡e ...
GENERAL RULES [WRITTEN] 3 in 1 ASPECT SUPER TRICKS [MCQ]
lim sin ax = a
1. x0 lim sin 4x Gi gvb-4 (Ans)
bx b x0 7x 7
lim tan ax a lim tan 3x 3
2. x0
bx
=
b x0 5x Gi gvb 5 (Ans.)
–1
lim tan ax = a lim tan 3x 3
3. x0
bx b x0 5x Gi gvb 5 (Ans).
lim tan ax = a
4. x0 lim tan 5x 5
sin bx b x0 sin 2x = 2 (Ans)
–1 –1
lim sin ax a lim sin (2x) = 2 (Ans)
5. x0 =
bx b x0 x
lim sin ax a lim sin 3x 3
6. x0 = x0 sin 5x = 5 (Ans)
sin bx b
GK Q‡K ch©vqµwgK AšÍixKiY:
y = x4 ; y1 = 4x3 = 4p1 x4-1 y = xn n‡j y = (ax + b)n 1 (–1)n.n!
y= Gi nZg AšÍiK = xn+1
y2 = 4.3x2 = 4p2 x4-2 yn = n! yn = n! an x
y3 = 4.3.2.x = 4p3 x4-3 ym = 0 [m > n] ym = 0 [m > n] 1
y4 = 4.3.2.1 = 4p4 x4-4 = 4!
y= Gi nZg AšÍiK =
ym = npm xn-m [m < n] ym = npm (ax + b)n–m am x+a
y5 = 0 [5 > 4] [m < n] (–1)n.n!
(x+a)n+1
y = sinx y = cosx y = emx
y1 = cosx y1 = –sinx y1 = m.emx y = Sin(ax + b) Gi nZg AšÍiK,
y2 = –sinx y2 = –cosx y2 = m2.emx n
y3 = –cosx y3 = sinx y3 = m3.emx yn = an sin
ax b
2
y4 = sinx = y y4 = cosx = y yn = mn.emx
A_©vr cÖwZ 4n Zg AšÍi‡Ki ci A_©vr cÖwZ 4n Zg AšÍi‡Ki ci y = ax
cybive„wË NU‡e cybive„wË NU‡e y1 = axlna
y2 = ax(lna)2 y = cos(ax + b) Gi nZg AšÍiK,
y = sinx n‡j, yn = sin + x
n y = cosx n‡j, yn = cos
2
y3 = ax(lna)3 yn = a cos n ax b
n
n + x yn = ax(lna)n 2
2
b = 0; a = c; e„Ë (Circle)
b = 0; a c; Dce„Ë (Ellipse)
sin 15 = ?
wP‡Î w·KvYwgwZ cos 75 = ?
wP‡Î
4
1wU Av½yj
45 1 1
60 30 Example: sin 30 = =
4 2
90
Nwoi KvUvi wecixZ w`‡K Aewkó Av½yj 45
cos =
0 4 2wU Av½yj
2 1
Example: cos 45 = =
4 2
Nwoi KvUvi wecixZ w`‡K Aewkó Av½yj
3
Example: tan 60 = = 3
1
weKí c×wZ: †KvY m¤úwK©Z As‡Ki mgm¨v AvR‡KB f¯§xf~Z
sin/cos m¤úwK©Z
0 30 45 60 90
Step- 01 0 1 2 3 4
0 1 2 3 4
Step- 02
4 4 4 4 4
0 1 2 3 4
Step- 03
4 4 4 4 4
1 1 3
Step- 04 0 1
2 2 2
Step- 05: sin = 0 0.5 0.707 0.87 1
cos = 1 0.87 0.707 0.5 0
tan/cot m¤úwK©Z
0 30 45 60 90
Step-01 0 1 3 9
0 1 3 9
Step-02
3 3 3 3 3
Step-03
0 1 3 9
3 3 3 3 3
1
Step-04 0 1 3
3
Step-05: tan = 0 0.57 1 1.73
cot = 1.73 1 0.57 0
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
8 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
Super Hexagon :
sin cos
tan cot
1
sec cosec
b
Type-1 cvkvcvwk 3 we›`y wb‡j a = [†h‡Kv‡bv w`‡K cÖ‡hvR¨]
c
sin cos tan cosec
Ex : tan = sin = sin = sec =
cos cot sec cot
tan cos cot sin
sec = cot = cos = cos =
sin sin cosec tan
Type-2
evgcv‡ki wP‡Î jÿ¨ Kwi sin cos
`vM KvUv wÎfzR ¸‡jv‡Z Wvb †_‡K ev‡g A_©vr Nwoi KvUvi w`‡K
†M‡j a2 + b2 = c2 m~ÎwU †g‡b P‡j| tan cot
1
Example: sin2 + cos2 = 1
1 + cot2 = cosec2 sin2 = 1 – cos2 sec cosec
tan2 + 1 = sec2 cos2 = 1 – sin2
†Zvgv‡`i cÖ‡qvR‡bB Avgv‡`i Av‡qvRb †Rbv‡ij g¨v_W (WRITTEN) I kU©KvU© wUªK‡mi •ØZ Dc¯’vcb|
mv‡f© †Uwej (MAGNETIC DECISION) Gi gva¨‡g UwcK wm‡jKkb| cÖwZwU
cÖ_gZ
Dc¯’vcbvi wØZxqZ
wek¦we`¨vj‡qi Rb¨ Avjv`v Avjv`v UwcK †ivWg¨vc
GKwU Uwc‡K m¤¢ve¨ mKj ai‡bi cÖkœ wb‡q MODEL EXAMPLE Dc¯’vcb
Z…ZxqZ †Rbv‡ij g¨v_W (WRITTEN) I kU©KvU© wUªK‡mi •ØZ Dc¯’vcb
Awfbe c×wZ PZz_©Z
cÂgZ
INSTANT PRACTICE & SOLVE ms‡hvRb
m‡e©v”P msL¨K weMZ cÖ‡kœi kU©KvU© e¨vL¨vmn we‡kølY
lôZ CONCEPT TEST [MCQ I wjwLZ Gi mgwš^Z Abykxjb]
bgybv
Dc¯’vcb
TACTIC 01 5 6 g¨vwUª·wUi wecixZ g¨vwUª· Gi †Uªm †KvbwU?
2 4 [JU-A, SetB. 20-21]
S General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
Gi wecixZ g¨vwU©· =
5 6 1 4 –6 cÖ`Ë g¨vwUª‡·i †Uªm
2 4 20 –12 – 2 5 wecixZ g¨vwUª‡·i †Uªm = wbY©vq‡Ki gvb
1 –3 =
5+4
=
9
1
= – 2
4 6 2 4 1 5 9
†Uªm = + =
20 12 8
5 – 1 5
=
8 2 8 8
4 8
02 hw` A =
1 2 2
TACTIC 3 4 Z‡e A + 3A – 10I n‡e GKwUÑ [RU. Moderna, Set-2. 20-21]
S g¨vwUª·
A. A‡f`K B. cÖwZmg g¨vwUª· C. k~b¨ g¨vwUª· D. †KvbwUB bq Ans C
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
6
A2 = 3 . = =
1 2 1 2 1 + 6 2 8 7 †Kv‡bv g¨vwUª· A Gi Rb¨ A2 †Uªm A + |A| I = 0
4 3 4 3 12 6 + 16 9 22
GLv‡b A = 3 –4 A2 – (1 – 4) A + (–4 – 6) I = 0
1 2
7 6 1 2 1 0
A + 3A10I=
2
100 1
9 22
+ 33
4 A2 + 3A – 10 I = 0
=
7 + 3 10 6 + 6 0 0 0
9 + 9 0 22 12 10 = 0 0 = k~b¨ g¨vwUª·
1 2
TACTIC 03 2 1 Gi wgvb-; GK‡Ki GKwU RwUj Nbg~j| [DU.2009-10]
S 2 1
A. 1 B. 3 C. D. 0 Ans D
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
2 wbY©vq‡Ki As‡K hw` †Kv_vI _v‡K Zvn‡j = 1 ewm‡q wbY©vq‡Ki gvb
1 1 2 2
wbY©q Ki‡j Answer cvIqv hv‡e|
2
1 = 2 1 2 /
1 [c1 = c1+c2+c3]
1 2
2 1 2 1 1 1 1 1
2 1 = 1 1 1 = 0
0 2 1 1 1
2 1
= 0 2 1 [ 1 + + 2 = 0] = 0 Ans.
0 1
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
10 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
3 –4
TACTIC 04 A = n‡j det (2A–1) Gi gvb n‡jv-
2 –3
[DU. 19-20]
S
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
3 –4 [GLv‡b DwjøwLZ g¨vwUª· Gi order = 2 2
A = 2 –3
3 –4
A = 2 –3 n‡j,
A_©vr 2 Ges ¸wYZK n‡”Q A–1 Gi mv‡_
1 –3 4 3 –4 |A| = – 9 + 8 = –1 KZ¸Y Av‡Q|
A–1 =
– 9 + 8 –2 3 2 –3
=
det (2A–1)=
2 GLv‡b 2A–1 A_©vr ¸wYZK = 2
6 –8
2A–1 = 4 –6 det (2A–1) = – 36 + 32 = – 4
A
Note : ïay eM©g¨vwUª‡·i †ÿ‡Î cÖ‡hvR¨|]
(2)2
= (¸wYZK)order gvb = =–4
(1)
TACTIC 05 ABC G A(3, 3) B(–1, 5) C(4, –2) n‡j wÎfz‡Ri †¶Îdj wbY©q Ki? [JU. 2018-19]
S 8
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
3 3 Zero Method: A(3, 3), B(–1, 5), C(4, – 2)
1 †h‡Kvb GKwUi ¯’vbvsK (0, 0) Ki‡Z n‡e-
ABC = 1 5
2 4 2 A(3–3, 3–3), B(–1 –3, 5–3), C(4 –3, – 2–3)
3 3 cÖwZ¯’vwcZ we›`y¸‡jv A(0, 0), B(–4, 2), C(1, –5)
1 Kv‡Q = 2 1 = 2
= [(15 + 2 + 12) – (–3 + 20 – 6)]
2
1 B(–4, 2) C(1, –5)
= (29 – 11) = 9 eM© GKK Ans.
2
`~‡i = (–4) (–5) = 20
1 1
†ÿÎdj = | `~‡i – Kv‡Q | = |20 – 2| = 9 eM©GKK
2 2
TACTIC 06 (1, 2) we›`yi mv‡c‡¶ (4, 3) we›`yi cÖwZwe¤^ KZ? [IU. 2017-18]
S General Rules [Written] ASPECT Tricks & Tips [MCQ]
3 in 1
(1, 2) we›`yi mv‡c‡¶ (4, 3) we›`yi cÖwZwe¤^ (x, y) 1 K‡g‡Q 1 Kgv‡ev
1= 4 x 2=
3 y (4,3) (1, 2 (x, y)
(4, 3) (1, 2) (–2, 1) Ans.
2 2
x = 2 y=1 Ans.(2, 1) 3 K‡g‡Q 3 Kgv‡ev
1
TACTIC 07 y 1 eµ‡iLv x A¶‡K A we›`y‡Z Ges y A¶‡K B we›`y‡Z †Q` Ki‡j AB mij‡iLvi mgxKiY n‡e- [DU.12-13. BUTex.19-20]
2x
S
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
cÖ`Ë mij‡iLvwU x A¶‡K †h we›`y‡Z †Q` K‡i H we›`y‡Z y ¯’vbv¼ k~b¨ eµ‡iLv †_‡K mij‡iLvi Eqution †ei Ki‡Z PvB‡j eµ‡iLvwU‡K
1 Simplify Ki‡Z n‡e| Zvici hv mij‡iLvi •ewkó¨ bq †m c` ¸‡jv‡K
0 1 x + 2= 1 x = 3 A (3, 0)
2x ev` w`‡q w`‡jB mij‡iLvi mgxKiY cvIqv hvq|
Avevi, cÖ`Ë mij‡iLvwU y A¶‡K †h we›`y‡Z †Q` K‡i H we›`y‡Z x ¯’vbv¼ k~b¨ 1
y 1
y 1
1
y
3
0, 3 2x
20 2 2 2 + x +1
y= 2y + xy = x + 3
2+x
AB mij‡iLvi mgxKiY, x 3 y 0 x 2 y 3 0 x – 2y + 3 = 0 [mij‡iLvi mgxKi‡Y †h‡nZz xy AvKv‡i †Kvb c`
30 3
0 _v‡K bv| ZvB xy ev` w`‡q]
2
TACTIC 08 x + y = 81 e„ËwUi R¨v (2, 3) we›`y‡Z mgwØLwÛZ nq, R¨v Gi mgxKiY KZ? [JU.03-04; MBSTU.15-16;KU.01-02;SUST.09-10]
2 2
TACTIC 09 cÖ‡Z¨K msL¨vq cÖ‡Z¨KwU AsK †Kej GKevi e¨envi K‡i 2,3,5,7,8,9 Øviv wZb AsK wewkó KZ¸‡jv msL¨v MVb Kiv hvq|
S General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
†gvU AsK i‡q‡Q 6 wU (2, 3, 5, 7, 8, 9) hv Øviv 3 AsK wewkó msL¨v MVb
Kiv hv‡e- 6P3 = 120 wU 6 5 4 = 6 5 4 = 120
GLv‡b, AsK msL¨v = 6 Ges †Kej GKevi e¨envi Ki‡Z
ej‡Q , ZvB GK GK Kwg‡q Ni¸‡jv c~ib Kiv nj|
TACTIC 10 4, 5, 6, 7, 8 A¼¸‡jvi cÖ‡Z¨KwU‡K †h‡Kvb msL¨Kevi wb‡q Pvi AsKwewkó KZ¸‡jv msL¨v MVb Kiv hvq|
S General Rules [Written] ASPECT Tricks & Tips [MCQ]
3 in 1
Pvi AsKwewkó msL¨v MV‡bi †ÿ‡Î †gvU cyib‡hvM¨ ¯’vb 4wU| msL¨v¸‡jv‡K 5 5 5 5
†h‡Kv‡bv msL¨K evi e¨envi Ki‡j- 1g ¯’vbwU cyi‡bi Dcvq 5P1 jÿ¨ Ki: Ò†h‡Kvb msL¨Kevi
2q ¯’vbwU cyi‡bi Dcvq 5P1 ; 3q ¯’vbwU cyi‡bi Dcvq 5P1
= 5555 = 625
wb‡qÓ e‡j‡Q ZvB GK GK K‡i
5
4_© ¯’vbwU cyi‡bi Dcvq P1 Kg‡jv bv|
†gvU Dcvq = 5P1 5P1 5P1 5P1 = 625
x2
TACTIC 11 f(x) = Øviv msÁvwqZ, f1 (x) wbY©q Ki| [DU. 2019-20]
x3
S
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
x2 ax + b
n‡j f1(x) = –dx + b
y = f(x) = xy 3y = x 2 2 3y = x xy f(x) =
x3 cx + d cx a
2 3y 3y 2 3x 2 x 2 1 3x2
= x f1(y) = f1(x) = f(x) = ; f (x) =
1y y1 x1 x3 x1
sin75 + sin15
TACTIC 12 =? [DU. 2019-20; RU 15-16, DU: 11-12, RU: 12-13,JNU: 10-11, DU: 04-05]
sin75 – sin15
S
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
sin75 + sin15 sin(90 – 15) + sin15 sinA + sinB
L.H.S = = = tan(45 + B) [hLb A + B = 90˚; B < A]
sin75 – sin15 sin(90 – 15) – sin15 sinA – sinB
cos15 1 +
sin15 sin75 + sin15
= tan(45 + B)= tan(45 + 15) = tan60 = 3
cos15 + sin15 cos15 sin75 – sin15
= =
cos15 1 –
cos15 – sin15 sin15
cos15
1 + tan15 tan45 + tan15
= = = tan(45 + 15) = tan60 = 3
1 – tan15 1 – tan45 tan15
2
lim 2x 2 + 3x + 5 Gi gvb|
13 x
TACTIC 3x + 5x – 6
S
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
x2 2 + + 2
3 5 3 5
2+ + 2
2
lim 2x2+3x+5 lim x x x x
lim
x Ges j‡e x Gi m‡e©v”P NvZ = n‡i x Gi m‡e©v”P NvZ n‡j
x 3 + – 2
x 3x +5x–6 x 2 5 6 x 5 6
3+ – 2
x x x x Ans. m‡e©v”P NvZhy³ x Gi mn‡Mi AbycvZ|
2+0+0 2
3 + 0 –0 3 (Ans)
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
12 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
TACTIC 16 y = x2 Ges y = 2x Øviv Ave× GjvKvi †¶Îdj- [DU: 06-07, SUST: 12-13]
S
GENERAL RULES [WRITTEN] 3 in 1 TRICKS [MCQ]
y
y = x2
y = 2x
x2 = 4ay Ges y = mx Øviv Ave×
x 8
O(0, 0)
†ÿ‡Îi †ÿÎdj = 3 a2m3
1
GLv‡b a = 4 Ges m = 2
cÖ`Ë y = x2 Ges y = 2x mgxKiY mgvavb K‡i cvB, x = 0 Ges x =2.
†ÿÎdj = . . 23 = sq.
8 1 2 4
3 4
1
x3 x2
2 2
8 4 3
wb‡Y©q †¶Îdj = y1 y 2 dx x 2 x dx = 2. 4 sq. units.
2
units. Ans.
0 0 3 2 0 3 3
4
wb‡Y©q †¶Îdj = sq. units. Ans. [†¶Îdj FYvZ¡K n‡Z cv‡i bv|]
3
1
TACTIC 17 †Kv‡bv wØNvZ mgxKi‡Yi GKwU g~j n‡j mgxKiYwU n‡eÑ
1+i
S
GENERAL RULES 3 in 1 SHORTCUT TRICKS & TIPS
GKwU g~j 1 n‡j, AciwU 1
1+i 1i 1
= x 1 = x + xi 1 x = xi (1 x)2 = (xi)2 1
1+i
mgxKiY, x2 1 + 1 x + 1 . 1 = 0
1 + i 1 i 1 + i 1 i 2x + x2 = x2 2x2 2x + 1 = 0
1+i+1i 1 2 1
x2 x + 2 2 = 0 x2 x + = 0 2x2 2x + 1 = 0
12 i2 l i 2 2
TACTIC 18 †Kv‡bv we›`y‡Z P Ges 2P gv‡bi `yBwU ej wµqvkxj| cÖ_g ejwU‡K wظY K‡i wØZxqwUi gvb 8 GKK e„w× Kiv n‡j Zv‡`i jwäi
S w`K AcwiewZ©Z _v‡K| P Gi gvb- [DU 13-14, RU 14-15, KU 12-13, 09-10, IU 04-05]
TACTIC 19 2 lb wt, 4 lb wt Ges 6 lb wt gv‡bi wZbwU ej GKwU we›`y‡Z ci¯ci 120 †Kv‡Y wµqvkxj, Zv‡`i jwäi gvb KZ?
S
GENERAL RULES [WRITTEN] 3 in 1 ASPECT SUPER TRICKS [MCQ]
OX eivei ej¸‡jvi j¤^vsk wb‡q cvB,
Rcos = 2 cos0 + 4 cos120 + 6 cos240 Y
1 1
= 2 + 4 + 6 = 2 2 3 4 R
2 2 120
Rcos = 3 --- --- -- (i) 120 X
Avevi, OX ‡iLvi Dj¤^ eivei ej¸‡jvi O 2
j¤^vsk wb‡q cvB, 120
6 ejÎq mgvšÍi avivq wµqviZ _vK‡j jwä,
R sin = 2 sin0+ 4 sin120 + 6 sin 240 Z
F = 3 mgvšÍi avivq mvaviY AšÍi
3 3
= 0 + 4. + 6 = 3 2 Ans.
2 2
= 2 3 3 3 3 --- --- (ii)
(i) + (ii)2 n‡Z cvB, R2 (cos2 + sin2) = 9 + 3
2
R2 = 12
R= 12 = 2 3
wb‡Y©q jwä = 2 3 lb-wt Ans.
TACTIC 21 hw` x2 5x 3 = 0 mgxKi‡Yi g~jØq , nq, Z‡e 1 1 m¤^wjZ mgxKiYwU wbY©q Ki|
S
GENERAL RULES [WRITTEN] 3 in 1 ASPECT SUPER TRICKS [MCQ]
†`Iqv Av‡Q, x 5x 3 = 0
2
f
1 1 2
= 0 5 3 = 0
1
mgxKi‡Yi g~jØq Ges x x x
5 3 1 5x 3x2
+= = 5, = =3 =0
1 1 x2
3x2 + 5x 1 = 0
I g~j؇qi mgwó = 1 + 1 = + = 5 Ges ¸Ydj 1 . 1 = 1 = 1
1 1
1 1
3 3 weKí c×wZ: ax2 + bx + c = 0 mgxKiY g~jØq, , n‡j, ,
wb‡Y©q mgxKiY, x x + = 0
2 5 1
3 3 g~jwewkó mgxKiY n‡e cx2 + bx + a = 0
3x2 + 5x 1 = 0 (Ans.) †hgb- x2 5x 3 = 0 ZvB 3x2 5x + 1 = 0 3x2 + 5x 1 = 0
TACTIC 22 GKwU mgevû wÎfz‡Ri evû·qi mgvšÍiv‡j GKB µ‡g mgwe›`y‡Z Kvh©iZ 6N, 10N, 14N gv‡bi wZbwU †e‡Mi jwäi gvb KZ?
S Solve : = (gv‡bi cv_©K¨) 3
Magical 3 memgq constant _vK‡eB
= (10 – 6) 3 = 4 3
TACTIC 23 (9, 9) I (5, 5) we›`y؇qi ms‡hvRK †iLv‡K e¨vm a‡i AswKZ e„‡Ëi mgxKiY-
2
S 2
A. x + y + 4x + 14y = 0 B. x2 + y2 + 4x 14y = 0
C. x + y 4x + 14y = 0
2 2
D. x2 + y2 4x 14y = 0
n †h Option wU (9, 9) ev (5, 5) we›`y Øviv wm× n‡e †mwUB DËi| GLv‡b B OptionwU(9, 9) ev (5, 5) we›`y Øviv wm× nq| ZvB GwUB DËi|
olve
S B Sol
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
14 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
? `„wk‡ãi DrmY
ó AvKl© cov ïiæ Kivi Av‡M Rvb‡Z n‡e fwZ© cÖ‡kœi c¨vUvb©- eyS‡Z n‡e cÖ‡kœi MwZ-cÖK…wZ A_©vr wK ÷vB‡j cÖkœ nq|
†mRb¨ mv¤úªwZK mv‡ji XvKv wek¦we`¨vjq, BwÄwbqvwis ¸”Q wek¦we`¨vjq LywUbvwU Aa¨vqwfwËK QvovI ïiæ‡ZB Zz‡j aiv n‡jv hv‡Z †Zvgiv
mn‡RB aviYv wb‡Z cv‡iv| †Zvgiv hLb †h wek¦we`¨vjq cixÿv w`‡e ïiæ‡ZB †m wek¦we`¨vj‡qi cÖkœ¸‡jv †`‡L wb‡e|
c~Y©gvb: 100
cÖ_g el© ¯œvZK (m¤§vb) †kÖwYi fwZ© cix¶v 2022-2023 mgq: 1.30 wgwbU
MATHEMATICS
Per MCQ 1 MCQ PART MARKS
151 = 15
d2y
01. y = x2 lnx n‡j, Gi gvb KZ?
dx2
A. x4 lnx 2x2 3x4 B. 6x4 lnx 5x4 C. 6x4 lnx 2x2 3x4 D. x4 lnx 2x2 + 3x4
mwVK DËi B. 6x4 lnx 5x4
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! AšÍixKiY c„ôv: 242, IU: 04 bs cÖkœ Concept-10 Abyiƒc
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH weMZ 2022-23 mv‡ji cÖkœ e¨vL¨vmn we‡kølY
© Medistry 15
–2 1
mwVK Dˇii c‡ÿ hyw³: y = x lnx ; y1 = – 2x lnx + x x = – 2x lnx + x
–2 –3 –3 –3
y2 = 6x–4lnx + –2x–3 ×
1
+ (– 3)x–4 = 6x–4 lnx – 2x–4 – 3x–4 = 6x– 4 lnx – 5x–4
x
09. (0, 2) Ges (2, 0) we›`yMvgx mij‡iLv x-A‡ÿi abvZ¥K w`‡Ki mv‡_ Kx †KvY Drcbœ K‡i?
A. 30 B. 45 C. 60 D. 120
mwVK DËi B. 45
cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
†cv÷ g‡U©g
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! mij‡iLv c„ôv: 91, Concept Test-03 Concept-07 Abyiƒc
0–2
mwVK Dˇii c‡ÿ hyw³: m = tan = –2 – 0 = 1 = 45
10. y-A‡ÿi mgvšÍivj Ges 2x 7y + 11 = 0 I x + 3y 8 = 0 †iLv؇qi †Q`we›`y w`‡q AwZµgKvix mij‡iLvi mgxKiY wb‡Pi †KvbwU?
A. 13x 23 = 0 B. 3x 7 = 0 C. 7x 3 = 0 D. 23x 13 = 0
mwVK DËi A. 13x 23 = 0
cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
†cv÷ g‡U©g
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! mij‡iLv c„ôv: 106, DU: 01 bs cÖkœ Concept-07 ûeû
mwVK Dˇii c‡ÿ hyw³: 2x – 7y = – 11......... (i); x + 3y = 8 ................. (ii)
27
{(i) – (ii) × 2} K‡i cvB, –13y = – 11 – 16 y =
13
–
(ii) n‡Z cvB, x = 8 – 3 × =
27 104 81 23
=
13 13 13
23
†Q`we›`y = ; y A‡ÿi mgvšÍivj †iLv, x = a x = 13x – 23 = 0
23 27
13 13 13
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH weMZ 2022-23 mv‡ji cÖkœ e¨vL¨vmn we‡kølY
© Medistry 17
11. 7 Rb wm‡bUi I 5 Rb Mfb©‡ii GKwU `j †_‡K KZ Dcv‡q 4 Rb wm‡bUi I 3 Rb Mfb©‡ii GKwU KwgwU MVb Kiv hvq?
A. 350 B. 10 C. 35 D. 30
mwVK DËi A. 350
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! web¨vm I mgv‡ek c„ôv: 376, DU: 01 bs cÖkœ Concept-04 Abyiƒc
7.6.5.4 5.4.3
mwVK Dˇii c‡ÿ hyw³: 7C4 × 5C3 = ×
4.3.2.1 3.2.1
= 350
12. hw` 240(72x) = 1 nq, Z‡e x Gi gvb KZ?
A. 4 B. 3 C. 5 D. 2
mwVK DËi D. 2
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! wm‡jevm ewnf‚©Z - - -
mwVK Dˇii c‡ÿ hyw³: 2401(7 ) = 1 7 = 2401 7 = 7 2x = 4 x = 2
–2x 2x 2x 4
1
13. > 4 AmgZvwUi mgvavb †mU n‡e wb‡Pi †KvbwU?
|x + 2|
A. , x 2 B. C. , x 2 D.
9 7 7 1 9 1 7 1
4 4 4 4 4 4 4 4
mwVK DËi A. , x 2
9 7
4 4
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! ev¯Íe msL¨v c„ôv: 607, DU: 04 bs cÖkœ Concept-07 Abyiƒc
mwVK Dˇii c‡ÿ hyw³: [we:`ª: cÖ‡kœ mwVK Dˇii †Kvb Ackb †bB wKš‘ KvQvKvwQ A‡_© Ackb A †bIqv n‡jv]
1 1 1 1 1 1 1
> 4; x + 2 0 x – 2; GLb, > 4 |x + 2| < – < x + 2 < – – 2 < x + 2 – 2 < – 2
|x + 2| |x + 2| 4 4 4 4 4
9 7 9 7 9 7
– < x < – – – , x – 2 A_©vr, – , – , x–2
4 4 4 4 4 4
1
14. y = 1 + eµ‡iLv x-Aÿ‡K A we›`y‡Z Ges y-Aÿ‡K B we›`y‡Z †Q` Ki‡j AB mij‡iLvi mgxKiY wb‡Pi †KvbwU?
2+x
A. x + 2y + 3 = 0 B. x + 2y 3 = 0 C. x 2y + 3 = 0 D. x 2y 3 = 0
mwVK DËi C. x 2y + 3 = 0
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! mij‡iLv c„ôv: 105, MEx: 08 bs cÖkœ Concept-07 ûeû
mwVK Dˇii c‡ÿ hyw³: y = 1 + 1
2+x
1 y A‡ÿ x = 0
x A‡ÿ y = 0 0 = 1 + 3
B (0,2)
B 0
2+x 1 3 3
y=1+ =
1
= – 1 2 + x = – 1 x = – 3 A (– 3, 0) 2+0 2 2 (–3,0) A
2+x (0, 0)
x y
wb‡Y©q mgxKiY: + = 1 – x + 2y = 3 x – 2y + 3 = 0
–3 3
2
15. cosec 10 4sin 70 Gi gvb KZ?
1
A. 1 B. C. 2 D. 2
2
mwVK DËi D. 2
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Concept †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! mshy³ w·KvYwgwZ c„ôv: 152, CU: 10 bs cÖkœ Concept-03 mv`„k¨c~Y©
mwVK Dˇii c‡ÿ hyw³: cosec 10 – 4 sin 70
1 – 2 – cos80 1 – 2 . + 2 cos80
1 1
=
1
– 4 sin70 =
1 – 4 sin70 sin10 1 – 2(2 sin70 sin10) 1 – 2(cos60 – cos80)
= = =
2 = 2
=2
sin10 sin10 sin 10 sin10 sin10 cos80
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
18 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
1
01. 3x2 6x + 2 = 0 mgxKi‡Yi g~jØq m Ges n n‡j m + Ges n + 1 g~j wewkó mgxKiYwU wbY©q Ki|
n m
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Topic †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! eûc`x 465 Concept-04 Abyiƒc
–6
m + + n + = m + n +
2 1 1 m+n 2
mgvavb: 3x m+n=–
2
– 6x + 2 = 0; g~jØq m, n = 2 Ges mn = =2+2=2+3=5
3 3 n m mn
3
m + n + = mn + 1 + 1 +
1 1 1 2 1 2 3 4 + 12 + 9 25
= +2+2= +2+ = =
n m mn 3 3 2 6 6
3
25
wb‡Y©q mgxKiY: x – (g~j؇qi mgwó) x + (g~j؇qi ¸Ydj) = 0 x2 – 5x +
2
= 0 6x2 – 30x + 25 = 0
6
02. p Gi †Kvb gv‡bi Rb¨ (4, 4) we›`ywU x2 8x + py + 7 = 0 cive„‡Ëi Dc‡K›`ª n‡e?
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Topic †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! KwYK 480 Concept-02 mv`„k¨c~Y©
mgvavb: x – 8x + py + 7 = 0 x – 8x + 16 = – py – 7 + 16
2 2
–p
(x – 4)2 = – py + 9 = – p y – (x – 4)2 = 4. y – X2 = 4. a. Y
9 9
p 4 p
Dc‡K›`ª: X = 0 Y=a
x–4=0 9 p 9 p 36 – p2
y– =– y= – =
x=4 p 4 p 4 4p
36 – p2
cÖkœg‡Z, = 4 36 – p = 16p p + 16p – 36 = 0 p2 + 18p – 2p – 36 = 0
2 2
4p
p(p + 18) – 2 (p + 18) = 0 (p + 18) (p – 2) = 0 p = 2, – 18 (Ans.)
2
03. y = cosx ln n‡j, d y2 + y Gi gvb wbY©q Ki|
1
sec x + tan x dx
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Topic †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! AšÍixKiY 238 Concept-10 -
y = cosx ln = cosx ln = cosx ln cosx
1 1
mgvavb: secx + tanx 1 + sinx
1 + sinx
cosx cosx
1 + sinx –sinx(1+ sinx)–cosx(0 + cosx)
= – sinx ln
dy cos x
+ cosx. .
dx 1 + sinx cosx (1 + sinx)2
2 2
cos x – sinx – (sin x + cos x) cos x – (1 + sinx)
= – sinx ln = – sinx ln = – sinx ln
cos x
+ + –1
1 + sinx 1 + sinx 1 + sinx 1+ sinx 1 + sinx
d2y 1 + sinx (– sinx) (1 + sinx) – cosx(0 + cosx)
= – cosx ln
cos x
– sinx .
dx2 1 + sinx cosx (1 + sinx)2
sinx –sinx – (sin2x + cos2x) d2y
=–y– . = – y + tanx 2 + y = tanx
cosx 1 + sinx dx
+ + a2 b2
04. hw` acos + bsin = acos + bsin nq, Z‡e †`LvI †h, cos2 sin2 = 2 .
2 2 a + b2
†cv÷ g‡U©g cÖkœwU †h Aa¨vq †_‡K cÖkœwU ASPECT MATH Gi †h cÖkœwU ASPECT MATH Gi †h Topic †_‡K †hfv‡e Kgb
Kiv n‡q‡Q c„ôv †_‡K Kgb c‡o‡Q Kgb c‡o‡Q c‡o‡Q
inm¨!!! w·KvYwgwZ 165 Concept-04 Abyiƒc
+ –
2 sin sin
cos – cos b 2 2 b
mgvavb: acos + b sin = a cos + b sin a cos – acos = bsin – b sin =
sin – sin a +
=
– a
2 cos sin
2 2
+ + + + +
sin sin2 cos2 cos2 + sin2
2 b 2 b2 2 a2 2 2 a2 + b2 + + a2 – b2
= = 2 = 2 = 2 2 cos2 – sin2 = 2 2 (Showed)
+ a + a + b + + a –b 2 2 a +b
cos cos2 sin2 cos2 – sin2
2 2 2 2 2
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH weMZ 2022-23 mv‡ji cÖkœ e¨vL¨vmn we‡kølY
© Medistry 19
SB Why GKB mij‡iLvq Aew¯’Z n‡j †h †Kvb `ywU we›`y wb‡q MwVZ
¸”Q fwZ© cixÿv Xvj mgvb|
weÁvb ¯œvZK cÖ_g el© mgwš^Z
BDwbU-A
a1 13
fwZ© cixÿv- 2022-23
†mU-04
=
A(–1, 3) B(–2, 1)
C(a, a)
a+2 2+1
01. f‚wg †_‡K k~‡b¨ wbwÿß GKwU ej 100 wgUvi `~‡i f‚wg‡Z wd‡i Av‡m| a1 2
=
75 a + 2 1
†mUvi wePiYc‡_i me©vwaK D”PZv 4 wgUvi n‡j wb‡ÿcY †KvY KZ?
a 1 = 2a + 4
1 4 1 4 a = 5 we›`ywU (5, 5)
A. tan B. cos
3 5
06. 4y 3x + 12 = 0 Ges 4y 3x + 3 = 0 †iLv؇qi ga¨eZ©x `~iZ¡ KZ GKK?
C. sin1 D. sin1
5 3
3 4 A.
9
B.
12
5 5
75
4 3 6
4H 4
S B Why tan = R tan = 100 C.
5
D.
5
c1 c 2
3 3 4 SA Why d =
tan = = tan1 = cos1 a 2 b2
4 4 5
02. †h KwY‡Ki c¨vivwgwZK mgxKiY x = 3 + at2, y = 2at †mUvi kxl©we›`yi ¯’vbv¼- 12 3 9
= =
4 3
A. (0, 0) B. (2, 0) 2 2 5
C. (3, 0) D. (2, 3)
y 2 07. x Gi ‡Kvb gv‡bi Rb¨ y = x ln x Gi jNy gvb wbY©q Kiv hv‡e?
S C Wh x = 3 + at y = 2at
x3 2 y A. e B. e
= t ------------ (i) t = --------- (ii)
a 2a 1 1
C. D.
x 3 y2 e e
(i) n‡Z cvB, =
a 4a SC Why f(x) = xlnx
y2 = 4(x 3) kxl© = (3, 0) 1 1
f(x) = x. + lnx = 1 + lnx ; f(x) =
x x
03. lim x2
2 3 5 6
+ 3 + 2 + 2 Gi gvb KZ? m‡e©v”P ev me©wb¤œ gv‡bi Rb¨ f(x) = 0
x x4
+ 1 x + 7 x + 1 x 6
A. 8 B. 10 1 + lnx = 0
C. 11 D. 16 lnx = 1
lim 1
x2
2 3 5 6 x = e1 x =
SC Why + + +
x x4 +1 x3 + 7 x2 + 1 x2 5 e
21. Gi †Kvb †Wv‡g‡bi Rb¨ x2 + ax + 3 = 0 Gi g~jØq ev¯Íe I Amgvb n‡e? †Wv‡gb = [2,
25. wZbwU mgZjxq ej P, Q Ges R †Kv‡bv we›`y‡Z wµqv K‡i mvg¨ve¯’vq
A. (–2 3, 2 3) B. (–, – 2 3)
Av‡Q| hw` P Ges Q Gi gvb h_vµ‡g 5 3N I 5N Ges Zv‡`i ga¨eZ©x
C. (– , –2 3) (2 3, ) D. (2 3, )
SC Why ev¯Íe I Amgvb g~j n‡j, D > 0 †KvY 2 nq Zvn‡j R, Q Gi m‡½ KZ †KvY •Zwi Ki‡e?
a2 – 4.1.(3) > 0
A. B.
4 3
a – (2 3) > 0
2 2
2 3
(a + 2 3) (a – 2 3) > 0 C.
3
D.
4
y
S C Wh awi, R I Q Gi ga¨eZ©x Q=5N
– 3 3
†KvY Ges GLv‡b P I Q Gi jwä ej R
†Wv‡gb = (– , – 2 3) (2 3, ) wn‡m‡e R ejwU KvR Ki‡Q|
4
SA Why e =
KUET, CUET, RUET MwYZ
5
COMBINED ADMISSION a b2
TEST 2022-2023
c~Y©gvb-150 ae = 9 e2 = 1 2
e a
a2 b 2
a e = 9
2 2
1 a e =
01. y2 kx + 8 = 0, (k 0) cive„‡Ëi wbqvg‡Ki mgxKiY x 1 = 0 n‡j
e b = a (1 e2)
2 2
a= 2;b=
1
2
sin1 { }
1 x2 1 x2 x 1 ( 1 x2)2 = sin1 (1 x)
1 x2 x2 = 1 x
12
2 2x2 x = 0
2b2 2
Dc‡Kw›`ªK j‡¤^i •`N©¨ = a = 1
2 x(2x 1) = 0 x = 0,
2
1 06. †Kvb GKwU we›`y ‡ Z F I 3F gv‡bi ej `ywU wµqviZ| cÖ_gwU‡K Pvi¸Y
= GKK
2 2 Ki‡j Ges wØZxqwUi gvb AviI 18 GKK e„w× Ki‡j jwäi w`K
03. †Kvb Dce„‡Ëi GKwU Dc‡K›`ª I Zvi wbKUZg wbqvg‡Ki ga¨eZ©x `~iZ¡ AcwiewZ©Z _v‡K| F Gi gvb KZ?
4 A. 2 B. 4 C. 1
9cm Ges Dr‡Kw›`ªKZv n‡j Zvi e„nr Aÿ I ÿz`ª Aÿ-Gi ‣`N©¨ KZ
5 D. 8 E. 3
n‡e? F 4F
A. 20cm and 12cm B. 30cm and 24cm S A Why 3F = 3F + 18
C. 15cm and 12cm D. 40cm and 24cm 3F + 18 = 12F
E. 400cm and 144cm 9F = 18 F = 2 GKK
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH weMZ 2022-23 mv‡ji cÖkœ e¨vL¨vmn we‡kølY
© Medistry 23
07. 16m •`‡N©¨i GKwU mylg exg AB Gi IRb 60kg hvi A I B cÖv‡šÍ 10. hw` A = [aij] GKwU eM© g¨vwUª· nq, †hLv‡b aij = 2i j ; i, j = 1, 2,
33
h_vµ‡g 20kg I 45kg IRb Szjv‡bv| A cÖvšÍ †_‡K KZ `~i‡Z¡ ïaygvÎ 3. Zvn‡j A g¨vwUª·wU GKwU-
GKwU Aej¤^b ¯’vcb Ki‡j e¨e¯’vwU myw¯’wZ _vK‡e? A. Involutory matrix B. Idempotent matrix
240 48 48 C. Nilpotent matrix D. Singular matrix
A. m B. m C. m E. Orthogonal matrix
7 7 25
48 36 S D Why A = [aij]3 3
D. m E. m aij = 2i j
5 5 a11 a12 a13
S D Wh y A C B A = a 21 a 22 a 23 a11 = 1 a12 = 0
AB = 16m a 31 a 32 a 33 a 13 = 1 a21 = 3
x (8x) 1 0 1 a = 2 a23 =1
8 R 22
= 3 2 1 a31 = 5 a32 = 4
45kg-wt
5 4 3 a 33 = 3
20kg-wt
1 0 1
60kg-wt
MC = 0 |A| = 3 2 1 = 1 (6 4) (12 10) = 2 2 = 0
(20 x) 60 (8 x) 45 (16 x) = 0 5 4 3
48 A g¨vwUª·wU GKwU e¨wZµgx (Signature) g¨vwUª·|
x= m
5
2 3 x
08. `ywU †b․Kv 5km/hr †e‡M P‡j 3 km/hr †e‡M cÖevwnZ 500m PIov GKwU 11. 0 4 x wbY©vq‡Ki (2, 1)th fzw³i mn¸YK 9 n‡j x Gi gvb †KvbwU?
b`x cvwo w`‡Z Pvq| GKwU †b․Kv b~¨bZg c‡_ I AciwU b~¨bZg mg‡q 1 3 1 x
1 3
b`xwU cvwo w`‡Z B”QzK| Dfq †b․Kv GKB mg‡q hvÎv ïiæ Ki‡j Zv‡`i A. B. C. 2
2 2
Aci cv‡o †cu․Qv‡bvi mg‡qi cv_©K¨ KZ n‡e?
D. 0 E. 2
A. 1 minute B. 1.25 minutes C. 1.5 minutes
3 x
2
D. 1.75 minutes E. 2 minutes S C Wh 0 4 x
y
S C Why 1 3 1 x
(2, 1) th fzw³i mn¸YK =
d 3 x
b~¨bZg c‡_, t1 = 2 2 3 1 x = 9
v u
0.5 0.5 (3 3x 3x) = 9 6x 3 = 9 x = 2
= = hr 12. x = y Ges x + y = 1 †iLv `ywUi AšÍf©y³ †KvY¸wji mgwØLÐK¸wji
5 2 32 4
mgxKiY †KvbwU?
b~b¨Zg mg‡q, A. x + 1 = 0 and y + 1 = 0 B. 2x + 1 = 0 and 2y + 1 = 0
d 0.5 C. 2x 1 = 0 and 2y 1 = 0 D. x = 1 and y = 1
t2 = tmin = = = 0.1 hr
v 5 E. x = 0 and y = 0
mg‡qi cv_©K¨ = t1 t2 = 4 0.1 = 4 60 = 1.5 minutes
0.5 0.1 S C Why x y = 0...... (i)
x + y 1 = 0......... (ii)
09. GKRb UªvwdK AvBb Agvb¨Kvix PvjK 2m/sec2 Z¡i‡Y Mvwo Pvjbv ïiæ xy x+y1
Ki‡j UnjZ UªvwdK cywjk 5 sec ci Zv‡K avIqv ïiæ Kij| cywj‡ki Mvox mgxKiY `ywUi mgwØLÛK¸wji mgxKiY, =
2 2
20 m/sec mg‡e‡M Pj‡j, KZ mgq ci †mwU AvBb Agvb¨Kvix Pvj‡Ki (+) wb‡q, x y = x + y 1 2y 1 = 0
Mvox‡K AwZµg Ki‡Z cvi‡e? () wb‡q, x y = x y + 1 2x 1 = 0
A. 3 sec B. 4 sec C. 5 sec 2
D. 6 sec E. 7 sec 13. OP †iLvsk‡K Nwoi KuvUvi w`‡K †Kv‡Y Nyiv‡bv‡Z Zvi bZzb Ae¯’vb
3
S C Why n‡jv OQ| P Gi ¯’vbv¼ ( 3 3) n‡j P I Q Gi ga¨eZ©x `~iZ¡
u = 0 + 2 5 = 10ms1 KZ n‡e?
cywj‡ki V = 20ms1 a = 2ms2 A. 4 3 B. 12 C. 6
Mvwo UªvK
D. 2 3 E. 6
3
S A Why tan = = 3
1 s1
s=0+ 2 52
2
= 25 3
Y
s2 = ( 333)
3
awi, cywj‡ki Mvwo t mgq ci UªvKwU‡K ai‡Z cvi‡e| P
cÖkœg‡Z, s2 = 25 + s1 P ( 33)
+3
2
PQ = ( 3 3 ) + ( 3 3)2 X
20 t = 25 + (10 t) + 2 t2
1 X
2
O
= 12 + 36 +3
t2 10t + 25 = 0 (t 5)2 = 0 =4 3 Q
( 3 3)
t5=0 t=5s Y
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
24 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
5
14. 0 x e¨ewa‡Z 2sinx + cos2x dvsk‡bi m‡e©v”P I me©wb¤œ gv‡bi S E Why tan =
2 12
Rb¨ bx‡Pi †Kvb DËiwU mwVK? †h‡nZz cos FYvZ¥K wKš‘ tan abvZ¥K
3 myZivs sin I FYvZ¥K n‡e
A. At x = , there is a minimum which is
6 2 5 12
3 sin = Ges cos = 13
13
B. At x = , there is a maximum which is
6 2 5 12
+
1+ 3 sin + cos ( ) sin + cos 13 13 51
C. Al x = , there is a maximum which is cÖ` Ë ivwk = = = =
6 2 sec ( ) + tan sec + tan 13 5 26
+
12 12
D. At x = , there is a minimum which is 3
x x 2 Gi gvb KZ n‡e?
6 2 x
17. lim
1 x2 x 4
E. At x = , there is a minimum which is
6 2 1 + ln2 1 ln2 2 ln2
S B Why f(x) = 2 sinx + cos2x A. B. C.
1 ln2 1 + ln2 2 + ln2
For maximum and minimum value, f(x) = 0 2 + ln2 ln2 1
2cosx 2 sin2x = 0 2 cosx = 2.2 sinx.cosx D.
2 ln2
E.
ln2 + 1
1 5 2x
S B Why lim xx 4 ; 0 form
2
2 sinx = 1 sinx = x = , x 0
2 6 6
x2
x = ∵ 0 x f (x) = 2 sinx 4 cos 2x 2x 2x ln2
6 2 = lim x x ; [Using L Hospital Rule]
x2 x + x lnx
f = 2 sin 4cos 2 2.2 22 ln2 4 (1 ln2) 1 ln2
6 6 6 = 2 = =
2 + 22 ln2 4 (1 + ln2) 1 + ln2
1
= 2 4 =12=3<0
1 1
2 2 18. x3 + siny = x3 mgxKi‡Y x = 1 Gi Rb¨
dy
Gi gvb KZ n‡e?
dx
At, x = , f(x) has a maximum value 8 2
6 A. B. C. 0
3 3
1 1 3
and that is = f
6 = 2 sin 6 + cos 2 6 = 2 2 + 2 = 2 D.
3
E.
3
15. †K›`ª ( 3, 2) I 2 e¨vmva© wewkó e„‡Ëi †h Rb¨ ( 4, 3) we›`y‡Z 2 2
1
mgwØLwÐZ n‡q‡Q Zvi mgvšÍivj ¯úk©‡Ki mgxKiY †KvbwU? SA Why x3 + siny = x
3
. 1 + 1. = 3 [∵ x = 1; y = 0]
C (3, 2) 1 dy dy 1 8
=3 =
S D Why E
D ( 4, 3)
F 3 dx dx 3 3
1
A B 19. hw` y = Acos3x + B sin3x + x sin3x nq, Zvn‡j bx‡Pi †Kvb DËiwU mwVK?
2
2+3
mCD = =1 A. y2 + 9y1 = 3cos3x B. y2 9y1 = 3cos3x
3+4 3
R¨v Gi Xvj, MEF = 1 [∵ ci¯úi `ywU j¤^ †iLvi Xv‡ji ¸Ydj = 1] C. y2 + 9y = cos3x
2
D. y2 + 9y = 3cos3x
x2 1 1
20. x = 1 Gi Rb¨ dx Gi gvb n‡j, †hvMRxKiY aªæeK c Gi
Area = 2 (y1 y2) dx = 2
1 + x6 12 ( 1 x2 1 x) dx
0 0
gvb KZ? 3 1
x 1 x 1 1
2
2
=2 + sin x + (1 x)2
A. B. 0 C.
1 2 2 3 0
12 3
1 2 2
= 2 sin1 (1) = 2 . = 2 eM© GKK
1 2
D. E. 1 2 3 2 2 3 4 3
12
2 2 3
x 6 dx = 1 3x dx3 2 = 1 d(x )3 2 23. 2x + i (x2 1) Gi eM©g~j †KvbwU?
SB Why
1+x 3 1 + (x ) 3 1 + (x ) 1 1
A. {(x + 1) + i (x 1)} B. {(x 1) + i (x + 1)}
1 1 3 2 2
= tan (x ) + c 1
3 C. 2 {(x + 1) + i(x 1)} D. {(x + 1)u + i(x 1)}
1 3
GLb, x = 1 n‡j, 3 tan1 (1) + c = 12 1
E. {(x 1) + i (x + 1)}
1 3
. +c=
34 12 S A Why z = 2x + i (x2 1)
1
+c= c=0 z= { |z| + Re(z) + i |z| Re (z)}
12 12 2
0 (2x)2 + (x2 1)2 = (x2 1)2 + 4(x2)
|z| =
21. tan + x dx Gi gvb KZ? = (x2 + 1)2 = x2 + 1
4 |z| + Re (z) = x + 1 + 2x = (x + 1)2
2
4
Ges |z| Re (z) = x2 + 1 2x = (x 1)2
B. ln C. ln
1 1 1 1
A. 2 ln (2) 1
2 2 4 2 z = { (x + 1)2 + i (x 1)2}
2
1
D. ln (2) E. None 1
2 = {(x + 1) + i (x 1)}
2
0
24. 27x2 + 6x (P + 2) = 0 mgxKi‡Yi GKwU g~j AciwUi e‡M©i mgvb
S E Why tan 4 + x dx
n‡j, P Gi gvbmg~n KZ?
4 A. 1 or 6 B. 1 or 6 C. 1 or 6
0 ut, D. 1 or 6 E. 6 or 6
1 + tanx
= dx
(cos x sinx) = z S A Wh y 27x2 + 6x (P + 2) = 0 ; & 2
1 tanx (sinx + cosx) dx = dx 6 2
4 + 2 = = 9 + 92 = 2
27 3
0 x 0
cosx + sinx 4
92 + 9 + 2 = 0 = ,
1 2
= dx 3 3
cosx sinx z 2 1
4 Ges . 2 = 3 = 27
(P + 2)
1
=
1 1 1 1 1 (P + 2)
dz = [lnz] 2 = ln2 GLb, = 3 n‡j, 27 = 27
2 z 2
22. x2 + y2 = 1 Ges y2 = 1 x eµ‡iLv `ywU Øviv Ave× †ÿ‡Îi †ÿÎdj P+2=1 P=1
KZ? 2 8 (P + 2)
Avevi, = 3 n‡j, 27 = 27
2 2 2
A. B. + C. 2 P + 2 = 8 P = 6 P = 1, 6
4 3 4 3 4 3
1 2 1
D. 4 E. 2 + 25. †Kvb wØNvZ mgxKi‡Yi GKwU g~j
2 +i
n‡j Dnvi mgxKiY †KvbwU n‡e?
2 3 4 3
A. 2x2 4x + 5 = 0 B. 5x2 4x + 1 = 0
S C Why y2 = 1 x = (x 1) Y
C. 4x 5x + 1 = 0
2
D. 5x2 + 4x 1 = 0
x2 + 1 x = 1 E. 5x 7x + 2 = 0
2
x (x 1) = 0 X X 1 2i
x = 0, 1
O
x2 + y2 = 1
S B Why x = 2 + i = 4 + 1
y = 1, 0 y2 = 1 x 5x = 2 i (5x 2)2 = ( i)2
Y 25x2 20x + 4 = i2 = 1 5x2 4x + 1 = 0
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
26 cvV¨eB‡K mnR Kivi cÖqvm
© Medistry Avm‡c± wmwiR
A = c
a b
d g¨vwUª· Gi AbyeÜx g¨vwUª· ev adjoint of A/Adj (A)
= cÖvBgvwi K‡Y©i Dcv`vb¸‡jvi ¯’vb cwieZ©b Ges †m‡KÛvwi K‡Y©i Dcv`vb¸‡jvi wPý cwieZ©b Ki‡j hv cvIqv hvq ZvB Adjoint
–b
Adjoint of A = –c
d
a
A g¨vwUª‡·i wecixZ ev Inverse g¨vwUª· =
1 1 d –b
ad – bc –c a
Adj (A) =
Det (A)
Note: mKj g¨vwUª‡·i wecixZ g¨vwUª· _v‡K bv| Inverse g¨vwUª· _vKvi kZ© `ywU:
(i) g¨vwUª·wU Aek¨B eM© g¨vwUª· n‡Z n‡e| (ii) g¨vwUª·wUi wbY©vq‡Ki gvb k~b¨ nIqv hv‡e bv|
wecixZ g¨vwUª‡·i •ewkó¨: (i) (A1)1 = A (ii) (AB)1 (iii) (AT)1 = (A1)T (iv) (BA) A1 = B (AA1) = B. (v) I1 = In
(vi) AB = C n‡j A = CB1 Ges B = A1 C.
d b
a 0 0 1/a 0 0
a b 1
ad bc c a Gi wecixZ g¨vwUª· 0 1/b 0
[MCQ Gi Rb¨: c d Gi wecix‡Z g¨vwUª· ; 0 b 0
0 0 c 0 0 1/c
wbY©vq‡Ki gvb wbY©q
wbY©vq‡Ki gvb: †Kvb wbY©vq‡Ki †h †Kvb mvwi ev Kjv‡gi Gi Dcv`vbmg~n I Zv‡`i wbR wbR mnivwki ¸Yd‡ji mgwóB wbY©vq‡Ki gvb|
a1 b1 c1
a2 b2 c2 wbY©vq‡Ki a1, a2, a3 Gi mn¸YK h_vµ‡g A1, A2, A3 n‡j wbY©vq‡Ki gvb n‡e
a3 b 3 c3
= a1A1 + a2A2 + a3A3 = a1
b2 c2 b1 c1 b1 c1
b3 c3+ a2 – b3 c3+ a3b2 c2
Abyivwk I mn¸YK wbY©q msµvšÍ
Abyivwk:
FORMULA Step-01: †h ivwk ev msL¨vi Abyivwk †ei Ki‡Z ej‡e wVK †mB ivwk eivei Row Ges Column ev` `vI|
Step-02: evwK Dcv`vb ¸‡jv w`‡q wbY©vqK MVb Ki| †mwUB Abyivwk|
Step-03: gvb ‡ei Ki‡Z ej‡j mvaviY wbq‡g wbY©vq‡Ki gvb †ei Ki‡Z n‡e|
a1 b1 c1 Magic!!!
mn¸YK: a2 b2 c2 Gi b3 Gi mn¸YK KZ?
a3 b3 c3 mn¸YK = (–1) mvwi + Kjvg Abyivwk
Finix Tecnique: mn¸YK = wPý Abyivwk
Step-1: Abyivwk †ei Kivi c×wZ Aej¤^b K‡i cÖ_‡g Abyivwk †ei Ki|
Step-2: Abyivwk mvg‡b (– 1) R + C m~Î e¨envi K‡i h_vh_ wPý emvI| †mwUB mn¸YK |
Shortcut Soln 1 1
3 2 a c1 a1 c1
a2 c2 = –a2 c2
a1 a2 a3
Shortcut Tricks. b1 b2 b3 mn¸YK wbY©q Gi e· Gi wfZi wPwýZ Dcv`vb ¸‡jvi mvg‡b (+) Ges evwK Dcv`vb ¸‡jvi mvg‡b (–) em‡e|
c1 c2 c3
Z…Zxq Aa¨vq: mij‡iLv
x A‡¶i mgvšÍivj ev y-A‡ÿi Dci j¤^ †iLvi mgxKiY, y = b y A‡¶i mgvšÍivj ev x-A‡ÿi Dci j¤^ †iLvi mgxKiY, x = a
x A‡ÿi mgxKib: y = 0 Y A‡ÿi mgxKib: x = 0
y Aÿ n‡Z †Qw`Z Ask abvZ¥K n‡j †iLvwU DaŸ©Mvgx Ges FYvZ¥K n‡j †iLvwU wb¤œMvgx ‡KvwU؇qi AšÍi
‡Kvb †iLvi Xvj m = f~R؇qi AšÍi = tan
x-Gi mnM y Gi mnM
Kvb mij‡iLv ax + by + c = 0 Gi Xvj, m = ax + by + c = 0 †iLvi j¤^ †iLvi Xvj =
y-Gi mnM x Gi mnM
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH GKb‡Ri cÖ‡qvRbxq m~Îvejx
© Medistry 27
x x
P(0, y) Gi †¶‡Î: = –1y –1y
2 P( x, y) Gi †¶‡Î: = + tan = – + tan
P(–x, 0) Gi †¶‡Î: = x x
–1y –1y
P(x, y) Gi †¶‡Î: = 2 – tan or – tan
P(0, –y) Gi †¶‡Î: = –
2 x x
`~iZ¡ m~Î
Kv‡Z©mxq ¯’vbv‡¼ P(x1, y1) I Q(x2, y2) `ywU we›`y n‡j D³ we›`y؇qi ga¨eZx© `~iZ¡, PQ = x1 x 2 2 y1 y 2 2 GKK
†cvjvi ¯’vbv‡¼ P(r1, 1) I Q(r2, 2) `ywU we›`y n‡j D³ we›`y؇qi ga¨eZ©x `~iZ¡, PQ r12 r2 2 2r1r2 cos(1 2 ) GKK
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
28 cvV¨eB‡K mnR Kivi cÖqvm
© Medistry Avm‡c± wmwiR
mij‡iLvi mgxKiY
GKwU mij‡iLvi Xvj m Ges y A‡ÿi †Q`K Ask c n‡j Zvi mgxKiY n‡e y = mx + c
‡bvU: c = 0 n‡j, y = mx, hv g~jwe›`y w`‡q AwεgKvix †iLvi mvaviY mgxKiY wb‡`©k K‡i|
GKwU ‡iLvi Xvj m Ges †iLvwU (x1 , y1) we›`yMvgx n‡j, †iLvwUi mgxKiY n‡e y y1 = (x x1)
x x1 y y1
(x1, y1) Ges (x2, y2) we›`yMvgx †iLvi mgxKiY x =
1 x2 y1 y2
xy
†Q`K AvKvi: x Aÿ Ges y Aÿ n‡Z h_vµ‡g a Ges b Ask †Q`Kvix †iLvi mgxKiY =1
ab
x y
+ = 1 ‡iLvvwU x Aÿ‡K A (a, 0) we›`y‡Z Ges y Aÿ‡K B (0 , b) we›`y‡Z †Q` K‡i|
a b
1 1
AB = OA + OB = a + b Ges OAB = |OA OB| eM© GKK |ab| eM© GKK|
2 2 2 2
2 2
AÿØq Øviv + = 1 †iLvwUi †Q` As‡ki ga¨we›`yi ¯’vbv¼ .
x y a b
a b 2 2
j¤^ AvKvi mgxKiY: g~jwe›`y n‡Z ‡Kv‡bv mij‡iLvi Dci Aw¼Z j‡¤^i •`N¨© p Ges j¤^wU x A‡ÿi
abvZ¥K w`‡Ki mv‡_ †KvY Drcbœ Ki‡j, †iLvwUi mgxKiY n‡e x cos + y sin = P.
†iLv؇qi ga¨eZ©x †Kv‡Yi gvb wbY©q
m –m a b –a b
`yBwU †iLvi a1x+b1y+c1=0 I a2x+b2y+c2=0 Gi ga¨eZx© †KvY n‡j, tan = 1+m 1 2
=
2 1 1 2
1m2 a1a2+b1b2
Note: mij‡iLvi Xvj tan ¯’yj‡KvY n‡j (–)ve Ges m~²‡KvY n‡j (+)ve
we›`yi mv‡c‡¶ we›`yi cÖwZwe¤^
mv‡c¶ we›`ywU cÖ`Ë we›`y I cÖwZwe¤^ we›`yi ga¨we›`y nq|
x x2 y y2
†hgb- (x1, y1) we›`yi mv‡c‡¶ (x2, y2) we›`yi cÖwZwe¤^ (x,y) n‡j,= x1 Ges = y1
2 2
A‡ÿi mv‡c‡ÿ cÖwZwe¤^ (i) x A‡ÿi mv‡c‡ÿ (x, –y) (ii) y A‡ÿi mv‡c‡ÿ (–x, y)
ci¯úi mgvšÍvivj Ges j¤^ mij‡iLv ؇qi Xvj
`yBwU mij‡iLv a1x + b1y + c1 = 0 Ges a2x + b2y + c2 = 0 ci¯úi mgvšÍivj n‡j Zv‡`i XvjØq mgvb n‡e A_©vr m1= m2 A_ev †iLv؇qi mgvšÍivj
a b
n‡j a1 = b1 Ges ci¯úi j¤^ n‡j Xvj؇qi ¸bdj = –1 A_©vr m1 × m2 = –1 A_ev a1a2 + b1b2 = 0
2 2
a1x + b1y + c1= 0 Ges a2x + b2y + c2 = 0 †iLv؇qi AšÍf©~³ (i) a1a2 + b1b2 > 0 n‡j, (+) wPý wb‡q ¯’~j‡KvY Ges () wPý wb‡q
†KvY mg~‡ni mgwØLÛK †iLvmgy‡ni mgxKiY, m~²‡Kv‡Yi mgwØLÛ‡Ki mgxKiY cvIqv hv‡e|
a 1 x b 1 y c1 a 2 x b2 y c2 (ii) a1a2 + b1b2 < 0 n‡j, (+) wPý wb‡q m~²‡KvY Ges () wPý wb‡q
a 1 b1
2 2
a 2 b2
2 2
¯’~j‡Kv‡Yi mgwØLÛ‡Ki mgxKiY cvIqv hv‡e
c
ax + by + c = 0 Øviv x- A‡ÿi †Q`vsk =
a
y A‡ÿi †Q`vsk = c/b; Aÿ؇qi ga¨eZ©x LwÛZ
2
2 2 c
Ask = (c/a) + (c/b) ; Aÿ؇qi Øviv MwVZ wÎfz‡Ri †ÿÎdj =
2|ab|
x y
GKwU †iLvi Aÿ؇qi ga¨eZ©x Ask (, ) we›`y‡Z mgwØLwÛZ n‡j Zvi mgxKiY, + =1
2 2
x y a
g~jwe›`y n‡Z †Kvb †iLvi Dci Aw¼Z j¤^ x A‡ÿi abvZ¥K w`‡Ki mv‡_ †KvY Drcbœ Ki‡j Zvi mgxKiY: a + b = 1; †hLv‡b tan = b
a1x + b1y + c1 = 0 .........(i)
a2x + b2y + c2 = 0 .........(ii)
a3x + b3y + c3 = 0 .........(i) †iLv wZbwU Øviv MwVZ wÎfz‡Ri †ÿÎdj
{c (a b3 – a3b2) – c2(a1b3 – a3b1) + c3(a1b2 – a2b1)}2
= 1 22|(a
2b3 – a3b2)(a1b3 – a3b1)(a1b2 – a2b1)|
a1x + b1y + c1 a1b3 – a3b1 a1x + b1y + c1 a1a3 – b1b3
(1) I (2) †iLvi †Q`we›`yMvgx Ges (3) Gi mgvßivj I j¤^ Giƒc †iLvi mgxKiY h_vµ‡g = ; =
a2x + b2y + c2 a3b3 – a3b2 a2x + b2y + c2 a2a3 – b2b2
a1y + b1y + c1 = 0 I a2x + b2y + c2 = 0
|c a 2 + b 2 – c a 2 + b 2|
mgvšÍivj †iLv؇qi ga¨eZ©x `~iZ¡ = 1 2 2 2 2 2 2 1 2 1
a1 + b 1 a2 + b 1
f(x) ax + by + c = 0 †iLv g(x) a1x + b1y + c1 = 0 I AB ‡iLv؇qi AšÍf~©³ †KvY¸‡jvi GKwU mgwØLÛK n‡j AB Gi mgxKiY (a2 + b2)
g(x) – 2(aa1 + bb1) f(x) = 0
A(x1,y1), B(x2,y2) we›`y؇qi ms‡hvM †iLvsk‡K ax + by + c = 0 mij‡iLvwU |ax1 + by1 + c| : |ax2 + by2 + c| Abycv‡Z wef³ K‡i|
†h †Kv‡bv wÎfz‡Ri j¤^‡K›`ª, fi‡K›`ª Ges cwi‡K›`ª h_vµ‡g A, B, C n‡j A, B, C mg‡iL Ges AB : BC = 2 : 1
PZz_© Aa¨vq: e„Ë
MvwYwZK mgm¨vmg~n mgvav‡bi Rb¨ cÖ‡qvRbxq m~Î I cÖwµqvmg~n
x2 + y2 + 2gx + 2fy + c = 0 e„‡Ëi Rb¨
(i ) †K›`ª (–g, –f) (vi) x-A¶‡K ¯úk© Ki‡j, c = g2
(ix) y-A¶ †_‡K †Qw`Z R¨vÕi •`N©¨ = 2 f 2 c (ii) e¨vmva© = g 2 f 2 c
(vii) y-A¶‡K ¯úk© Ki‡j, c = f2 (x) x, y Dfq A¶‡K ¯úk© Ki‡j, c = g2 = f2
(iii) †K›`ª y-A‡¶i Dci n‡j g = 0 (viii) x-A¶ †_‡K †Qw`Z R¨vÕi •`N©¨ = 2 g 2 c
(x) Area = r2 (iv) †K›`ª x-A‡¶i Dci n‡j f = 0
†K›`ª (h, k) wewkó GKwU e„Ë x ev y A¶‡K ¯úk© Ki‡j Zvi mgxKiY
i. e¨vmva© = |e„‡Ëi †K‡›`ªi †KvwU| = k
x A¶‡K ¯úk© Ki‡j
ii. mgxKiY, (x – h)2 + (y – k)2 = k2; †hLv‡b, k = e¨vmva
i. e¨vmva© = |e„‡Ëi †K‡›`ªi fyR| = h
y A¶‡K ¯úk© Ki‡j
ii. mgxKiY, (x – h)2 + (y – k)2 = h2; †hLv‡b, h = e¨vmva©
wbw`©ó †K›`ª Ges Aci †Kvb we›`yMvgx I †Kvb e„‡Ëi mv‡_ GK‡Kw›`ªK Ges †Kvb wbw`©ó we›`yMvgx e„‡Ëi mgxKiY wbY©q
wbw`©ó †K›`ª Ges Aci †Kvb Step-1: e„Ë †Kvb wbw`©ó we›`yMvgx n‡j †K›`ª †_‡K D³ we›`yi `yiZ¡ wb‡Y©q Ki‡Z n‡e hv e„‡Ëi e¨vmva© mgvb|
we›`yMvgx e„‡Ëi mgxKiY wbY©q Step-2: †K›`ª I e¨vmva© †_‡K mgxKiY wbY©‡qi m~Î cÖ‡qvM Ki‡Z n‡e|
†Kvb e„‡Ëi mv‡_ GK‡Kw›`ªK Step-1: cÖ`Ë e„‡Ëi †K›`ª wb‡Y©q Ki‡Z n‡e, H †K›`ªB n‡e wb‡Y©q e„‡Ëi †K›`ª|
Ges †Kvb wbw`©ó we›`yMvgx e„‡Ëi Step-2: D³ †K›`ª Ges cÖ`Ë we›`yi `yiZ¡ wbY©q Ki‡Z n‡e, D³ `yiZ¡B n‡e wb‡Y©q e„‡Ëi e¨vmva©|
mgxKiY Step-3: †K›`ª I e¨vmva© †_‡K mgxKiY wbY©‡qi m~Î cÖ‡qvM Ki‡Z n‡e|
GKwU mij‡iLv GKwU e„ˇK ¯ck© Kivi kZ©
i. e„‡Ëi e¨vm¨va© = †K›`ª †_‡K †iLvi Dci AswKZ j¤^`~iZ¡
ax + by + c = 0 mij‡iLv x2 +y2 + 2gx + 2fy + c = 0 e„ˇK ¯ck© Kivi kZ©:
ag bf c
g2 f 2 c
a 2 b2
ii. y = mx + c †iLvwU x2 + y2 = a2 e„‡Ëi ¯úk©K n‡j, c = a 1 m 2
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
30 cvV¨eB‡K mnR Kivi cÖqvm
© Medistry Avm‡c± wmwiR
¯ck©‡Ki •`N¨©
a2
2 2
i. (x1, y1) we›`y n‡Z x2 + y2 = a2 e„‡Ë AswKZ x1 y1
ii. (x1, y1) we›`y n‡Z x2 + y2 + 2gx + 2fy + c = 0 e„‡Ë AswKZ ¯ck©‡Ki •`N¨©,
x1 y1 2gx 1 2fy 1 c
2 2
PT =
iii. g~jwe›`y (0, 0) n‡Z †Kvb e„‡Ëi ¯ck©‡Ki •`N¨© = aªæeK
e„‡Ëi mv‡c‡¶ †Kvb we›`yi Ae¯’vb wbY©q
we›`yi Ae¯’vb (x1, y1) we›`ywU x2 + y2 + 2gx + 2fy + c = 0 e„‡Ëi (x1, y1) we›`ywU x2 + y2 = a2 e„‡Ëi
evB‡i n‡j x12 y12 2gx1 2fy1 c > 0 x12 + y12 – a2 Gi gvb > 0
e„‡Ëi (cwiwai) Dci n‡j x12 y12 2gx1 2fy1 c =0 x12 + y12 – a2 = 0
wfZ‡i n‡j x12 y12 2gx1 2fy1 c < 0 x12 + y12 – a2 < 0
R¨v Gi •`N©¨
e„‡Ëi R¨v KZ…©K †K‡›`ª Drcbœ †KvY, = 2 sin–1 R¨v Gi ‣`N¨© = 2 r 2 d 2
e¨vm
mßg Aa¨vq: mshy³ I †hŠwMK †Kv‡Yi w·KvYwgwZK AbycvZ
MvwYwZK mgm¨vmg~n mgvav‡bi Rb¨ cÖ‡qvRbxq m~Î I cÖwµqvmg~n:
sin/cos Gi †h․wMK †Kv‡Yi m~Î
C D sin C D
sin (A + B) = sinA cosB + cosA sinB sinC sinD = 2cos sin2A = 2sinA cosA
2 2
– sinA
cos(A B) = cosA cosB + CD CD
cosC + cosD = 2cos cos cos2A = cos2A sin2A
sinB 2 2
CD DC cos2A = 1 2 sin2A ; 2 sin2A = 1
2sinA cosB = sin(A+B) + sin(AB) cosCcosD = 2sin sin
2 2 cos2A
2cosA sinB = sin(A+B) sin (AB) sin (A + B) sin(AB) = sin2A sin2B = cos2B cos2Acos2A = 2cos2A 1; 2cos2A = 1 + cos2A
2 tan A
2cosA cosB = cos(A+B) + cos(AB) cos(A + B)cos(A B) = cos2A sin2B =cos2B sin2A sin2A =
1 tan 2 A
1 1 tan 2 A
2sinA sinB = cos (AB) cos (A+B) sin3A = 3sinA4sin3A sin3A= (3sinAsin3A) cos2A =
4 1 tan 2 A
cos3A= 4cos A 3cosA cos A
3 3
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
32 cvV¨eB‡K mnR Kivi cÖqvm
© Medistry Avm‡c± wmwiR
ASPECT SHORTCUT TRICKS & TIPS MODEL EXAMPLE
lim cos ax – cos bx a2 – b2 lim cos 7x – cos 9x 92 – 72 32 1
x0 = x0 cos 3x– cos 5x 52 – 32 = 13 = 2
=
cos cx – cos dx c2 – d2
2 2
lim 1– cos ax = a 2
x0 lim 1– cos2x = 22 = 4
1 – cos bx b x0 1 – cos3x 3 9
2 2
lim 1– cos2 ax = a
x0 lim 1– cos 7x
=
7
=
49
bx 2b x0 3x2 2.3 6
exRMwYZxq Amxg wjwgU x n‡j
fMœvs‡ki ni Ges j‡ei m‡ev©”P Power mgvb lim a x a x GB AvKv‡i _vK‡j
fMœvs‡ki j‡ei m‡e©v”P Power < n‡ii m‡e©v”P PowerAns:0 x
j‡ei m‡e©v”P Power hy³ x Gi mnM a x a x
fMœvs‡ki j‡ei m‡e©v”P Power > n‡ii m‡e©v”P PowerAns: Ans:
n‡ii m‡e©v”P Power hy³ x Gi mnM Ans: ax Gi mn‡Mi AbycvZ
eM©g~j msµvšÍ dvskb
lim a+x– a–x GB AvKv‡ii cÖ‡kœi Ans: 1 lim a+bx – cdx
GB AvKv‡ii cÖ‡kœi Ans:
b∓d
x0 x a x0 x 2 a
evB‡bvwgqvj AvKvi msµvšÍ
xn – an
) = lim 1 + bx = eab
b b a bx a x
eax.x = eab lim (1+ lim AvKv‡i _vK‡j Ans. = nan–1 nq|
lim (1+ax) =
x0
x
x x x xa xa x – a
d d d 1 d 1 1 d
(e x ) e x (log e x) or, (ln x) (log x) log e
a a (a x ) a x log e a a x ln a
dx dx dx x dx x x ln a dx
d d d d
(sin x) cos x (cos x) sin x (tan x ) sec2 x (secx) secx tan x
dx dx dx dx
1
(sin 1 x ) (cos 1 x )
d d d 1 d
(cot x) cos ec2 x (cos ecx) cos ecxcot x
dx dx 1 x2
dx dx 1 x2
d (tan-1x) = 1 d
d (cot-1x) = 1 (sec1 x)
1 d 1
1 x2 cos ec1x
dx
dx 1 x2 dx x x21 dx x x2 1
d ( U V ) dU dV d ( UV ) U dV V dU d dU dV dW V dU U dV
dx dx dx dx dx dx (UVW) = VW + UW + UV d U dx dx
dx dx dx dx
dx V V2
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH GKb‡Ri cÖ‡qvRbxq m~Îvejx
© Medistry 33
a dx c a 0, a 1
x x (u v)dx udx v dx
e dx e c
x dx ln x c
1 x ax
lna
1 x 1
dx dx
cosecxdx ln | tan 2 | c = ln (cosecx + cotx) + c
x
sin c sin xc
2 2 a 2
a x 1 x
ax xa ax
a 2 x 2 2a ln a x c
dx 1
x 2 a 2 2a ln x a c 1 x
dx 1
ax
dx a sin
a
a2 x2 c
ln x x a c ln x x a c ax
dx dx 1 x
2 2 2 2
2 2 dx a sin a2 x2 c
x a 2
x a
2 ax a
dx 1 1 mx dx 1 mx
a 2 (mx) 2 am tan a c a 2 ( mx ) 2
m
sin 1
a
c
dx 1 mx a + c dx 1 a mx
(mx) 2
a2
2am
log
mx a a 2
(mx ) 2
2am
log
a mx
c
mLwÛZ dvskb
e {f(x) + f(x)}dx = e {f(x)}+c e
x x ax
{af(x) + f(x)}dx = eaxf(x)+c
x a2 x 2 2 a2
x + a dx = 2 x + a + 2 ln |x + x + a | + c ; [awi, x = a, tan]
x a dx = 2 x a 2 ln |x + x a | + c ; [awi, x = a, tan]
2 2 2 2 2 2 2 2 2 2
x a2 x2 a2 1 x x 2 a 1 x
2
x a dx =
2 2
2
+ sin
2 a
+c
x a dx = 2 a x + 2 sin a + c
2 2 2
uvdx = u vdx dx (u) vdx dx {d } eax {a. f(x) + f (x)} dx = eax. f(x) + c
eax eax
eax cosbx dx = (asinbx bcosbx) + c eax cosbx dx = (acosbx + bcosbx) + c
a + b2
2
a + b 2
2
2 dx 2
tan1
2ax + b 1 2ax + b D + c, hLb D > 0, a > 0
ln
ax + bx + c
, (a 0, D = b2 4ac) = + c, hLb D < 0, a > 0 =
|D| |D| |D| 2ax + b + D
D c~Y© eM© n‡j (ax b)m dx AvKv‡i cÖKvk K‡i mgvKjb Ki‡Z n‡e|
n
nxn 1 n(n 1) xn 2 n(n 1) (n 2)xn 3
x e dx = e
ax x
n ax
+ + ........ x hy³ c` ch©šÍ
a a2 a3 a4
b
f(a + b x)dx b
ba 8
10 xdx 82
ev
f(x)dx
= = =3
a f(x) + f(a + b x) a f(x) + f(a + b x) 2 2 x + 10 x 2
b
f(x)dx = f(a + b x) dx
b
(f x)dx
3
xdx 2
3
2=
a a 2 2 + 3 (5 x) 2 2 + 3x
b c f(x c)dx = h f(x)dx (x 1)dx 2 = xdx 2
4 3
ac a 2 4 + (x 1) 1 4 + x
b nb 3 12
f(nx)dx = 1 f(x)dx
4xdx 2 = 1 xdx 2
a n nn 2 3 + (4x) 4 8 3 + x
(x a) (b x) dx = (b a)2 , b > a
b b
dx
= , b > a
a 8 a (x a) (b x)
n–1 n–3 n–5 3.1
/2sinn xdx = /2cosn xdx =
. . ....... . (n = †Rvo c~Y©msL¨v n‡e|)
0 0 n n–2 n–4 4.2 2
/2 /2 n – 1 n – 3 n – 5 3
0 sin xdx = 0 cos xdx =
n n
. . ..... (n = we‡Rvo c~Y©msL¨v n‡e|)
n n–2 n–4 2
MvwYwZK mgm¨vmg~n mgvav‡bi Rb¨ cÖ‡qvRbxq m~Î I cÖwµqvmg~n
cÖwZ¯’vcb c×wZ:
AsKwU cix¶vi n‡j wKfv‡e wPb‡e gy‡L gy‡L Kivi Technique
As‡Ki `ywU Ask †`Iqv _vK‡e| d
Step-01: myweavRbK Ask‡K Z ai | g‡b g‡b Ki|
Ask `ywUi †h †Kvb GKwU‡K ev Gi †Kvb dx
d Step-02: †`L AsKwU‡Z Complete result Av‡Q wKbv| Complete result _vK‡j Zv AsK n‡Z ev`
Ask we‡kl‡K dx Ki‡j Ab¨ AskwU ûeû
`vI| bv _vK‡j Operator Gi ‡fZ‡i-evB‡i wPý ev msL¨v Input Output K‡i Complete
wKsevmvgvb¨ cwiewZ©Z iƒ‡c wn‡m‡e H result evwb‡q bvI (Aek¨B cÖkœc‡Î As‡Ki Wv‡Ki g‡a¨B), Zvici Zv ev` `vI|
As‡K ¸b Ae¯’vq _vK‡e| Step-03: AZtci Zzwg †hfv‡e Integration Gi cÖv_wgK m~Î wk‡LQ †mfv‡e m~Î †dj |
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH GKb‡Ri cÖ‡qvRbxq m~Îvejx
© Medistry 35
lô Aa¨vq: KwYK
Kwb‡Ki mvaviY mgxKiY: x2 + y2 + 2gx + 2fy + 2hxy + c = 0
(ab – h2) = 1 n‡j KwbKwU cive„Ë
0 < (ab – h2) < 1 n‡j KwbKwU Dce„Ë
(ab – h2) > 1 n‡j KwbKwU Awae„Ë
a = b, h = 0 n‡j e„Ë
Dr‡Kw›`ªKZv e n‡j, e = 1 n‡j KwbKwU cive„Ë
0 < e < 1 n‡j KwbKwU Dce„Ë
e > 1 n‡j KwbKwU Awae„Ë
e = 0 n‡j e„Ë
e = n‡j mij‡iLv
‡dvKvm (, ) wbqvgK‡iLv ax + by + c = 0, Dr‡Kw›`ªKZv e n‡j Kwb‡Ki mgxKiY,
(ax + by + c)2
(x – )2 + (x – )2 = e2
a2 + b 2
cive„Ë
†Kvb wØNvZ mgxKi‡Yi wØNvZ m¤^wjZ c`¸‡jv c~Y©eM© m„wó Ki‡j GwU GKwU cive„Ë|
b2 – 4ac b
x A‡ÿi mgvšÍivj Aÿ wewkó cive„‡Ëi mgxKiY, x = ay1 + by + c, kxl© –
1
– Ges Gi Dc‡Kw›`ªK j¤^ = |a|
4a 2a
b b2 – 4ac
y A‡ÿi mgvšÍivj Aÿ wewkó cive„‡Ëi mgxKiY, y = ax2 + bx + c, kxl© – –
1
2a 4a
Ges Gi Dc‡Kw›`ªK j¤^ = |a|
y2 = 4ax cive„‡Ëi (x1,y1) we›`y‡Z ¯úk©‡Ki mgxKiY, yy1 = 2a (x + x1)
Ges ¯úk©we›`yi ¯’vbv¼ – m2 – m
a a 2a
y = mx + c ‡iLvwU y2 = 4ax cive„ˇK ¯úk© Ki‡j c =
m
y = mx + c ‡iLvwU x2 = 4ay cive„ˇK ¯úk© Ki‡j c = –am2 Ges ¯úk©we›`yi ¯’vbv¼ (2am, am2)
(x1, y1) we›`ywU y2 = 4ax cive„‡Ëi, evB‡i Ae¯’vb Ki‡j, y12 – 4ax1 > 0
Dc‡i Ae¯’vb Ki‡j, y12 – 4ax1 = 0
†fZ‡i Ae¯’vb Ki‡j, y12 – 4ax1 <0
{P(x,y)we›`y †_‡K Aÿ‡iLvi j¤^ `~iZ¡}2
= 4 |Dc‡Kw›`ªK j‡¤^i •`N©¨|
P(x,y) we›`y †_‡K kxl© we›`y‡Z ¯úk©‡Ki Dci j¤^ `~iZ¡
cive„‡Ëi AvKvi y2 = 4ax x2 = 4ay (y – )2 = 4a(x – ) (x – )2 = 4a(y – )
kxl©we›`y (0, 0) (0, 0) (, ) (, )
Dc‡K›`ª (a, 0) (0, a) (a + , ) (, a + )
wbqvgK †iLvi cv`we›`y (–a, 0) (0, –a) (–a + , ) (, – a + )
Aÿ‡iLvi mgxKiY y=0 x=0 y–=0 x–=0
wbqvgK †iLvi mgxKiY x+a=0 y+a=0 x–+a=0 y–+a=0
Dc‡Kw›`ªK j‡¤^i mgxKiY x=a y=a x – a y – a
kxl© ¯úk©‡Ki mgxKiY x=0 y=0 x–=0 y–=0
Dc‡Kw›`ªK j‡¤^i •`N¨© 4|a| 4|a| 4|a| 4|a|
Dc‡Kw›`ªK j‡¤^i cÖvšÍwe›`y (a 2a) ( 2a, a) (a + a + ) a + a +
(x, y) we›`yi Dc‡Kw›`ªK `~iZ¡ x+a y+a x–+a y–+a
Dce„Ë
(ax + by + c)2
†dvKvm (, ) wbqvgK‡iLv ax + by + c = 0 Ges Dr‡Kw›`ªKZv e n‡j, Dce„‡Ëi mgxKiY, (x – )2 + (y – )2 = e2 a2 + b 2
x2 y2 x12 y12
2 + 2 = 1 Dce„‡Ëi, evB‡i Ae¯’vb Ki‡j, 2 + 2 – 1 > 0
(x1, y1) we›`ywU
a b a b
x12 y12
Dc‡i Ae¯’vb Ki‡j, a2 + b2 – 1 = 0
x2 y2
‡fZ‡i Ae¯’vb Ki‡j, a12 + b12 – 1 < 0
a2 m b2
y = mx a2m2 + b2 †iLvwU m Gi mKj gv‡bi Rb¨ Dce„ˇK ( 2 2 2 2 2 2) we›`y‡Z ¯úk© Ki‡e|
a m +b a m +b
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
38 cvV¨eB‡K mnR Kivi cÖqvm
© Medistry Avm‡c± wmwiR
xx yy
(x1, y1) we›`y‡Z ¯úk©‡Ki mgxKiY, a21 + b21 = 1
x2 y2
y = mx + c ‡iLvwU + = 1 Dce„ˇK ¯úk© Ki‡j c2 = a2m2 + b2
a2 b 2
†h‡Kv‡bv we›`y‡Z Dc‡Kw›`ªK `~iZ¡Ø‡qi †hvMdj e„nr A‡ÿi mgvb|
Dce„‡Ëi mKj †K›`ªMvgx R¨v H we›`y‡Z mgwØLwÛZ nq|
P (x, y) we›`ywU Dce„‡Ëi Dci Aew¯’Z n‡j Gi civwgwZK ¯’vbv¼ (acos, bsin)
civwgwZK mgxKiY, x = acos, y = bsin
x y
GB Dce„‡Ëi Dci 1 we›`y‡Z ¯úk©‡Ki mgxKiY, a cos b cos 1 = 1
Ax2 + By2 + Cx + Dy + E = 0; [A, B, C, D, E Constant] Ges A B n‡j,
(x1, y1) we›`y‡Z ¯úk©‡Ki mgxKiY, Axx1 + Byy1 + C 2 1 + D 2 1 + E = 0
x+x y+y
a2 – b 2 b2 – a2 a2 – b 2 b 2 – a2
2a 2a2 2b 2b2 2a 2a2 2b 2b2
wbqvgK‡iLv؇qi `~iZ¡ = 2 = 2 2 = 2 = 2 2
e a – b2 e b –a e a – b2 e b –a
a b a b
wbqvgK‡iLv؇qi mgxKiY x= y= x–= y–=
e e e e
2 2 2 2
2b 2a 2b 2a
Dc‡Kw›`ªK j‡¤^i •`N¨©
a b a b
Dc‡Kw›`ªK j‡¤^i mgxKiY x = ae y = be x – = ae y – = be
‡ÿÎdj , ab , ab , ab , ab
a b a b
Dc‡K›`ª I Abyiƒc wbqvg‡Ki `~iZ¡ – ae – be – ae – be
e e e e
Awae„Ë
(x – h)2 (y – k)2
(h, k) ‡K›`ª wewkó Awae„‡Ëi mgxKiY, – =1
a2 b2
xx1 yy1
(x1, y1) we›`y‡Z ¯úk©‡Ki mgxKiY, 2 – 2 = 1
a b
civwgwZK ¯’vbv¼, (asec, btan)
civwgwZK mgxKiY, x = asec, y = btan
x 1 y 1 1
asec1, btan1 I (asec2, btan2) we›`yMvgx R¨v Gi mgxKiY, cos (1 – 2) – sin (1 – 2) = cos (1 + 2)
a 2 b 2 2
†Kvb kZ© D‡jøL bv _vK‡j a > b aiv nq| Z‡e †dvKv‡mi †KvwU w¯’i _vK‡j a > b Ges f~R w¯’i _vK‡j b > a aiv nq|
Awae„‡Ëi Dci †Kvb we›`y P(x,y) Dc‡K›`ªØq S, S n‡j |PS – PS| = 2a
x2 y2
y = mx + c †iLvwU 2 – 2 = 1 Awae„ˇK ¯úk© Ki‡e hw` c2 = a2m2 – b2 nq|
a b
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH GKb‡Ri cÖ‡qvRbxq m~Îvejx
© Medistry 39
Note: i) 0 n‡j, R max P Q ii) 180 n‡j, Rmin = PQ iii) α 90 n‡j, R 2 P 2 Q 2
iv) `yBwU e‡ji jwä (R) e„nËg ej (P) Gi mv‡_ †h †KvY Drcbœ K‡i, e„nËg ejwU‡K wظb Kivq hw` D³ †KvYwU A‡a©K n‡q hvq Z‡e P I Q Gi
ga¨eZx© †KvY = 120
v) `yBwU ej P I Q Gi jwä R n‡j Ges P I Q Gi ga¨eZx© †KvY n‡j,
GKwU ej AciwUi wظY Ges jwä j¤^ eivei wµqviZ n‡j, = 120
GKwU ej AciwUi wظY n‡j, = 120 `yBwU mgvb e‡ji jwä k~b¨ n‡j, = 180
jvwgi Dccv`¨ msµvšÍ
GK we›`y‡Z wfbœ †iLv eivei wµqviZ wZbwU GKZjxq ej mvg¨ve¯’vq _vK‡j, cÖ‡Z¨KwU e‡ji gvb Aci `yÕwU e‡ji AšÍf©y³ †Kv‡Yi mvB‡bi mgvbycvwZK|
cv‡ki wP‡Îi †¶‡Î, jvwgi Dccv`¨ Abymv‡i,
P Q R
sinYOZ sinZOX sinXOY
Y Q
O
X Z R P
2 2
Avevi, †h‡Kv‡bv e‡ji gvb Aci ej `ywUi jwäi gv‡bi mgvb n‡e| †hgb- Q = P + R + 2P Rcos;
P= Q2 + R2 + 2Q Rcos
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH GKb‡Ri cÖ‡qvRbxq m~Îvejx
© Medistry 41
SURVEY TABLE Kx coe? // †Kb coe? // †Kv_v n‡Z coe? // KZUzKz coe?
VVI For
MAKING DECISION [†h Kvi‡Y co‡e]
TOPICS MAGNETIC DECISION [hv co‡e] This Year
DU JU RU CU GST Engr. HSC Written MCQ
CONCEPT-01 g¨vwUª‡·i cÖKvi‡f` I gvb wbY©q msµvšÍ 40% 30% 60% 40% 50% 30% 60% -
CONCEPT-02 g¨vwUª‡·i •ewkó¨ [Properties of Matrics] 30% 40% 30% 50% 30% 20% 25%
CONCEPT-03 g¨vwUª‡·i gvÎv, †hvM, we‡qvM, ¸Y I mgZv 25% 60% 60% 40% 50% 20% 15%
CONCEPT-04 e¨wZµgx g¨vwUª· 90% 30% 60% 30% 30% 20% 30%
CONCEPT-05 AbyeÜx g¨vwU· Ges wecixZ g¨vwUª· 40% 30% 45% 40% 40% 40% 30%
DU. = Dhaka University, JU. = Jahangirnagar University, RU. = Rajshahi University,
CU = Chittagong University, GST = General, Science & Technology, Engr. = Engineering.
g¨vwUª·: msL¨v ev exRMwYZxq ivwki AvqvZvKvi ev eM©vKv‡i mvRv‡bv e¨e¯’vB n‡jv g¨vwUª·| g¨vwUª·‡K mvaviYZ [ ] ev ( ) Øviv cÖKvk Kiv nq|
a b c a b c
A= p q r ev p q r
x y z x y z
mvaviY AvKv‡ii g¨vwUª· (General Form of matrix)
a11 a12 a13
3 3 µ‡gi †h‡Kv‡bv g¨vwUª· A n‡j, A = [aij]3 3 = a21 a22 a23
a31 a32 a33
m msL¨K mvwi I n msL¨K Kjvgwewkó GKwU g¨vwUª· A Gi fzw³ Arthur Cayley
aij (i = 1, 2, ....., m; j = 1, 2 ......, n) n‡j, g¨vwUª·-Gi Avwe®‹viK
1850 wLª÷v‡ã James Joseph Sylvester
a11 a12 ... a1n a11 a12 ... a1n
cÖ_g g¨vwUª‡·i aviYv †`b| ZviB mnKg©x
a21 a22 ... a2n a21 a22 ... a2n
A= A = [aij]m n A_ev, A = A = (aij)m n Arthur Cayley wecixZ g¨vwUª‡·i aviYvmn
... ... ... .... ... ... ... ....
am1 am2 ... amn
am1 am2 ... amn g¨vwUª‡·i Zvrch© Zz‡j a‡ib Ges cÖ_g
we‡kølYg~jKfv‡e g¨vwUª‡· cÖKvk K‡ib|
Concept-01 g¨vwUª‡·i cÖKvi‡f` I gvb wbY©q msµvšÍ ¸iæZ¡:
01. mvwi g¨vwUª· (Row Matrix): †h g¨vwUª‡·i GKwU gvÎ mvwi _v‡K| †hgb- A = [a b c] hvi GKwU gvÎ mvwi i‡q‡Q| mvwi g¨vwUª‡·i mvaviY gvÎv = 1 n
a
02. Kjvg g¨vwUª· (Column Matrix): †h g¨vwUª‡·i GKwU Kjvg _v‡K| †hgb- b hvi GKwU gvÎ Kjvg i‡q‡Q| Kjvg g¨vwUª‡·i mvaviY gvÎv = n 1
c
03. eM© g¨vwUª· (Square Matrix): hLb mvwi msL¨v = Kjvg msL¨v| A_©vr [Ai j]mn g¨vwUª·wU eM© g¨vwUª· n‡j m = n n‡e|
a11 a12
†hgb- GKwU 2 2 µ‡gi ev 2 µ‡gi eM© g¨vwUª·
a21 a22
04. AvqZ g¨vwUª· (Rectangular Matrix): mvwii msL¨v Kjvg msL¨vi mgvb bv n‡j AvqZvKvi g¨vwUª· nq| A_©vr [Ai j]mn AvqZ g¨vwUª· n‡j m n n‡e|
1 2 3 1 2
Ex: (i) 4 5 6 , gvÎv = 2 3 ; mvwii msL¨v (2) Kjvg msL¨v (3)| (ii) 4 5, mvwi = 3wU, Kjvg = 2wU, mvwi Kjvg|
6 7
05. g~L¨ ev cÖavb KY© (Principal or main Matrix): [Ai j]nn µ‡gi eM© g¨vwUª· n‡j `ywU KY© cvIqv hv‡e| g¨vwUª‡·i cÖ_g mvwi I cÖ_g Kjv‡g †h Dcv`vb
_v‡K Zv‡K wb‡q †h KY© MwVZ nq ZvB g~L¨ KY© Ges Aci KY©wU †MŠY KY©| †hgbÑ
a11 b12 c13 †MŠY KY©
x21 y22 z23
p31 q32 r33
g~L¨ KY©
Note: g~L¨ K‡Y©i Dcv`vb ¸‡jvi †hvMdj‡K ‡Uªm (a + y + r) e‡j| g~L¨ K‡Y©i Dcv`vb ¸‡jvi ¸Ydj‡K g~L¨c` (ayr) e‡j|
†MŠY K‡Y©i Dcv`vb ¸‡jvi ¸Ydj‡K (pyc) †MŠYc` e‡j|
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
44 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
06. DaŸ© wÎfzRvKvi g¨vwUª· (Upper Triangular Matrix): †Kvb eM© g¨vwUª· A = [Ai j]nn Gi cÖavb K‡Y©i wb¤œ¯’ FocusKwi
jÿ¨ Point:
5 2 1 fwZ© cixÿv‡Z mivmwi msÁv Lye Kg
Dcv`vb ¸‡jv 0 n‡j, (A_©vr Ai j = 0 hLb i > j) Zv‡K DaŸ© wÎfzRvKvi g¨vwUª· e‡j| †hgbÑ U = 0 4 –3
0 0 8 Av‡m| cixÿvi Av‡M G‡Zv cÖKvi‡f`
07. wb¤œ wÎfzRvKvi g¨vwUª· (Lower Traingular Matrix): †Kvb eM© g¨vwUª· A = [Ai j]nn Gi cÖavb K‡Y©i Dc‡ii g‡b ivLvI KwVb| GB Aby‡”Q‡`
2 0 0 Avgiv †`L‡ev cixÿv cÖkœ wKfv‡e nq
Dcv`vb¸‡jv 0 n‡j (A_©vr Ai j = 0 hLb i < j) Zv‡K wb¤œ wÎfzRvKvi g¨vwUª· e‡j| †hgbÑ L = 6 5 0 Ges mn‡R wKfv‡e Zv wiwfkb Ki‡Z
7 9 12 cvwi|
08. KY© g¨vwUª· (Diagonal Matrix): †Kvb eM© g¨vwUª· [Ai j]nn †K n µ‡gi KY© g¨vwUª· ejv n‡e hw` mvaviYZ msÁv wn‡m‡e KY©
a 0 0 g¨vwUª·, †¯‹jvi g¨vwUª·, A‡f`K
[Ai j = 0 hLb i j A_©vr cÖavb K‡Y©i Dcv`vb e¨ZxZ mKj Dcv`vb Ô0Õ n‡e| †hgbÑ A = 0 b 0 g¨vwUª· G‡m _v‡K|
0 0 c
a 0 0 a 0 0
09. †¯‹jvi g¨vwUª· (Scalar Matrix): †h KY© g¨vwUª‡·i Ak~b¨ Dcv`vb ¸‡jv mgvb| †hgbÑ A = 0 a 0 0 b 0 [KY© g¨vwUª·]
0 0 a 0 0 c
10. GKK ev A‡f`K g¨vwUª· (Unit or Identity Matrix): †Kvb eM© g¨vwUª· [Ai j]nn †K n µ‡gi GKK g¨vwUª· ejv
n‡e hw` Ai j = 0 hLb i j Ges |Ai j| = 1 hLb i = j nq| I Øviv cÖKvk Kiv nq| eM©/KY©/‡¯‹jvi n‡e| a 0 0
0 a 0 [†¯‹jvi g¨vwUª·]
1 0 1 0 0 0 0 a
†hgbÑ I2 = ; I3 = 0 1 0
0 1 0 0 1
1 0 0
11. k~b¨ g¨vwUª· (Zero or Null Matrix): †h g¨vwUª‡·i mKj Dcv`vb k~b¨| †hgb- A =
0 0 0 1 0 [A‡f`K g¨vwUª·]
0 0 0 0 1
2 i. KY© g¨vwUª‡·i a = b = c n‡j,
12. mgNvwZ g¨vwUª· (Idempotent Matrix): eM©vKvi †Kvb g¨vwUª· A †K mgNvwZ g¨vwUª· ejv n‡e hLb A = A n‡e|
Dnv †¯‹jvi|
†hgb: A =
2 1
n‡j, A2 = A.A =
2 1 2 1 2 1
= =A ii. KY© g¨vwUª‡·i a = b = c = 1
–2 –1 –2 –1 –2 –1 –2 –1 n‡j, Dnv A‡f`K g¨vwUª·|
n
13. k~b¨NvwZ g¨vwUª· (Nilpotant Matrix): GKwU eM© g¨vwUª· A †K k~b¨NvwZ g¨vwUª· ejv n‡e| hw` A = 0 nq iii. A‡f`K g¨vwUª‡·i gvb = 1
2 –2
†hLv‡b n N †hgb: A = GLv‡b A =
2 0 0 iv. KY© g¨vwUª‡·i gvb/wbY©vqK = abc
=0
2 –2 0 0 v. †¯‹jvi g¨vwUª‡·i gvb = a3
2
14. A‡f`NvwZ g¨vwUª· (Involuntary Matrix): GKwU eM© g¨vwUª· A †K A‡f`NvwZ g¨vwUª· ejv n‡e hw` A = I nq| GQvov Ab¨ g¨vwUª‡· ag© †_‡KB †ewk
cÖkœ Av‡m| GK bR‡i ¸iæZ¡c~Y©
†hgb- A =
2 3
; GLv‡b A =
2 1 0
=I ag©¸‡jv †`‡L †bqv hvK|
–1 –2 0 1
Nv‡Zi nvZvnvwZ:
15. Uªv݇cvR g¨vwUª· (Transpose Matrix): mvwi Ges Kjvg hLb ¯’vb wewbgq K‡i| †hgbÑ
i. A2 = A mgNvZx|
a b c T a x p
A = x y z Gi Uªv݇cvR g¨vwUª· A ev A = b y q ii. An = 0 k~b¨NvZx|
p q r c z r iii. A2 = I A‡f`NvZx|
T
16. cÖwZmg g¨vwUª· (Symmetric Matrix): GKwU eM© g¨vwUª· A ‡K cÖwZmg g¨vwUª· ejv n‡e hw` A = A nq A_©vr eµcÖwZmg-
2 0 –1 T 2 0 –1 i. cÖavb K‡Y©i f~w³ 0 nq|
Ai j = Aj i nq| †hgbÑ A = 0 3 4 n‡j A = 0 3 4 n‡e ; A n‡e cÖwZmg g¨vwUª·|
–1 4 5 –1 4 5 ii. aij = aji A_©vr K‡Y©i Dc‡i
17. wecÖwZmg/eµ/AcÖwZmg g¨vwUª· (Skew – Symmetric Matrix): GKwU eM© g¨vwUª· A = [Ai j]nn †K wecÖwZmg I wb‡P GKB Ae¯’v‡b f~w³i
T gvb GKB n‡e wKš‘ wPý
g¨vwUª· ejv n‡e hw` A = – A nq
wecixZ n‡e|
0 1 –4 0 1 4 0 1 –4 0 1 –4
T
A_©vr Ai j = – Aj i nq| ‡hgbÑ A = –1 0 3 n‡j A = 1 0 3 = – –1 0 3 = – A
4 –3 0 4 3 0 4 –3 0 –1 0 3
T 4 –3 0
Note: wecÖwZmg g¨vwUª· n‡j A = –A n‡e Ges cÖavb K‡Y©i Dcv`vb k~b¨ n‡e (A_©vr Ai j = 0 hLb i = j) RwUj g¨vwUª‡·i Kvwnbx:
T T
18. j¤^ g¨vwUª· (Orthogonal Matrix): GKwU eM© g¨vwUª· A j¤^ g¨vwUª· ejv n‡e hw` AA = A A = I nq| i. AbyeÜx g¨vwUª· cÖavb
1 1 1 K‡Y©i f~w³¸‡jv RwUj n‡e|
†hgb A = GKwU j¤^ g¨vwUª·
2 1 –1 ii. nv‡g©wkqvb g¨vwUª· cÖavb
i 2 3 K‡Y©i f~w³¸‡jv ev¯Íe n‡e|
19. RwUj g¨vwUª· (Complex Matrix): RwUj Dcv`vb wewkó g¨vwUª·‡K RwUj g¨vwUª· e‡j| †hgb : A = 4 –i 2 iii. wenv‡g©wkqvb g¨vwUª· cÖavb
1 2i 3 cÖavb K‡Y©i Dcv`vb k~b¨
20. AbyeÜx g¨vwUª· (Conjugate Matrix): †Kvb RwUj g¨vwUª· Gi RwUj Dcv`vb ¸‡jvi AYyeÜx Dcv`vb Øviv MwVZ g¨vwUª·‡K H g¨vwUª‡·i AYyeÜx g¨vwUª·
3 + 4i 1 3 – 4i
–
2 2 1
e‡j| †hgb : A = 4 2 – i 0 Gi AYyeÜx RwUj g¨vwUª·, A = 4 2 + i 0
1 2 i 1 2 –i
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 45
21. nviwgwkqvb g¨vwUª· (Hermitian Matrix): †Kvb RwUj eM© g¨vwUª· Gi AbyeÜx g¨vwUª·‡K Uªv݇cvR K‡i hw` cÖ`Ë g¨vwUª‡·i mgvb nq Z‡e cÖ`Ë g¨vwUª·‡K
3 1+i i 1–i –i
–
3
– T
( )
nviwgwkqvb g¨vwUª· e‡j| A_©vr A = A †hgb : A = 1 – i 2 3 + i n‡j A = 1 + i 2 3 – i
–i 3 – i –1 i 3 + i –1
– T
3 1 + i i
( )
A = 1 – i 2 3 + i = A
–i 3 – i –1
3 1 + i i
A = 1 – i 2 3 + i GKwU nviwgwkqvb g¨vwUª·
–i 3 – i –1
()
T
22. wenviwgwkqvb g¨vwUª· (Skew Hermitian Matrix): †Kvb GKwU g¨vwUª· A †K wenviwgwkqvb g¨vwUª· ejv n‡e hw` A = – A nq| †hgb :
0 –3i
A = 3i 0 n‡j A = –3i 0 = – 3i 0 = – A A GKwU wenviwgwkqvb g¨vwUª·
0 3i – 0 3i
Note : wenviwgwkqvb g¨vwUª‡·i cÖavb K‡Y©i Dcv`vb ¸‡jv memgq k~b¨ ev m¤ú~Y© KvíwbK msL¨v n‡e|
GKbR‡i wewfbœ g¨vwUª‡·i gvb wbY©q
g¨vwUª‡·i †Kvb gvb †bB| Z‡e eM© g¨vwUª·‡K wbY©vqK AvKv‡i cÖKvk K‡i †mB
A = ac b [ ]
d eM© g¨vwUª‡·i wbY©vq‡Ki gvb A = Det(A) = ad – bc
wbY©vq‡Ki gvb wbY©q Kiv hvq|
n
n-µ‡gi g¨vwUª· A Gi Rb¨ |MA| = M |A|
gvb wbY©q msµvšÍ kU©KvU© ag©
[†hLv‡b M = †¯‹jvi ivwk, |A| = wbY©vq‡Ki gvb]
1 3 1
MEx 01 4 4 4 g¨vwUª·wUi †Uªm (Trace) Gi gvb 8 n‡j a Gi gvb †KvbwU? [JU. 19-20]
3 1 a
General Rules & Tips
kZ©g‡Z, 1 + 4 + a = 8; a = 3
0; i j
MEx 02 †Kvb eM© g¨vwUª‡·i Dcv`vb¸‡jv aij = n‡j, †mwU †Kvb ai‡bi g¨vwUª‡·i- [IU-F. 2012-13]
1 ; i = j
General Rules & Tips
0; i j
aij = n‡j, cÖ_g fzw³ a11 (GLv‡b i = j) Gi gvb 1 n‡e| GKBfv‡e a22, a33 = 1 n‡e|
1 ; i = j
Aciw`‡K, a12 (GLv‡b i j) a12 = 0 n‡e| GKBfv‡e evwK gvb¸‡jv 0 n‡e|
1 0 0
g¨vwUª·wU nq 0 1 0 hv A‡f`K g¨vwUª·|
0 0 1
–1
MEx 03 3 3 AvKv‡ii GKwU KY© g¨vwUª· D Gi Rb¨ |D| = 20 n‡j |(2D) | Gi gvb KZ? [BUET. 12-13; SUST. 15-16]
General Rules 3 in 1 Shortcut Tricks & Tips
a 0 0
awi, 3 3 AvKv‡ii KY© g¨vwUª·, D = 0 b 0
0 0 c
2a 0 0 a 0 0
2D = 0 2b 0 Ges |D| = 0 b 0= 20 1 1 1 1
0 0 2c 0 0 c 3 µ‡gi g¨vwUª· D Gi Rb¨ |(2D)–1| = = = =
|2D| 23|D| 8 20 160
2a 0 0 0 0
a
|2D| = 0 2b 0 = 23 0 b 0= 8 20 = 160
0 0 2c 0 0 c
–1 1 1
Zvn‡j, |(2D) | = |2D| = 160
MEx 04 3 3 AvKv‡ii KY© g¨vwUª· A Gi KY© Dcv`vb¸wji ¸Ydj 2 2 n‡j |( 2I – A) | Gi gvb KZ?
3
[SAU. 16-17]
General Rules & Tips
3 3 AvKv‡ii KY© g¨vwUª‡·i K‡Y©i Dcv`vb ¸bdj = KY© g¨vwUª‡·i gvb A = 2 2
2 0 0
Avevi, 2I = 0 2 0 ( 2I) = 2 2 2 = 2 2
0 0 2
|( 2I A) | = |(2 2 2 2)3| = 0
3
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
46 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
olve
Dhaka University
3 –4 †Uªm = 1 + 4 + 3 = 8
01. A = n‡j det (2A–1) Gi gvb n‡jv- [DU. 19-20; DU-cÖhyw³: 19-20]
2 –3 05. †Kvb g¨vwUª‡·i mvwi¸‡jv‡K Kjv‡g Ges Kjvg¸‡jv‡K mvwi‡Z cwieZ©b
1 1
A. 4 B. –4 C. D. – Ki‡j †h g¨vwUª· cvIqv hvq Zv‡K e‡j| [JU. 18-19]
4 4
A. mvwi g¨vwUª· B. Kjvg g¨vwUª·
3 –4
S B Sol n A = 2 –3
Aspect Special:
C. eM© g¨vwUª· D. iƒcvšÍwiZ g¨vwUª·
olve
Ans D
GLv‡b, A GKwU 2 2 m¨vwUª·
06. g¨vwUª· X = cÖwZmg n‡j r Gi gvb †KvbwU?
1 –3 4 3 –4 hvi gvb |A| = 9 + 8 = 1 x 4
A–1 = r 6
[JU. 17-18]
– 9 + 8 –2 3 2 –3
=
det (2A ) = |2A | =
2
6 –8
1 1
A. 4 B. 6 C. 4 D. 6
2A–1 = 4 –6 A
S A Sol n X = r 6
x 4
22
olve
4
det (2A–1) = – 36 + 32 = – 4 = = = 4
|A| 1
∵ cÖwZmg X g¨vwUª· ZvB X = XT r 6 = 4 6 r = 4
x 4 x r
a 2 5
02. A = 2 b 3 GKwU eµ cÖwZmg g¨vwU· n‡j a, b, c Gi gvb¸‡jv-
a11 a12 ... ... a1n
5 3 c a23 a22 ... ... a2n
A. –2, –5, 3 B. 0, 0, 0 C. 1, 1, 1 D. 2, 5, 3
[DU. 17-18]
07. ... ... ... ... ... GB g¨vwUª·wU †Kvb cÖK…wZ? [JU. 09-10]
... ... ... ... ...
T
S B Sol n hw` A = –A nq ZLb Zv‡K eµ cÖwZmg g¨vwUª· e‡j| †h
olve
5+4 9
= =
= 1 5 †Uªm = + =
2 4 1 5 9 20 12 8 nviwgwkqvb g¨vwUª‡·i KY© eivei f‚w³ ev¯Íe msL¨v|
– 2 8 8 †Uªm I ev¯Íe msL¨v n‡e|
4 8
02. wb‡Pi †KvbwU mgNvwZ g¨vwUª·? [RU. Astrazeneca, Set-1. 20-21]
02. wb‡Pi †KvbwU mgNvwZ g¨vwUª·? [JU-H. 19-20]
A. B.
2 1 2 1
2 –2 –4 2 –2 4 2 1 2 1
A. –1 3 4 B. –1 3 4
D.
1
1 –2 –3 1 –2 –3 C.
2 1 2
2 1 2 1
2 –2 5 2 –2 –4
C. –1 4 D. –1 4
S B Sol n –2 –1 –2 –1 = –2 –1 [A = A n‡j mgNvZx]
3 3 2 1 2 1 2 1 2
olve
1 –2 –3 1 –2 3
2 03. A g¨vwUª·wU cÖwZmg g¨vwUª· n‡j wb‡Pi †KvbwU mwVK? [RU. 17-18]
S A Sol n mgNvwZ g¨vwUª‡·i †ÿ‡Î A = A n‡Z nq|
olve
A. AT = –A B. A2 = A
option (A) Gi †ÿ‡Î
C. AT = A D. A 2 = I
2 –2 –4 2 –2 –4 2 –2 –4 n GKwU eM© g¨vwUª· A cÖwZmg n‡j AT = A n‡e|
olve
S C Sol A. 4 B. 0 C. – 1 D. – 4
Avevi, d = ( 7) = 7 a + b + c + d = 7 S A Sol n cÖwZmg g¨vwUª‡·i Rb¨ A = A
T
olve
Aspect Special:
cÖ wZmg g¨vwUª‡·i Rb¨
4 0 1 4 0 1
1 3 1
04. 4 4 4 g¨vwUª·wUi †Uªm †KvbwU? [JU-A. 19-20]
0 3 4 = 0 3 a a=4 a ij = aji
3 1 3 a23 = a32
1 a 4 1 4 0
A. 5 B. 12 C. 8 D. 7 A=4
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 47
1 2 + i 1 + 3i S B Sol n †h eM© g¨vwUª‡·i wbY©vq‡Ki gvb Ak~b¨ Zv‡K e‡j Ae¨wZµgx
olve
02. 2 – i 2 –i †Kvb ai‡bi g¨vwUª·? [CU-J. 16-17] g¨vwUª·|
1 – 3i i 0
07. wb‡Pi †KvbwU Complex Matrix? [IU. 17-18]
A. e¨wZµgx B. A¨vWR‡q›U C. nviwgwkqvb
A. A = B. A =
2 3+i 2 3
D. D`NvwZK E. †KvbwUB bq
n nv‡g©wkqvb g¨vwUª‡·i Rb¨ cÖavb K‡Y©i f~w³ ev¯Íe nq| evwK
i 6 –2 6
olve
S C Sol
C. A =
0 1
D. A =
1 1
f~w³¸‡jv AYyeÜx wn‡m‡e _v‡K| 1 0 1 1
a b Gi gvbÑ n †h g¨vwUª‡·i GK ev GKvwaK Dcv`vb RwUj msL¨v Zv‡K
olve
03. c –d [CU-C3. 16-17] S A Sol
A. ad – bc B. bc – ad C. bc + ad RwUj g¨vwUª· e‡j|
D. †bB E. 0 1 2 4
08. 3 a 2g¨vwU·wUi Trace-Gi gvb 7 n‡j a Gi gvb KZ? [IU. 17-18]
S D Sol n c –d = – ad – bc
a b
1 0 4
olve
GST (¸”Q) A. 0 B. 1 C. 2 D. 4
n g¨vwUª‡·i †Uªm = 1 + a + 4 = 5 + a
olve
01. 3 2 Ges 2 3 µg wewkó `ywU g¨vwUª· h_vµ‡g A Ges B Gi fzw³ 0 ev
S C Sol
kZ©vbymv‡i, 5 + a = 7 a = 2
1 n‡j tr(BA) Gi m‡e©v”P gvb n‡e [GST-A. 21-22]
09. KY© g¨vwUª‡·i Ak~b¨ fzw³mg~n mgvb n‡j Zv‡K ejv nqÑ [IU. 16-17]
A. 0 B. 1 C. 6 D. 9
A . mvwi g¨vwUª · B . †¯‹j vi g¨vwUª ·
S C Sol n m‡ev©”P gv‡bi Rb¨,
olve
olve
A g¨vwUª· n‡e 1 1 ; B g¨vwUª· n‡e 1 1 1
1 1 1 S B Sol
1 13×2 2×3 g¨vwUª
· e‡j|
10. bx‡Pi †KvbwU AcÖwZmg Matrix? [IU. 16-17]
1 1 1
1 1
3 3 –b –b
BA = 1 1 1 A. –b 0 B. 0 –b C. 0 b D. 0 b
1 1 †Uªm = (3 + 3) = 6 0 b b 0 0 0
1 1 3 3
S A Sol n wecÖZxmg g¨vwUª‡·i cÖavb KY© eivei f~w³¸‡jv k~b¨ nq|
olve
02. eM©vKvi †Kvb g¨vwUª· A-Gi †¶‡Î hw` A2 = A nq, Z‡e †mB g¨vwUª·wU-
[IU-A. 19-20] 11. †h eM© g¨vwUª‡·i K‡Y©i Dcv`vb¸‡jv Ak~b¨ I mgvb Ges Ab¨vb¨ Dcv`vb¸‡jv
A. mgNvwZ B. cÖwZmg C. ch©vqe„Ë D. A‡f`NvwZ k~b¨ Zv‡K ejv nq? [IU. 10-11, 08-09, 04-05; JnU. 12-13]
2
S A Sol n eM©vKvi g¨vwUª· A Gi †ÿ‡Î A = A n‡j A GKwU mgNvwZ g¨vwUª·|
olve
S C Sol
C. AA = AA = I D. AA = AA = 1 Ab¨vb¨ Dcv`vb¸‡jv k~b¨ Zv‡K †¯‹jvi g¨vwU· e‡j|
S C Sol n †Kv‡bv eM© g¨vwUª· A †K j¤^ g¨vwUª· ejv n‡e,
olve
S B Sol
3
AT = A nq|
C. 3 2 D. 2
1 2 1 3
2 a 5 4
13. hw` A = –5 b 3 GKwU wecÖwZmg g¨vwUª· nq, Zvn‡j a, b, c Gi
S A Sol n A = 2 3 A = 2
1 2 1 2
T
–4 3 c
olve
3
gvb¸‡jv n‡eÑ [BSFMSTU. 19-20]
05.
1 0
0 1
wU [KU. 17-18] A. –5, –4, –3 B. 0, 0, 0 C. 1, 1, 1 D. 5, 4,
i. KY© g¨vwUª· ii. †¯‹jvi g¨vwUª· iii. A‡f`K g¨vwUª· a 5 4
B Sol n 5 b 3 GKwU wecÖwZmg g¨vwUª· n‡j a = 0, b = 0 Ges c = 0 n‡e|
olve
S D Sol
i. KY© g¨vwUª· (Diagonal Matrix) : †h eM© g¨vwUª· cÖavb K‡Y©i (aij; i = j) 01. A = 1 2 n‡j |4A1| = ?
fyw³¸‡jv e¨wZZ Ab¨me fyw³ k~b¨| 2 0 [DU-7clg. 22-23]
A. 4 B. 2
ii. †¯‹jvi g¨vwUª· (Scalar Matrix): †h KY© g¨vwUª‡·i Ak~b¨ fzw³¸‡jv mgvb|
C. 2 D. 4
iii. A‡f`K g¨vwUª· ev GKK g¨vwUª· (Identity or unit Matrix) : †h KY©
S D Sol n A = 2 0
1 2
olve
olve
[DU-Tech. 22-23; BRU-E. 19-20]
2 8 1 1 a11 a12 a13 aij = 2i j
A. B. C. D. A = a21 a22 a23
7 7 56 14 a11 = 1 a12 = 0
–1 3 –1 –1 –1 1 a31 a32 a33 a13 = 1 a21 = 3
S C Sol n (2A) = {(2) |A|} = {8 (–7)} = {–56} = – 56
olve
【
? 】 QUICK PRACTICE CONCEPT TEST ?
01. A GKwU 3 × 3 eM©g¨vwUª· Ges |A| = 8 n‡j |2A| Gi gvb †KvbwU? 03. †h g¨vwUª‡·i mvwi I Kjv‡gi msL¨v mgvb Zv‡K ejv nq-
A.16 B.4 C. 64 D.8 A. eM© g¨vwUª· B. Kjvg g¨vwUª·
02. wb‡Pi †KvbwU eµ cÖwZmg g¨vwUª·? C. KY© g¨vwUª· D. A‡f`K g¨vwUª·
0 5
A.
1 5 0
B. C.
1 5 0
D.
1 5 0 Answer 01.C 02.B 03.A
2 0 5 5 0 2 1 5 2 1 1
Concept-02 g¨vwUª‡·i •ewkó¨ [Properties of Matrics] ¸iæZ¡:
g¨vwUª‡· †hvMwewa I ¸Ywewa:
i. A (B + C) = AB + AC ii. (B + C)A = BA + CA iii. A(BC) = (AB)C iv. A + B = B + A
Uªv݇cvR g¨vwUª‡·i KwZcq •ewkó¨:
i. (AT)T = A ii. (AB)T = BTAT (†hLv‡b A I B Gi gvÎv h_vµ‡g m n I n p)
iii. (A ± B)T = AT ± BT iv. (ABC)T = CTBTAT
A‡f`K g¨vwUª‡·i •ewkó¨:
i. AI = IA ii. A.A–1 = A–1A = I
3 2 –1
MEx 01 hw` GKwU eM© g¨vwUª· A Ggb nq †h, 3A – 2A + 5AI + I = 0 nq, Z‡e A = ?
General Rules & Tips
I = – (3A3 – 2A2 + 5AI)
I = 2A2 –3A3 –5AI I = A(2A – 3A2 – 5I) A . A–1 = A(2A – 3A2 – 5I) A–1 = 2A – 3A2 – 5I
REAL TEST ANALYSIS OF PREVIOUS YEAR QUESTIONS
2 2
S D Sol n A B weKí
olve
Dhaka University
2
= A (I – A) 2 A Ges B = I – A mgNvZx g¨vwU·ª|
01. A = n‡j det (AA1) Gi gvb KZ?
1 2
2 5 [DU-A. 2021-22] = A2 (I2 – 2IA + A2) A2 = A
1 = A2I2 – 2A.A2 + A2.A2 B2 = B = I – A
A. 1 B. 1 C. 0 D. = A – 2A.A + A.A A2B2 = A (I – A)
2
= A – 2A2 + A2 = AI – A2 = A – A
–2 –2
S A Sol n A = 2 5 A = 5–4 –2 1 = –2 1
1 2 1 5 5
–1 = A – A2
olve
=0
1 2 5 –2 = A – A [∵A2 = A] = 0
GLb, A.A–1 = 2 5 –2 1 =0 1 d (A.A–1) = (1–0) = 1
1 0
02. A I B `yBwU cÖwZmg g¨vwUª· n‡j AB BA GKwUÑ [RU-C. 19-20]
–1
Aspect Special: A.A = I Ges det(I) = 1 A. cÖwZmg g¨vwUª· B. KY© g¨vwUª· C. wecÖwZmg g¨vwUª· D. k~b¨ g¨vwUª·
T T
S C Sol n hw` A I B cÖwZmg nq Z‡e A = A Ges B = B
olve
Jahangirnagar University
GLb, (AB BA)T = (AB)T (BA)T
01. hw` g¨vwUª· A=[2 1 3] nq Ges I GKwU 3 3 BDwbU g¨vwU· nq
= BT AT AT BT
Zvn‡j AI = ? [JU. 11-12]
= BA AB
A. 0 B. [0 0 0] C. [2 1 3] D. AmsÁvwqZ = (AB BA)
n A I = A = [2 1 3]
olve
C. 2I D. 0
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 49
04. A GKwU eM© g¨vwUª· n‡j |A| = ? [RU-H. 14-15] ¸”Q (GST) fwZ© cixÿv
A. 1 B. †Kv‡bvwUB bq C. A1 D. A Ans B 01. A GKwU A‡f`K g¨vwUª· n‡j A–1 + A + A2 = ? [BSMRSTU. 18-19]
05. hw` A, B I C g¨vwUª·¸‡jv †hvM I ¸Y‡bi Rb¨ †hvM¨ nq; Z‡e wb‡Pi A. A2 B. 2A
†KvbwU mwVK? [RU-H. 14-15] C. 3A D. 1 + A2 + A2
A. A(B +C) = AB + AC B. (A + B)C = AC + BC
S C Sol n awi, A = 0 1
1 0 Aspect Special:
olve
C. A(BC) = (AB)C D. me¸‡jvB mwVK A‡f`K g¨vwUª‡·i gvb 1
S D Sol n According to basic properties of Matrices. A–1 = 0 1 = A
olve
1 0 A–1 + A + A2
06. g¨vwUª‡·i †ÿ‡Î †KvbwU wg_¨v bq? [RU-H. 13-14] = I1 + I + I2 = 3
A. †¯‹jvi g¨vwUª‡· Ak~b¨ Dcv`vb¸wj Amgvb n‡Z cv‡i
A2 = A.A = 0 1 0 1 = 0 1 = A
1 0 1 0 1 0
B. mgvb msL¨K Dcv`vbwewkó Kjvg g¨vwUª· A Ges mvwi g¨vwUª· B n‡j
AB n‡Z cv‡i bv A–1 + A + A2 = A + A + A = 3A
C. `ywU mgvb mvB‡Ri BDwbU g¨vwUª· †hvM Ki‡j †¯‹jvi g¨vwUª· cvIqv hvq bv 02. A = 1 2 n‡j, A1 A = ?
D. `ywU ¸Y‡hvM¨ g¨vwUª· me †ÿ‡ÎB †hv‡Mi Rb¨ †hvM¨ Ans B 2 1 [MBSTU-A. 2012-13]
A. I B. 0
Chittagong University
1 1
2 –3 1 –1
01. M = I N = – 1 3 n‡j (MN)–1 Gi gvb KZ? D.
1 0
2 2
0 1 C.
1 1 2 1
A. N M –1 –1 –1 –1
B. M N
[CU-A, Set-3. 20-21]
2 2
1
S A Sol n †h‡Kv‡bv g¨vwUª‡·i †ÿ‡Î, A A = I
olve
C. MN D. †Kv‡bvwUB bq Ans A
【
? 】 QUICK PRACTICE CONCEPT TEST ?
01. hw` X Ges Y g¨vwUª· nq, Z‡e wb‡Pi †KvbwU mwVK? 02. I GKwU 3 3 GKK g¨vwUª· Ges A GKwU 3 3 g¨vwUª· n‡j Al5 = KZ?
A. Xt = (X1)1 B. Y X = X Y A. A B. I C. A D. AIA
C. X + Y Y + X D. (Yt)t = Y Answer 01.D 02.A
1 2 3
(iii) 4 5 6 gvÎv = 3 3
7 8 9
`ywU g¨vwUª‡·i gvÎv mgvb bv n‡j †hvM ev we‡qvM Kiv hvq bv| FocusKwi
jÿ¨ Point: wcÖq wkÿv_©x e„›` P‡jv wP‡Î wP‡Î ¸Y wkwL:
`ywU g¨vwUª· mgvb n‡j Zv‡`i Abyiƒc Dcv`vb¸‡jv mgvb n‡e|
`ywU g¨vwUª· A I B Gi ¸Ydj AB wbY©q Kiv hv‡e hw` A g¨vwUª‡·i Kjvg msL¨v A = 4 7 Ges B = 0 1
1 3 1 0
4 –4 8 4
MEx 03 hw` 1 A = –1 2 1 nq, Zvn‡j A g¨vwUª·wU wbY©q Ki| [BUET. 17-18]
6 3 –3 6 3
General Rules & Tips
4 –4 8 4
awi, B = 1 ; C = –1 2 1 myZivs B A = C
3 –3 6 3
GLv‡b B Gi µg = 3 1; C Gi µg = 3 3 ; myZivs A Gi µg = 1 3 [∵ B(31) A(13) = C(33)]
4 –4 8 4
awi, A = [x y z] ; 1 [x y z] = –1 2 1 .......... (i)
3 –3 6 3
(i) bs mgxKiY †_‡K cvB, 4x = – 4 x = –1; 4y = 8 y = 2; 4z = 4 z = 1
myZivs wb‡Y©q A = [x y z] = [–1 2 1]
1 3
2 – 2
1
Avevi, A = 2
cos2 – sin2 = [g¨vwUª‡·i mgZv †_‡K]
2
3 1
2 2
ev, cos2 = cos60 = cos 3 ; ev, 2 = 2n 3 = n 6
0 0 2i
MEx 05 A = 0 –2i 0 , †`LvI †h, A + 4I = 0, I GKwU GKK g¨vwUª·|
2
[KUET. 03-04]
2i 0 0
General Rules & Tips
0 0 2i 0 0 2i 0 0 2i –4 0 0
A = 0 –2i 0 ; A2 = 0 –2i 0 0 –2i 0 = 0 –4 0
2i 0 0 2i 0 0 2i 0 0 0 0 –4
–4 0 0 1 0 0
A2 + 4I = 0 –4 0 + 40 1 0 A2 + 4I = 0 (Showed)
0 0 –4 0 0 1
4 –6
MEx 06 hw` P = Ges P Q = 0 nq Z‡e g¨vwUª· Q KZ?
5
8
[RUET. 14-15]
–2
General Rules & Tips
P GKwU 2 2 gvÎvi g¨vwUª· Ges P Q g¨vwUª‡·i gvÎv 2 1
Q g¨vwUª‡·i gvÎv n‡e 2 1.
4 –6 x 4x – 6y 4x – 6y
awi, Q = y PQ = –2 8 y = –2x + 8y ; kZ© n‡e, –2x + 8y = 0
x 5
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 51
olve
T
S C Sol n (A + B) Gi gvÎv 5 × 4 ; C Gi gvÎv 4 × 2
olve
(A VT + B) C Gi gvÎv 5 × 2 3 5 1
2 2 02. A = 4 0 2 n‡j, A-2I Gi gvb †KvbwU?
02. A = 2 2, AB = ?
[JU-A, Set-N. 22-23]
2 2
Ges B = 3 3 [DU. 14-15; RU. 18-19] 1 6 4
2 2 2 5 5 1 1 5 1
A. 0 0 0
2 0
2 2 B. 0 0 C. 3 0 D. 2 2 A. 4 2 2 B. 4 2 2
1 6 6 1 6 2
2 2 2 2
S D Sol n AB = 2 2 3 3 1 1 3 1
olve
1 3
C. 4 0 2 D. 2 2 0
2.2 + (2).3 2.2 + (2).3 4 6 4 6 2 2
= 1 6 4 1 4 2
(2).2 + 2.3 (2).2 + 2.3= 4 + 6 4 + 6 = 2 2
3 5 1 2 0 0 1 5 1
03. hw` A =
2 0 3 0 nq, Z‡e AB mgvb-
n A 2I = 4 0 2 0 2 0 = 4 2 2
olve
0 3
B = 5 1 S B Sol
1 6 4 0 0 2 1 6 2
[DU. 05-06; JnU. 05-06; JU. 19-20]
1 03. A g¨vwUª‡·i µg 2 3 Ges B g¨vwUª‡·i µg 3 2 n‡j AB Gi µg
A.
6 0 B. 3 1 0 D. 1 2 †KvbwU?
15 3 2 5 2 15 0 5
C. [JU-A, Set-N. 22-23]
A. 2 2 B. 2 3 C. 3 2 D. 3 3
S A Sol n AB = 0 3 5 1
2 0 3 0
olve
S A Sol
=
23 + 05 20 + 01 6 0 =2 33 2=22
03 35 00 31 = 15 3
2 2
04. hw` A = , Ges B =
2 3 2 2
04. hw` A = nq, Z‡e 2
mgvb- 2 3 3
, n‡j AB Gi gvb †KvbwU?
3 2
A [DU. 04-05, DU. 03-04; RU. 06-07; JU.18-19] 2
[JU-A, Set-R. 22-23]
5 12 5 12 C. 5 12 D. 5 12
A. 12 5 12 5 A.
2 2 B. 0 0
0 0
12 5 B.
12 5 2 2
2 3 2 3
S D Sol n A = 3 2 3 2 C. 3 0 D.
2 2
2 0 0
olve
2 2
22 33 23 32 5 12
= 2
S D Sol n AB = 2 2 3 3
2 2 2
32 + 23 33 + 22 12 5
=
olve
✍ Written =
46 4 6 2 2
4 + 6 4 + 6 2 2
=
2 4 6
01. A = [1 2 3], BA = 3 6 9 n‡j B g¨vwUª·wU wbY©q Ki| [DU-A. 2021-22] 05. A = 3 6 , B = 2 , n‡j AB Gi µg †KvbwU? [JU-A, Set-S. 22-23]
1 2 3 2 2 1
2 4 6 A. 1 2 B. 21 C. 1 1 D. 2 2
Solve †`Iqv Av‡Q, A = [1 2 3]; BA = 3 6 9 n A Gi µg 2 2; B Gi µg 2 1
olve
S B Sol
1 2 3 AB Gi µg 2 2 2 1 = 2 1
2 4 6 1
awi, 3 6 9 = C
06. A = 2 Ges B = (4 5 6) n‡j AB = ?
1 2 3 3
[JU-A, Set-I. 2021-22]
GLv‡b, A g¨vwUª‡·i gvÎv n‡jv 1×3 g¨vwUª· Ges C g¨vwUª‡·i gvÎv 3×3
myZivs B g¨vwUª‡·i gvÎv n‡e 3×1
4
A. (4 10 18) B. 10
a 18
Zvn‡j awi, B = b 4 5 6
c C. 8 10 12 D. Am¤¢e
a 2 4 6 a 2a 3a 2 4 6 12 15 18
kZ©g‡Z, b [1 2 3] = 3 6 9 b 2b 3b = 3 6 9 1
c 1 2 3 c 2c 3c 1 2 3
n Option test: A = 2 Ges B = (4 5 6)
olve
S C Sol
2 3
a = 2, b = 3 Ges C = 1 B = 3 A Gi gvÎv 3 × 1 Ges B Gi gvÎv 1×3
1 AB Gi gvÎv n‡e 3×3 hv Ackb C †Z Av‡Q|
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
52 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
–1 0 –1 3 4 x 5
07. A = Ges B = 5 0 n‡j, AB Gi gvb KZ? [JU-A, Set-Q. 2021-22] 14.
2
5 2 4 6 y 8
= n‡j x I y Gi gvb KZ? [JU. 14-15]
5 –5 –2 –5 –5
B. 10 –5 C. 10 4 D. 6 5
0 2 2 A. 1, – 2 B. – 1, 2 C. –1, – 2 D. 2, – 1
A. 1 2 5 5
S A Sol n 4 6 y = 8 4x + 6y = 8
3 4 x 3x + 4y
olve
n AB =
2 –1 0 –1 –5 –2
olve
olve
C. 6 8 D. Am¤¢e
7 8 8 9 14 + 15 1 29
AB =
+ 3 0 5 3 5
n A Gi gvÎv 3×3 Ges B Gi gvÎv 3 × 2|
=
0
olve
S D Sol
†h‡nZz gvÎv mgvb bq ZvB †hvM Kiv Am¤¢e| 16. hw` A GKwU m n AvKv‡ii g¨vwU· Ges B GKwU n p AvKv‡ii g¨vwUª·
nq Zvn‡j Zv‡`i ¸Ydj AB Gi AvKvi n‡e| [JU. 09-10; iv.‡ev. 2019]
09. X
1 2
3 4
= (5 6) n‡j g¨vwUª · X = KZ? [JU-A, Set-M. 2021-22] A. n n B. n p C. m p D. m m
1
C.
n
olve
S C Sol A M n n p B
A. (2 1) B. (1 2) D. Am¤¢e AB Gi AvKvi m p
2
3 1
01. P = Ges Q = 2 3 n‡j, P Q g¨vwUª·wU †Kvb ai‡bi?
2 2
awi, X Gi gvÎv 1 × 2 x = [a b]
2 2
(a b) 3 2 = (5 6) (a + 3b 2a + 4b) = (5 6)
1 4 [RU-C, Corundum-1. 22-23]
A. k~b¨NvwZ B. A‡f`NvwZ
a + 3b = 5 ..... (i); 2a + 4b = 6 ...... (ii) C. k~b¨ g¨vwUª· D. †KvbwUB bq
(i) n‡Z a = 5 – 3b; (ii) n‡Z, 2 (5 – 3b) + 4b = 6
3 1
S D Sol n P – Q = 2 2 – 2 3
2 2
10 – 6b + 4b = 6 b = 2 a = – 1 X = (–1 2)
olve
1 2 3 – 2 1 2 1 – 3
10. hw` A = = 2 – 2
1 2 3
4 5 6
Ges B = 1 2 nq Z‡e AB = ? [JU. 18-19] – 2 + 3 0 1
=
0 1 i – 1
02. A =
1 i
3 3 3 3 , B = Ges i = – 1 n‡j, AB = KZ?
3 3
A. 9 12
B. 9
3 3
C. 9 –i 1 –1 – i
12 12 D. 9 12 [RU-C, Quartz-2. 22-23; CU. 18-19; DU. 12-13; RU. 17-18; CU. 14-15]
1 2 A. 0 0
1 0
B. 0 0
0 0
C. 0 1
1 0
D. 0 i
1 0
S A Sol n A = 4 5 6 Ges B = 1 2
1 2 3
olve
0 1 n AB =
1 i i 1 i i 1 i2 0 0
i 1 1 i = i2 1 i i = 0 0
olve
1 + 2 + 0 2 + 4 3 3 3 S B Sol
AB = 4 + 5 + 0 = 9 12
8 + 10 6
03. P + Q =
1 2
Ges P Q = 7 8 n‡j, P = KZ?
5 6
11. g¨vwUª· M Gi AvKvi 4 3 Ges N Gi AvKvi 3 5 n‡j MN Gi 3 4
[RU-C, Topaz-3. 22-23]
AvKvi †KvbwU? [JU. 17-18, 11-12, 09-10]
4 3
A. B. 5 6
3 4
A. 4 4 B. 4 5 C. 3 5 D. 3 4 6 5
n M43 3 5 N MN = 4 5
olve
S B Sol 1 2 5 6
C. 5 D. 5
7 8 9 6 8
12. hw` A = 2 1 7 Ges C = A + I33 Zvn‡j C23 = ?
S B Sol n P + Q + P Q = 3 4 + 7 8
[JU. 16-17] 1 2 5 6
6 5 2
olve
A. 6 B. 7 C. 8 D. 3
2P = 10 12 P = 5 6
6 8 3 4
7 8 9 1 0 0
S B Sol n A = 2 1 7 Ges I3 3 = 0 1 0 04. A = (aij)mn I B = (bij)nn n‡j, ABm Gi Kjvg msL¨v KZ?
olve
S B Sol ij m n ; B = (b ij)n n
2x y 5 6 5
13. hw` nq Z‡e x Gi gvb KZ? Bm = (bij)n n ABm = m n n n
y 3 2
= [JU. 15-16]
3
A. 0 B. 1 C. 2 D. 3 ABm = m n
n 2x – y = 6 ; y = –2 2x + 2 = 6 [∵y = –2] x = 2
Kjvg msL¨v = n
olve
S C Sol
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 53
olve
n AX = B
3 1 x 6 3x + y
6 S B Sol 1 0 x 2 y 2
2 0 y = 4 2x = 4
olve
S B Sol
12. hw` A =
cos2 –sin2
sin2 cos2 Ges A = I nq, Z‡e Gi gvb KZ? [RU. 17-18]
2
kZ©g‡Z, 2x = 4 x = 2 Ges 3x + y = 6
(x, y) = (2, 0) 32+y=6y=0 A. 0, 30 B. 30, 45 C. 0, 45 D. 45, 60
hw` A = 3 4 Z‡e A2 + 3A – 10I n‡e GKwUÑ [RU. Moderna, Set-2. 20-21] S C Sol n A = sin2 cos2
–sin2
1 2 cos2
06.
olve
A. A‡f`K g¨vwÆ· B. cÖwZmg g¨vwÆ· C. k~b¨ g¨vwÆ· D. †KvbwUB bq
A2 =
cos2 –sin2 cos2 –sin2
sin2 cos2 sin2 cos2
S C Sol n A = 3 4 . 3 4 †Kv‡bv g¨vwUª· A Gi Rb¨,
2 1 2 1 2 Aspect Special:
olve
2 2
2 – sin 2 –2sin2
cos cos2 cos4 –sin4
28 6
=
2sin2 cos2 cos 2 – sin22 sin4 cos4
=
=
2
1 + 6 7 A †Uªm A + |A| I = 0
2
53
14. [a b] Ges g¨vwUª·Ø‡qi ¸Ydj n‡eÑ
A – (1 + 4) A + (4 – 9) I = 0 A – 5A – 5I = 0
2 2 a
[RU. 17-18]
b
†`Iqv Av‡Q, A2 – kA – 5I = 0 k = 5 2
C. b2
a
A. [a2b2] B. [a2 + b2] D. gvb †bB
hw` A = x x Ges A1 = 1 2 nq, Zvn‡j x Gi gvb KZ?
2x 0 1 0
08.
S B Sol n [a b] b = [a + b ]
a 2 2
olve
12
= 19 14 12
(i) + (ii) K‡i cvB, 5x = 12 ; x =
5
12
x Gi gvb (i) bs G cvB, 3. + 2y = 5 y = –
11 17. hw` A GKwU 2 5 gvÎvi Ges B GKwU 5 2 gvÎvi g¨vwUª· nq, Z‡e
5 10 BA-Gi gvÎv KZ n‡e? [RU. 15-16; IU. 13-14, 05-06, 02-03]
2 –2 –4 A . 2 2 B . 5 5 C . 25 D. 5 2
10. g¨vwUª· A = –1 3 4 n‡j A2 Gi gvb KZ? [RU. 17-18; CU. 18-19] n B5 2 2 5A
olve
1 –2 –3 S B Sol
BA-Gi gvÎv = 5 5
A. –A B. 0 C. 2A D. A
18. hw` A I B `yBwU g¨vwUª· nq Ges A + I2 = B nq, Z‡e B-Gi gvÎv KZ?
2 –2 –4 2 –2 –4 [RU. 15-16]
S D Sol n A = –1 3 4 –1 3 4
2
olve
A. 2 3 B. n n C. 3 3 D. 2 2
1 –2 –3 1 –2 –3
S D Sol n Avgiv Rvwb, ïaygvÎ GKB gvÎvi g¨vwUª‡·i g‡a¨ †hvM m¤¢e
olve
4 + 2 – 4 –4 – 6 + 8 –8 – 8 + 12 2 –2 –4
= –2 – 3 + 4 2+9–8 4 + 12 – 12 = –1 3 4 = A Ges †hvMdjI GKB gvÎvi nq| myZivs I2 Gi gvÎv †h‡nZz 2 2, ZvB
2 + 2 – 3 –2 – 6 + 6 –4 – 8 + 9 1 –2 –3 A + I2 Gi gvÎvI 2 2 n‡e| B-Gi gvÎv 2 2
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
54 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
S D Sol n MN = 0 0 0 x = 0 0 x Gi gvb †h‡Kv‡bv ev¯Íe
2 0 0 0 0 0
olve
Ges x + y = 2 ...... (ii)
msL¨vi Rb¨ MN = 0 n‡e|
GLb (i) I (ii) bs mgxKiY mgvavb K‡i cvB- (x, y) = (5, 3)
0 2 3 1 2 3
20. A =
0 1
[RU. 09-10] 07. X = 4 0 5 Ges Y = 4 1 5 `yÕwU g¨vwUª· n‡j |X – Y| = ?
2
1 0
n‡j A Gi gvb KZ?
6 7 0 6 7 1
C. 1 0 D. 0 1
0 1 1 0
A. 1 B. +1 [CU-C3. 16-17]
A. 1 B. –1 C. 0
S D Sol n A = 1 0 ; A = A.A = 1 0 1 0 = 0 1
0 1 2 0 1 0 1 1 0 D. 60 E. †ei Kiv hv‡e bv
olve
olve
1 6 – 6 7 – 7 0 – 1 0 0 –1
01. P = 1 Ges Q = [1 1 1] n‡j, PQ = ? [CU-A, Shift-2. 22-23] |X – Y| = – 1 – 1 – 1 = – 1
1 08.
1 + i2 0 x 0
n‡j x I y Gi gvb KZ? [CU-C3. 16-17]
0 1 – i2 y 1
=
1 1 1 1 1 1 1
B. 1 1 1 C. [3] D. 1 1 1
1
A. 1 A. x = y = 0 B. x 0, (1 + i2)
1 5
1 1 1 1 1 1 1
1 1 1 C. x 0, (1 – i2) D. x 0, y 0
1
n PQ = –1 × [1 1 1] = 1 1 1
5
olve
S D Sol (1 + i2)
1 1 1 1 E. x = 0, y =
5
1 0 0
S E Sol 0 1 – i2 y = 1 y(1 – i2) = 1
n
1 + i2 0 x 0 x(1 + i2) 0
olve
S A Sol 2y ; ZX = Y
`ywU g¨vwÆ· ¸Yb Kiv hv‡e| Ans A
–3z –3z c
–14
04. x-Gi gvb KZ n‡j, = nq- [CU. 18-19]
2 5 1 3 12 b
4 3 3 x 10 0 – x = – a x = a ; 2y = b y =
2
A. 0 B. 4 C. –4 D. 3
a
–14
S C Sol n 4 3 3 x = 10 0
2 5 1 3 12
x
b
olve
c
– 3z = c z = – X = y = 2
12 –14 12 –14
4 + 9 12 + 3x = 10 0 13 12 + 3x = 10 0
2 + 10 6 + 5x 12 6 + 5x 3 z –c
12 + 3x = 0 ev, x = –4
3
5 0 –1
2 3
1 0 0 1 2 3 10. hw` A = I B = 3 0 nq, Z‡e AB = ?
2 1 3
[CU-G. 16-17]
05. X = 0 1 0 Ges Y = 3 2 1 n‡j XY = KZ? [CU-C3. 16-17] 1 2
0 0 1 2 1 3
A. 12 10 B. 10 12
9 13 9 13
6 0 0 1 0 0
A. 0 6 0 B. 0 2 0
C. 12 13 D. 10 14
9 10 9 13
0 0 6 0 0 3
C. Y D. †ei Kiv m¤¢e bq 10 + 0 – 1 15 + 0 – 2
S B Sol n AB = 4 + 3 + 3 6 + 0 + 6 = 10 12
9 13
olve
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 55
1 1 1 0 0 –1 0 0
11. A = n‡j (A2 –2I) Gi gvb nq-
2 3 17. S = 0 1 0 Avi = 0 –1 0 n‡j S
[CU. 16-17]
[CU. 08-09]
3 4 3 4 3 4 3 4 0 0 1 0 0 –1
A. 5 B. C. 8 D.
8 8 5 5 8 5 A. = 2S B. > 2S
1 D. = –2S2
S D Sol A = 2 3
n 1 C. < S E. †Kv‡bvwUB bq
olve
1 0 0 1 0 0
A2 –2I = 2
1 1 1 1
– 2 0 1 =
1 –4 2 0 3 4 S D Sol n S = 0 1 0 = – 0 1 0 S = I, = –I
olve
1 0
–
3 2 3 8 7 0 2 8 5 0 0 1 0 0 1
=
1 1 AZGe, S = ev, S = –I = 2 = S2
12. P = n‡j P2 = ?
2 3
[CU. 15-16]
GST (¸”Q)
1 4 1 4 1 4
A. B. C. 01. A Ges (AT + B)C g¨vwUª· `yBwUi µg h_vµ‡g 4 5 Ges 5 2 n‡j C
8 7 8 7 7 8
1 4 1 4 g¨vwUª· Gi µg Kx n‡e? [GST-A. 22-23]
D. E. A. 4 2 B. 4 3 C. 4 4 D. 4 5
8 7 8 7
n (AT + B)C Gi µg 5 2
olve
1 1 1 1 1–2 1–3 1 4
S E Sol n P = 2 3 2 3 = 2 + 6 – 2 + 9 = 8 7
2 S A Sol
olve
Avevi, A Gi µg 4 5
a 0 1 (AT + B) Gi µg 5 4 C n‡e 4 2
13. hw` 3 2 5 = 4 nq, Z‡e ÔaÕ Gi gvb KZ? [CU-A. 15-16]
A =
1 2
4 0 3 02.
4 3
Ges A2+2A 11X = 0 n‡j X Gi gvb KZ? [KU. 19-20]
A. 2 B. 3 C. 5
A. 0 11 B. 0 1
11 0 1 0
D. 6 E. 7
a 0 1
C. 0 2 D. 0 13
2 0 13 0
S A Sol n 3 2 5 = 4 a(6 – 0) + 1(0 – 8) = 4 6a = 12 a = 2
olve
4 0 3
S B Sol n A = 4 3
1 2
14. A = Ges B = –3 2 n‡j, g¨vwUª· C wbY©q Ki hv‡Z
olve
3 7
2 5 4 –1 1 2 1 2 9 4
5C + 2B = A nq| A2 = A.A =
4 3 4 3 8 17
[CU. 14-15] =
1 9 3
B. –6 7 C. 0 1
9 3 1 0
9 4
A2 + 2A 11X = 0 1 2
A. –6 7
8 17 + 24 3 11X = 0
5
–3 –7
D. –2 –5 9 4 2 4
E. †Kv‡bvwUB bq
8 17 + 8 6 11X = 0
S A Sol n 5C + 2B = A
olve
A. (0, 0) B. (1, 2)
i2 0 –1 0
2 = . = 0 i2 = 0 –1 C. (2, 1) D. (1, 1)
1 0
–3
A. B. C. D.
2 3 4
C. 1 D. 0
3 3 3 3
E. c~e©eZ©x †KvbwUB bq
4 0
x 12 4x 12
1 2 3 –1 –2 –3 S C Sol n –2 3 y = 3 –2x + 3y = 3
olve
7 8 9 –7 –8 –9 4x = 12 x = 3
Ges –2x + 3y = 3 –6 + 3y = 3 ; [∵ x = 3]
1 2 3 1 2 3
ev, 4 5 6 = –1 4 5 6 = –1 3y = 9 y = 3 =
x 3
7 8 9 7 8 9 y 3
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
56 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
olve
n A g¨vwUª‡·i gvÎv 2 2 Ges B g¨vwUª‡·i gvÎv 1 2
olve
S D Sol
14. A Ges B g¨vwUª· `ywUi gvÎv (Order) h_vµ‡g 2 3 Ges 3 5 n‡j
†h‡nZz g¨vwUª·Ø‡qi gvÎv mgvb bq ZvB †hvM Kiv hv‡e bv|
wb‡Pi †KvbwU mZ¨Ñ [SUST. 07-08]
0 1
07. hw` A = Ges X = y nq Zvn‡j AX mgvb-
x
1 0
[JnU. 09-10] A. BA msÁvwqZ n‡e B. AB msÁvwqZ n‡e
x C. AB Gi gvÎv n‡e 52 D. AB Gi gvÎv n‡e 33
A. AX = B. AX =
y
n GLv‡b, A g¨vwUª‡·i gvÎv = 2 3; B g¨vwUª‡·i gvÎv = 3 5
x
olve
y S B Sol
y
C. AX = D. AX =
x AB ¸Yb‡hvM¨ Ges Gi gvÎv = 3 5 Avevi, BA Am¤¢e
y x Engineering
1 y
S D Sol n AX = 1 0 .y = 1.x + 0.y = x
0 x 0.x 1.y
01. X g¨vwUª·wU †ei Ki hLb 2X +
1 2 3 8
olve
3 4 7 2
= [CKRUET. 2021-22]
2 1 –3
A. 2 – 1 B. 2 – 1 C. 4 – 2
1 3 2 6
08. gvb wbY©q Ki- [4 5 6] 3 [KU. 09-10]
1 2 –6 –2 –6
8 D. 4 – 2 E. –4 2
A. [8 15 6] B. [17] C. 15 D. [ 18 ]
S A Sol n 2X + 3 4 = 7 2 2X = 7 2 – 3 4
1 2 3 8 3 8 1 2
6
2 olve
2X = 4 –2 X = 2 –1
2 6 1 3
n [4 5 6] 3 = [8 + 15 6] = [17]
olve
S B Sol
1
02. wZbwU g¨vwU· [x y]
a h x
h b y
Gi ¸Yd‡ji gvb n‡e-
09. hw` A =
3 0 , B = 0 nq Z‡e AB mgvb-
2
5 1 0 3 [JnU. 08-09]
[BUET. 12-13; RU. 17-18; CU. 13-14; BRU-E. 19-20]
3 1 A. [x2a+xyh xyh+y2b] B. [x2a+2xyh+y2b]
A. 15 B. 2
6 0
C. 10
6 0
D. 10 3
6 0
3 3
2
5 C. xyh + y2b
x a + xyh
D. [x2a+xyh+2y2b]
3.2 + 0.0 3.0 0.3
S C Sol n AB = 5 1.0 3= 5.2 + 1.0 5.0 1.3 = 10 3
3 0 2 0 6 0
olve
5
– 2 = [ a x2 + hxy + hxy + b y2] = [x2a + 2xyh + y2b]
,B=
2 2 4
10. A = 3 5 n‡j, AB = ? [JUST-A. 19-20]
03. hw` P =
4 6
2 8
Ges P Q = 0 nq Z‡e g¨vwUª· Q KZ? [RUET. 14-15]
5
3
–1
2 16 2 16 2
A. 0.5 B. 0.5 D.
2
C. –1 C. [0.5 2]
A. 0 B. 1 D. 2 3 3 0.5
5 n P GKwU 2 2 gvÎvi g¨vwUª· Ges P Q g¨vwUª‡·i gvÎv
olve
– 2 S A Sol
,B=
2 2 4 1 0
n A=
2 1 ; Q g¨vwUª‡·i gvÎv n‡e 2 1.
olve
S B Sol 3 5 ; AB = 0 1 = 1
3
–1 4 –6x 4x – 6y
awi, Q = y PQ =
x
2
–2 8y = –2x + 8y
11. A =
4 3
, B =
4 2 4x – 6y
kZ© n‡e, –2x + 8y = 0 ; 4x – 6y = 5 ........ (i); – 2x + 8y = 0 ......... (ii)
n‡j- 5
2 1 3 1
[BSFMSTU. 19-20]
A. 0 B. 1 C. –8i D. 8i
AT = 3 1 = B, AB = 11 5 ; BA = 14 10
4 2 25 11 20 14 0 0 2i
S A Sol n A = 0 2i 0
olve
AB BA 2i 0 0
12. P GKwU 2 3 g¨vwUª· Ges Q GKwU 3 4 g¨vwUª· n‡j QP- [MBSTU-A. 19-20] 0 0 2i 0 0 2i 4 0 0
A. 2 4 g¨vwUª· B. 4 2 g¨vwUª· A2 = 0 2i 0 0 2i 0 = 0 4 0
C. 3 3 g¨vwUª· D. A¸bb †hvM¨ 2i 0 0 2i 0 0 0 0 4
n P g¨vwUª· Gi AvKvi 2 3, Q g¨vwUª‡·i AvKvi 3 4 4 0 0 1 0 0
olve
【
? 】 QUICK PRACTICE CONCEPT TEST ?
01. hw` A = 1 2 nq, Z‡e A2 + 2A-11I Gi gvb KZ? 03. A = [aij]m n Ges B = [bij]m n n‡j A + B g¨vwUª·wUi µg KZ n‡e?
4 –3 A. m n B. m m C. n m D. n m
A. 1 B. –1
1 1
04. hw` A = IB=
2 0
C. 2 D. 0 5 2 5 0 nq, Z‡e AB Gi gvb †KvbwU? [JU. 16-17]
02.
3 0 x 30
5 2 5 2 5 2 5 2
0 5 y = 30 n‡j x Gi gvb KZ? A. B. D. 5
1 2 10 5 C. 10 4 6
A. 4 B. 6
C. 10 D. 16 Answer 01.D 02.C 03.A 04.B
†h g¨vwUª‡·i wbY©vq‡Ki gvb k~b¨ Zv‡K Singular ev e¨wZµgx g¨vwUª· e‡j| †hgb: 8 4
2 1
a3
MEx 01
5
4 a 4
g¨vwUª·wU e¨wZµgx n‡j a Gi gvb n‡e- [IU. 16-17]
2 m – 3 = 0 m – 3m – 2m + 6 – 12 = 0
2
olve
x2 + 3x 10 = 0 (x + 5) (x – 2) = 0 x = 2, 5
m2 – 5m – 6 = 0 (m – 6) (m + 1) = 0 m = 6, 1
4 2
05. A =
3 1
02.
p4 8
g¨vwUª
· wU e¨wZµgx n‡e hw` Gi gvb- 4 I B = 2 1 Gi g‡a¨ †KvbwU e¨wZµgx (Singular)
p + 2
p 1
2
[DU. 09-10, 07-08, 05-06; RU. 17-18; BSMRSTU-B. 19-20] g¨vwUª·- [JU. 13-14]
A. 4, 6 B. 6, 4 C. 4, 6 D. 6, 4 A. A B. B
n g¨vwUª·wU e¨wZµgx e‡j, (p 4) (p + 2) 16 = 0 C. A I B DfqB D. †KvbwUB bq
olve
S A Sol
n †h g¨vwUª‡·i wbY©vq‡Ki gvb k~b¨ Zv‡K e¨wZµgx g¨vwUª·
p2 2p 24 = 0 (p 6) (p + 4) = 0 p = 6, 4
olve
S B Sol
Jahangirnagar University e‡j| †h‡nZz A I B Gi g‡a¨ B Gi wbY©vq‡Ki gvb k~b¨ ZvB B g¨vwUª·wUB
e¨wZµgx g¨vwUª·|
K – 2 4
01. K Gi †Kvb gv‡bi Rb¨ g¨vwUª·wU Ae¨wZµgx bq? [JU-A, Set-I. 2021-22] Rajshahi University
3 9
01.
10 9 x + 4 5
A. B. 30 C. 3 D. 4 3
GKwU e¨wZµgx g¨vwUª· n‡j, x Gi gvb KZ?
3 4
[RU-C, Jupitar-1, Set-1. 2021-22]
S A Sol n g¨vwUª·wU Ae¨wZµgx bq A_©vr e¨wZµgx n‡j 3 9 = 0
K–2 4
olve
A. 0 B. 12 C. 14 D.
(K – 2) × 9 – 12 = 0 9K – 18 – 12 = 0
S D Sol n 4
10 x + 4 5
3 e¨wZµgx n‡j,
olve
9K = 30 K =
3
2 1 x + 4 5 = 3(x + 4) 20 = 0
02. hw` = 0 n‡j, Gi gvb †KvbwU? 4 3
5 + 4
[JU-A. 19-20]
8
A. 5 or 0 B. 6 or 2 3x + 12 20 = 0 3x 8 = 0 x =
3
C. 5 or –3 D. 1 or –3
02. g¨vwUª·wU e¨wZµg n‡j, a Gi gvb KZ?
a 4 8
2 1 a + 2
S D Sol n 5 + 4 = 0 + 4 – 2 – 8 + 5 = 0 2
2
olve
–4 4 2 –1 S B Sol 2 a + 2 2 a + 2
A. 8 4 B. –5 5 C. 4 5 D. 0 0
2 1 1 1
a2 – 2a – 8 – 16 = 0 a2 – 2a – 24 = 0 a = 6, – 4
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
58 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
p–4 7
Chittagong University S A Sol n 8 p – 5 g¨vwUª·wU singular ZvB wbY©vq‡Ki gvb k~b¨
olve
01. wb‡Pi †KvbwU e¨wZµgx g¨vwUª·? [CU-A, Set-1. 20-21]
(p – 4) (p – 5) – 56 = 0 p2 – 4p – 5p + 20 – 56 = 0
–2 –3 –2
A. 3 4 B. 1 2 C. 2 1 D. 3 6 Ans D
1 2 3 2 4
p2 – 9p – 36 = 0 p2 – 12p + 3p – 36 = 0
p(p – 12) + 3(p – 12) = 0 (p – 12) (p + 3) = 0 p = 12, –3
02. a 3 GKwU wm½yjvi g¨vwUª· n‡j ‘a’ Gi gvb KZ?
–4 1 [CU. 15-16] DU Affiliated College Question
A. 0 B. 1 C. –1 2 4 1
D. 12 E. –12 01. k Gi †Kvb gv‡bi Rb¨ 2 k 3 g¨vwUª·wU e¨wZµgx n‡e? [DU-Tech. 22-23]
0 0 2
S E Sol n –4 1 GKwU wm½yjvi g¨vwUª· ZvB wbY©vq‡Ki gvb k~b¨
a 3
olve
A. 3 B. 4 C. 3 D. 4
a + 12 = 0; a = –12 2 4 1
GST (¸”Q) S B Sol n 2 k 3
olve
0 0 2
k Gi †Kvb gv‡bi Rb¨
k 2
01.
8 k k g¨vwUª ·wU GKwU e¨wZµgx g¨vwUª ·- [IU-D. 19-20]
2 4 1
A. –4 B. 4 C. 2 D. 4 e¨wZµg n‡e hw`, 2 k 3= 0 2(2k 8) = 0 k = 4
0 0 2
S B Sol n e¨wZµgx g¨vwUª‡·i wbY©q‡Ki gvb k~b¨
olve
olve
3 1 B. A = 3 3 C. A = 3 6 D. A = –3 4
S C Sol n Singular Matrix Gi wbY©vq‡Ki gvb k~b¨| Engineering
olve
5 + k –2 3 1 9
03. –4 –8 GKwU e¨wZµgx g¨vwUª· n‡j k Gi gvb n‡eÑ [IU. 14-15]
01. 2x 2 6 GKwU e¨wZµgx g¨vwU· n‡j x Gi gvb wbY©q Ki| [CKRuet: 20-21]
A. –6 B. –4 C. –7 D. 6 x2 3 3
S A Sol n g¨vwUª· e¨wZµgx n‡j Matrix Gi wbY©q‡Ki gvb k~b¨ A. 1,3 B. – 1, – 3 C. 2,3
olve
D. – 2, 3 E. – 1,3
(5 + k) . (–8) – 8 = 0 k = –6 k = –6 2 2
S A Sol n 3(6 – 18) – 1(6x – 6x ) + 9 (6x –2x ) = 0
olve
MEx 01 hw` A =
2
1
4
3
nq Z‡e A–1 = ? [DU. 06-07; RU. 15-16; JnU. 06-07; CU. 13 -14]
k k 2
GKwU ev¯Íe g¨vwUª·| k Gi †Kvb gv‡bi Rb¨ g¨vwUª·wUi wecixZ g¨vwUª· cvIqv hv‡e bv?
MEx 02
2 k
[KUET. 12-13; SUST. 17-18]
A33 =
3 4
1 0 = – 4
–15 5 T
1
10
1
–10
A–1 = Adj(A) = 11 –10 –7
A 12 –10 –4
–15 3/2 –11/10 –6/5
1
11 12
=
–10 10 –10 –10 = –1 1 1 (Ans.)
5 –7 –4 –1/2 7/10 2/5
cos a sin a
MEx 05 A = nq, Zvn‡j a Gi gvb KZ n‡j, |A + A–1| = 1 n‡e?
sin a cos a
[RU. 19-20]
= 0
2cos a 0 2
2cos a = 4cos a
|A + A–1| = 4cos2a 1 = 4cos2a 2cos a = 1; a = 2n +
3
a Gi gvb n‡j |A + A–1| = 1 n‡e|
3
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
60 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
olve
2 1 1 3
01. hw` A = 3 1 nq, Z‡e A1 mgvb- [DU. 10-11; BRU-D. 19-20] 03. hw` A = nq, Zvn‡j |Adj(A)| KZ n‡e? [JU-A, Set-O. 2021-22]
2 2 4 2
A. 10 B. 1000
A. 2 4 B. 0 1 C. 1 2 D. 3 4
1 3 1 0 3 4 1 2
C. 100 D. 110
–1 –3
S A Sol n A = 4 2 n‡j Adj A = –4 –1 |AdjA| = (–2 + 12) = 10
2 3
1
olve
1
=
1 1 2 1 2
S D Sol n A = 1 3
olve
3 3 3 4 04. A =
1 2 2 4 Gi wecixZ g¨vwUª· wb‡Pi †KvbwU? [JU-A, Set-O. 2021-22]
2 2
A.
1 4 3
B.
1 1 3
02. A =
7 6
8 7
n‡j A 1
= ? [DU. 08-09] 2 2 1 22 4
7 6 7 8 C. 7 6 D. 7 8 C.
1 4 2 1 4 3
A. 3 1 D.
3 2
8 7 6 7 8 7 6 7
B. 2 10
–1 –3
S C Sol n A = 49 48 8 7 = 8 7
6 6
S A Sol n A = 2 4
1 1 7 7
olve
olve
1 1 4 3 14 3
03. hw` A =
1 2 A–1 = Adj (A) A–1 =
–4 + 6 –2 –1 2 –2 –1
nq Z‡e –1 =
3 4
A [DU. 06-07; RU. 15-16, 12-13,18-19; JnU. 06-07] |A|
A. –2 1 B. –3 1 C. – –2 1 D. – –3 1 05. A = 7 9 n‡j A KZ n‡e?
1 4 –3 1 4 –2 1 4 –3 1 4 –2 4 5 –1
[JU-A, Set-Q. 2021-22]
2 2 2 2
–4 7 9 –5
S D Sol n A = 3 4
1 2 A. 5 –9 B. –7 4
olve
4 –7
C. 5 –4 D. –5 9
1 1 4 –2 1 4 –2 9 7
A–1 = 1 = – 2 –3
4 – 6 –3 1
adj(A) =
Det(A)
9 –5 9 –5
S B Sol n A = 7 9; A = 36 – 35 –7 4 = –7 4
4 5 –1 1
Jahangirnagar University
olve
01. hw` A =
1 4 k1 2
2 6
nq, Z‡e A1 Gi gvb †KvbwU? [JU-A, Set-H. 22-23]
06. k Gi †Kvb gv‡bi Rb¨
2 k 2 g¨vwUª·wU wecixZKiY‡hvM¨ bq?
1 6 4 1 6 4 [JU-A, Set-F. 2021-22]
14 2 1 14 2 1
A. B.
3 ± 17 3 ± 15
A. 2 B. C. 1 D.
1 6 4 1 6 4 2 2
14 2 1 14 2 1
C. D.
k–1 –2
|
S B Sol n kZ©g‡Z, –2 k – 2 = 0 |
olve
n A = 1
4 1 4
olve
S C Sol 2 6 ; |A| = 2 6 = 6 8 = 14
(k – 1) (k – 2) – { – 2 × (– 2)} = 0 k2 – 2k – k + 2 – 2 = 0
1 6 4 1 6 4 3 17
A1 k2 – 3k – 2 = 0 k =
14 2 1 14 2 1
=
2
02. hw` A = nq, Z‡e A1 Gi gvb †KvbwU?
1 2
[JU-A, Set-G. 22-23] 07. A =
4 3
3 4 3 2 Gi wecixZ g¨vwUª· wb‡Pi †KvbwU? [JU-A, Set-M. 2021-22]
1 4 3 1 4 2
A. B.
2 3 2 3 4 3
A. B.
2 3
2 2 1 2 3 1 C. D.
3 4 3 4 3 4 3 2
1 4 3 1 4 2 –3 –2 3
S C Sol n A = 3 2 A = 8 – 9 – 3 4 3 –4
4 3 –1 1 2
C. D.
olve
2 2 1 2 3 1
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 61
m–2 6
08. A = S C Sol n 2 m – 3 = 0 m – 3m – 2m + 6 – 12 = 0
2
Ges AB = 11 24 n‡j, B = ? [JU-A, Set-M. 2021-22]
1 3 12 2
olve
3 4
3 5 1 m2 – 5m – 6 = 0 (m – 6) (m + 1) = 0 m = 6, 1
A. 14 B. 0 C.
12 5 0
D. †KvbwUB bq
1 6 1 6
02. A =
2 3
1 3
Gi wecixZ g¨vwUª· †KvbwU? [RU-C, Feldspar-1. 22-23]
S C Sol n A = 3 4 Ges AB = 11 24
1 2 3 12
olve
1 3 3 1 3 1
A. B.
3 1 2 3 3 2
GLb, AB = 11 24 A–1 AB = A–1 11 24
3 12 3 12
1 3 3 1 3 1
C. D. 3
–2 1 3 1 2 3 2
1 4 –2 3 12 3 1
3 12 5 0
B=
4 – 6 – 3 1 11 24 2 – 2 11 24 –1 6 S A Sol n A = 1 3
= 2 3
olve
–1 –3 1 3 3 1 3 3
09. A = n‡j, A1 KZ? A–1 =
4 6 – 3 1 2 3 1 2
[JU. 18-19; JnU. 14-15] =
2
A.
3
B. 2
1 4 1 1 3 2 1
03. A = I B = 3 5 n‡j, (BA)1 = KZ? [RU-C, Quartz-2. 22-23]
2 3
2 2 1 2 4 5 7
44 1 1 44 1
C. 1 3
A. B.
1 4 2 4
2 3 1 D.
10 2 1 31 1 13 31 1
–1 –3 1 44 1 1 31 1
S A Sol n A = 2 4
olve
13 31 1 13 44 1
C. D.
1 1 4 3 1 4 3 2 1 2 3 4 + 5 – 6 + 7
S B Sol n BA = 3 5 5 7 = 6 + 25 9 + 35 = 31 44
A–1 = 1 1
– 4 + 6 –2 –1 2 –2 –1
adj(A) = =
olve
Det(A)
1 3
hw` A = |BA| = 44 – 31 = 13
4 2 nq, Zvn‡j |adj (A)| KZ n‡e? [JU-A. 2018-19]
10.
1 44 – 1
(BA)–1 =
A. 10 B. 1000 13 – 31 1
04. j2 = – 1 n‡j,
C. 100 D. 110 j j
1 3 2j j
Gi wecixZ g¨vwUª· †KvbwU?
2 3
S A Sol n A = 4 2 Adj A = 4 1
olve
1
A.
0
B.
a 0 a
0 b 1
b 0 1 j j 1 j j j j
A1 = 2 A1 =
j 2j2 2j j 1 + 2 2j j 2j j
=
a
C. D.
0 0 b
0 b a 0 05. A =
2 1 1
4 3 n‡j A = ? [RU. Sinovac, Set-1. 20-21]
S A Sol n M = 0 b |M| = 0 b = ab
a 0 a 0
1 2 1
A.
1 3 1
B.
olve
2 4 2 2 4 3
1 1
1 b 0 a 0 a 1 3 1 3 1
D.
1
0
M = C.
2 4 2 4 2
= =
ab 0 a 0 1 0 b1
b
S C Sol n A = 4 3
2 1
olve
1
M1 I = M1 =
a 0
[†h‡nZz I GKK g¨vwUª·]
0 b1 V
A–1 =
1 3 – 1 = 1 3 – 1
2 × 3 – 4 × 1 – 4 2 2 – 4 2
A =
5 2
12.
3 1
n‡j A1 Gi gvb-
06.
[JU. 15-16; JnU. 07-08] 4 2
1 3 1 1 1 2 3 2 -Gi wecixZ g¨vwUª· †KvbwU? [RU. 17-18]
A. 1
2 11 3 5
B.
5 1 –1 –1 – 3
1 1 2 1 1 2 A. 3 B. 2
C. D. 3 –
2 2
2 1
11 5 3 3 1
2 –1 3 2
1 2 1 1 2
S B Sol n A = 5 + 6 3 5 = 11 3 5
1 1
C. 3 D. 2
olve
– 2 1 –1 1
Rajshahi University
S A Sol n A = 3 2
4 2
olve
5
A. B. 1
(AB)1 = B1A1| mwVK myZivs GwU g¨vwUª‡·i •ewkó¨ bq| 2
2 2
08.
3 2 C. D.
2 1
Gi wecixZ g¨vwUª· †KvbwU? [RU. 16-17; CU. 15-16] 3 5
–3
–3 2
x – 3
1
A. 2 –1 B. 2 2
1 3
1 1 – 2
3
2 (x – 3)
n B–1 =
x–3 = –2
olve
1 –2 –1 2 S A Sol
C. –2 3 D. 2 –3
x – 3
x
–2 x
x–3
1 1 2
S D Sol n A = 3 – 4 2 3
–1 1 5
†h‡nZz A = B–1; †m‡nZz –2 = x – 3 ev, x = 2
olve
1 –2 –1 2
= – –2 3 = 2 –3 05. hw` A =
2 –3
nq, Z‡e A–1 †KvbwU?
4 –1
[CU. 17-18]
09. A =
3 1 –1 –3 3 –1 1 –1 3
A. –4 2 B. 2 –4 C. 0 1
1 0
9 3
n‡j, A Gi wecixZ g¨vwUª· †KvbwU? D.
10 –4 2
[RU-C. 16-17]
3 –1 –3 1
A. –9 3 B. 9 –3 –1 1 –1 3 1 –1 3
S D Sol n GLv‡b, A = 2(–1) – (–3).4 –4 2 = 10 –4 2
olve
3 –9
C. –1 –3 D. wbY©q‡hvM¨ bq 5 3 2
06. If A = 0 4 1 then |A| = KZ? [CU-I. 16-17]
3 –1 0 0 3
S D Sol n A = 9 – 9 –9 3, hv wbY©q‡hvM¨ bq|
–1 1
olve
A. 30 B. 40 C. 50
10.
cos sin D. 60 E. 66
sin cos Gi wecixZ g¨vwUª·- [RU. 15-16; DU. 13-14]
S D Sol n |A| = 5(12 – 0) + 0 + 0 = 60
olve
D. –3 E. 7
cos sin
= S C Sol n g¨vwUª·wUi wecixZ g¨vwUª· cvIqv hv‡e bv hw` g¨vwUª·wUi
olve
S A Sol
1 –2
–1 1 1 –2 4
02. P = n‡j –1
Gi gvb †KvbwU? n M=
–
1 1
1 3
olve
2 –1 3
P [CU-D, Set-2. 20-21] S A Sol =
2 2
A.
0 1 1 1
1 0 B. –1 1
3
2
3 –4
=
–1/2 1
C. D.
1/2 1 1/2 M = –1
2
1 1/2 1/2 1/2 3
– + 1
1 –2
1
1
1 2 2
1
n P = 1
1
2 2 –b
09. hw` A = nq, Z‡e A–1 = KZ?
1 a
1 1 P = 1 1
olve
S D Sol c d
[CU. 15-16]
2 2 A. ad – bc B. ad + bc
–2
03. M = Gi wecixZ g¨vwUª· bv _vK‡j x Gi gvb KZ? [CU. 19-20, 16-17]
1 1 a b 1 a b
x 4 C. D.
ad – bc –c d ad – bc –c d
A. 2 B. 1 1 d b
ad + bc –c a
C. –2 D. –1 E.
1 –2
S C Sol n M = x 4 Gi wecixZ g¨vwUª· bv _vK‡j g¨vwUª·wUi S E Sol n A = c d
a –b
olve
olve
AB =
GST (¸”Q) 2 1
01. wb‡¤œi †Kvb g¨vwUª‡·i wecixZ †bB? [JKKNIU. 19-20] 1 –1
3 3 2 1
4 –2 –3 1 1 1
A. 1 6 B. –1 6 C. 3 2 D. 2 4
2 4 6 4
B = A–1
1
2 1 1 –1
2
=
1 –1
S C Sol n wecixZ g¨vwUª· _vKvi kZ©:
– 3 3
olve
i. eM© g¨vwUª· n‡Z n‡e| ii. g¨vwUª‡·i wbY©vq‡Ki gvb k~b¨ nIqv hv‡e bv|
3 3 1 0
2 1 1 1
6 4 g¨vwUª‡·i wbY©vq‡Ki gvb k~b¨ ZvB wecixZ g¨vwUª· wbY©q Kiv hv‡e bv| + –
3 2 3 3
= –2 1 –1 –1
=
3 3
4 1
hw` A =
9 4 – + –
02. nq, Z‡e A(AdjA) = ?, †hLv‡b Adj A n‡jv A Gi
6 3 3 3
mnvqK (adjoint) g¨vwUª·| [JnU. 17-18] 08. g¨vwUª· A = + 4 6
4 3
Gi wecixZ g¨vwUª· _vK‡e bv, hw` Gi gvb nq-
3 –4 3 0 3 4 1 0
A.
–6 9 B. 0 3 C. D. [MBSTU-C. 19-20]
–6 9 0 1 A. 0 B. 4
3 –4 9 4 3 –4
S B Sol n Adj(A) = 6 9 A.Adj(A) = 6 3 –6 9 = 0 3
3 0 C. 4 D. 12
olve
olve
S B Sol
A =
4 7
n‡j T –1
KZ? ( + 4)3 24 = 0 n‡j wecixZ g¨vwUª· _vK‡e bv|
–5 –9
03. (A ) [JKKNIU. 17-18]
9 –5 –9 5 9 –5 12
A. 7 –4 B. –7 4 C. –7 4 D. 7 4
9 5 3 + 12 24 = 0 ; =
3
=4
4 –5 x –1 –1
S A Sol n A = –5 –9 A = 7 –9
4 7
09. x Gi †Kvb gvb¸wji Rb¨ 0 x –3 g¨vwUª‡·i †Kvb wecixZ
T
olve
x – 4 –1 1
(AT)–1 =
1 –9 5 = 9 –5
–36 + 35 –7 4 7 –4 g¨vwUª· cvIqv hv‡e bv? [SUST. 15-16]
0 x = 0
1 –2
x – 4 –1 1 –4 0 1
S B Sol n M = –3 5 x(x) – 4(3 + x) = 0 x2 – 4x – 12 = 0
olve
–1 1 –1 1
S D Sol n X = –2 + 3 –3 2 = –3 2
1
06. †Kvb g¨vwUª·wUi wecixZ g¨vwUª· †bB- –1
olve
2 1 2 3
Ackb †U÷ Ki‡jB n‡e| AL©vr
S B Sol n BA = 3 5 5 7
olve
A–1 =
1
adj (A)
†h Ack‡bi mv‡_ A g¨vwUª· ¸Y
4 + 5 6 + 7 1 1
=
Det(A) Ki‡j AB g¨vwUª· cvIqv hvq †m
6 + 25 9 + 35 = 31 44
1 1 AckbwUB mwVK Ans.
|BA| = 44 31 = 13
=
1 1 1 3 3
3 –2 1
= 44 1
(BA)1 =
2 1 1
–
3 3 13 31 1
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
64 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
S D Sol n A = 2
4
02. A1 wbY©q Ki: A =
1 4 1
olve
2 6 6
[RUET. 13-14]
C.
1 6 4 1 6 4 1 6 4
14 2 1
D. None
14 2 1 14 2 1
= =
【
? 】 QUICK PRACTICE CONCEPT TEST ?
01. wb‡Pi †Kvb g¨vwUª‡·i wecixZ g¨vwUª· cvIqv hv‡e bv|
03. A =
[BUP. 20-21] 1 2
3 n‡j Adj (A) wb‡¤œi †KvbwU?
4
A. B. C. D.
2 1 1 10 1 5 10 1
5 10 2 5 2 10 5 2 2 4 2 1 2 4 2
B. C. D.
4
A.
02. A GKwU Ae¨wZµgx eM© g¨vwUª· n‡j A-1 Gi wecixZ g¨vwUª· †KvbwU? 3 1 3 1 3 4 3 1
A. A B. -A C. A D.(O) Answer 01.C 02.A 03.A
HSC BOARD QUESTIONS ANALYSIS
01. KY© g¨vwUª‡·i †ÿ‡ÎÑ [XvKv †evW©-2019] wb‡Pi Z‡_¨i Av‡jv‡K 05-06 bs cÖ‡kœi DËi `vI:
(i) aij 0, i = j
A = 2
x+4 8
(ii) aij = 0, i > j x – 2 GKwU g¨vwUª·|
(iii) aij = 0, i < j 05. hw` A g¨vwUª·wU e¨vwZµgx nq, Z‡e x Gi gvb wb‡Pi †KvbwU? [iv.†ev. 22]
wb‡Pi †KvbwU mwVK? A. – 4, 2 B. – 2, 4
A. i I ii B. i I iii C. – 4, 6 D. – 6, 4
S D Sol n †Kv‡bv g¨vwUª· e¨wZµgx n‡e hw` H g¨vwUª‡·i wbY©vq‡Ki gvb
olve
C. ii I iii D. i, ii I iii
n KY© g¨vwUª· (Diagonal Matrix): †h eM© g¨vwUª· cÖavb k~b¨ nq|
olve
S D Sol
K‡Y©i (aij 0; i = j) f~w³¸‡jv e¨wZZ Ab¨me f~w³ k~b¨| x + 4 8 = 0
2 1 2 x 2
02. A = 1
5 3 n‡j, wb‡Pi †KvbwUi gvb A ? [XvKv †evW©-2019] (x + 4) (x 2) 16 = 0 x2 + 4x 2x 8 16 = 0
x2 + 2x 24 = 0
A.
3 1 3 1 x (x + 6) (x 4) = 0 x = 6, 4
5 2 5 2
B.
3 1 3 1 06. cÖ`Ë g¨vwUª‡· x = 3 n‡j A2 wb‡Pi †KvbwU? [iv.†ev. 22]
2
C. 5 D.
5 2 A. 16 17
65 64
B. 41 43
49 46
–1 1
S C Sol n A = Det(A)
olve
2
03. A = A n‡j A g¨vwUª·wU- [g.†ev. 22]
A2 = 2 1 2 1 = 14 + 2 16 + 1 = 16 17
7 8 7 8 49 + 16 56 + 8 65 64
A. mgNvZx B. e¨wZµgx
C. cÖwZmg D. Ae¨wZµgx
0 5 – 3
n hw` A2 = A n‡j A g¨vwUª· †K mgNvZx g¨vwUª· ejv nq|
07. – 5 0 y wecÖwZmg g¨vwUª· n‡j x, y = ?
olve
2 0 0
1
A. B.
24 0 0 4
nq|
2 0 0
0 3 0 0 5 – 3T 0 5 – 3
0 0 4 –5 0 y =––5 0 y
x 4 0 x 4 0
1 0 0
2 0 0 0 – 5 x 0 –5 3
D. 3 1
2 1 0
C. 24 0 3 0 5 0 4 = 5 0 – y
0 0 4 0 – – x – 4 0
0 0 4 3 y 0
1 x = 3, y = –4
1
S D Sol n A = Det(A)
olve
S D Sol
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (1g Ask: g¨vwUª·)
© Medistry 65
olve
2 4
10. 1 2 – 3
4 8 GKwUÑ [Kzwgjøv †evW©-2019] A–1 =
8 – 9 – 3 4
(i) eM© g¨vwUª· 1 2 – 3 – 2 3
– 1 – 3 4 3 – 4
(ii) e¨wZµgx g¨vwUª· = =
(iii) cÖwZmg g¨vwUª· 15. A GKwU eM© g¨vwUª· Ges K GKwU ‡¯‹jvi n‡j- [wm.†ev. 22]
wb‡Pi †KvbwU mwVK? i. (At)t = A
A. i I ii B. ii I iii ii. (KA)t = KAt
C. i I iii D. i, ii I iii iii. hw` |A| 0 nq, Z‡e |A–1| =
1
n i. eM© g¨vwUª· (Diagonal Matrix) : †h g¨vwUª‡·i mvwi |A|
olve
S D Sol
wb‡Pi †KvbwU mwVK?
msL¨v Kjvg msL¨vi mgvb Zv‡K eM© g¨vwUª· e‡j|
A. i I ii B. i I iii
ii. e¨wZµgx g¨vwUª· : †h eM© g¨vwUª‡·i wbY©q‡Ki gvb k~b¨|
T C. ii I iii D. i, ii I iii
iii. eM© g¨vwUª· A ‡K cÖwZmg g¨vwUª· ejv n‡e hw` A = A nq| 2 3
S A Sol n awi, A = 1 6
olve
1
11. P =
1 2 3 4 Ges Q = 2 n‡j PQ Gi µg KZ? 2 3
At = 1 6 = 3 6
2 1
2 3 4 5
[Kzwgjøv †evW©-2019]
3
4 2 1t 2 3
A. 1 2 B. 2 1 C. 4 1 D. 4 4 (At)t =
3 6 1 6
= =A
S B Sol n P24 41Q
olve
(i) bs mwVK|
= 2 3 2K 3K
PQ Gi AvKvi 2 1 KA = K1 6 = K 6K [K GKwU †¯‹jvi]
2 7
12. B = 2K 3K
t
n‡j B1 †KvbwU? [Kzwgjøv †evW©-2019] t
1 4 (KA) = K 6K
4 7
A. B. 1 =
2K K
= K
7 4 2 1
1 2 2 = KAt
3K 6K 3 6
4 1 2 1 (ii) bs mwVK|
C. 7 D. 7
2 4 Ans B
2 3
– |A| = 1 6 = 12 + 3 = 15 = 0
13. hw` A = nq, Z‡e-
2 3
1 6
[ P.†ev. 22]
2 1
i. A GKwU wecÖwZmg g¨vwUª·
A1 =
1 6 3 = 4 5
ii. |A| = 15 15 1 2 1 2
iii. A GKwU A‡f`NvwZ g¨vwUª· bq 15 15
wb‡Pi †KvbwU mwVK? 2 1
A. i I ii B. i I iii C. ii I iii D. i, ii I iii 1
|A | = 5 5 4
= +
1
= =
5 1
=
1
S C Sol n wecÖwZmg g¨vwUª· (SAkew Symmetric Matrix): GKwU 1 2 75 75 75 15 |A|
olve
15 15
eM© g¨vwUª· A †K wecÖwZmg g¨vwUª· ejv n‡e hw` Ar = A nq|
(iii) bs mwVK bq|
2 3T 2 1 2 1
= + 2
3 6 A
T
A = 1 1 3
6 3 6
=
16. 2 4 8 GKwU e¨wZµgx g¨vwUª· n‡j, -Gi gvb- [wm.†ev. 22]
(i) bs mwVK bq| 3 5 10
2 3
|A| = 1 6 = 12 + 3 = 15 (ii) bs mwVK|
A. –2 B. 2
C. 4 D. –4
A‡f`NvwZ g¨vwUª· (Involutory Matrix): GKwU eM© g¨vwUª· A †K n
g¨vwUª· wU e¨wZµgx n‡j Gi wbY©vq‡Ki gvb k~b¨|
olve
S C Sol
A‡f`NvwZ g¨vwUª· ejv n‡e hw` A2 = 1 nq|
2 3
1 3 + 2
A = 1 n‡j, 2 4 8 = 0
6 3 5 10
2 3 2 3 4 3 6 18 1 24 1 (40 – 40) – 3 (20 – 24) + ( + 2) (10 – 12) = 0
2
A = 1 1
6 1 6 2 + 6 3 + 36 8 33
= =
0 + 12 – 2 – 4 = 0
myZivs, A GKwU A‡f`NvwZ g¨vwUª· bq| – 2 = – 8
(iii) bs mwVK| =4
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
66 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
8 5
17. A–1 =
2 0 –1 0 1
n‡j (AB)–1 Gi gvb KZ? [wm.†ev. 22] 22. A =
0 2
,B =
1 0 7 2 n‡j, adj.A = †KvbwU? [e.†ev. 22]
olve
= 2 + 0 0 + 0 = 2 0
0+0 0+2 0 2
Adj A = – 7 8
2 5
18. hw` A GKwU eM© g¨vwUª· Ges A2 = I nq, Z‡e A †K e‡j- [h.†ev. 22] 2 3
23. A + B = 4 5
A. k~b¨NvwZ g¨vwUª· B. A‡f`NvwZ g¨vwUª· 4 1 Ges A B = 2 7 n‡j wb‡¤œ †KvbwU B g¨vwUª·?
C. k~b¨ g¨vwUª· D. wecÖwZmg g¨vwUª· [ewikvj †evW©-2019]
1 4 1 1
A. B.
n k~b¨NvZ g¨vwUª· (Nilpotent Matrix): GKwU eM© g¨vwUª·
olve
S B Sol
n 3 4 3 3
A Gi Rb¨ A = 0 n‡j (†hLv‡b n ÿz`ªZg ¯^vfvweK msL¨v) g¨vwUª·‡K
C. 2 6 D. 1 3
6 2 3 1
k~b¨NvZ g¨vwUª· e‡j Ges n †K k~b¨NvwZ m~PK e‡j|
K AckbwU mwVK bq| 2 3
S A Sol n A + B – A + B = 4 1 – 2 7
4 5
olve
A‡f`NvwZ g¨vwUª·: GKwU eM© g¨vwUª· A †K A‡f`NvwZ ejv n‡e hw`
A2 = I nq| –2 –8
2B = 6 –8
L AckbwU mwVK|
1 4
B = 6 –8 =
k~b¨ g¨vwUª·: †h g¨vwUª‡·i me¸‡jv fzw³ k~b¨| 1 –2 –8
2 3 4
M AckbwU mwVK bq|
24. hw` I3 GKwU wZb µ‡gi g¨vwUª· nq Z‡e (I3)1 = ? [e.‡ev. 2017]
GKwU eM© g¨vwUª· A †K wecÖwZmg g¨vwUª· ejv n‡e hw` AT = – A nq|
A. 1 B . I3
N AckbwU mwVK bq| 1
C. I3 D. 3I3
0 3
19. P = [1 2 3] I Q = 1 n‡j PQ Gi gvbÑ [h‡kvi †evW©-2019]
S B Sol n AB = 1 n‡j,
olve
2
A. [8] B. [1476] A1 = B ev B1 = A
0 GLb, I3.I3 = I3
C. 2 D. [0 2 6] (I3)1 = I3
6
5 0 0
0
25. 0 5 0 g¨vwUª·wU GKwUÑ [mKj †evW©-2018]
S A Sol n PQ = [1 2 3] 1 = [8] 0 0 5
olve
A. 8 B. 4
7 C. 4 D. 6
B = 8
9 n (p + 1) (–8) – 24 = 0
olve
S B Sol
A g¨vwUª‡·i µg 2 × 3, B g¨vwUª‡·i µg 3 × 1 – 8p = 32
AB g¨vwUª‡·i µg 2 × 1 p=–4
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (2q Ask: wbY©vqK)
© Medistry 67
? k‡ãi Drm
cÖv_wgK Z_¨
Step-2: evwK PviwU Dcv`vb w`‡q (2 2) gvÎvi wbY©vqK MVb Ki| †mwUB Abyivwk| †hgb- 1 Gi Rb¨ Abyivwk
6 7
6 9
Step-3: gvb ‡ei Ki‡Z ej‡j AvovAvwo ¸b K‡i gvb †ei Ki| †hgb- 1 Gi Rb¨ gvb = (6 9 – 7 6) = 12
7 Gi Rb¨ Abyivwk
1 2
3 6 Ges 7 Gi Rb¨ Abyivwki gvb = (1 6 2 3) = 0
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
68 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
2 1 5
MEx 02
4 3 2 wbY©vqKwUi –1 Ges 0 Gi Abyivwk †ei Ki|
1 0 6
General Rules [Written] & [MCQ]
4 2
–1 Gi Rb¨ Abyivwk →
1 6 Ges –1 Gi Rb¨ Abyivwki gvb = (4 6 – 1 (–2)) = 26
0 Gi Rb¨ Abyivwk →
2 5
4 2 Ges 0 Gi Rb¨ Abyivwki gvb = (2 (–2) – 4 5) = –24
a1 b1 c1
MEx 03 a2 b2 c2 G b3 Gi mn¸YK KZ?
a3 b3 c3
General Rules [Written] & [MCQ]
b3 Gi mn¸YK = ( 1)
3+2 a1 c1 a1 c1
=
a2 c2 a2 c2
1 0 2
MEx 04 A = 2 1 3 G A12 Gi mn¸YK Ges A21 Gi Abyivwk KZ?
1 5 0
General Rules [Written] & [MCQ]
A12 Gi mn¸YK = ( 1)1+2
2 3
1 0 = 3
0 2
A21 Gi Abyivwk = (1)2+1 5 0
= (0 5 (–2)) = 10
MEx 05 wb‡¤œi wbY©vq‡Ki (–2a) Gi mn¸YK KZ? [KUET. 11-12; RUET. 14-15]
2 2
1 + a – b 2ab –2b
2ab 1 – a2 + b2 2a
2b –2a 1 – a2 – b2
General Rules [Written] & [MCQ]
1 + a2 – b2 –2b
(–1)3+2
2ab 2a
= (–1) [2a + 2a3 – 2ab2 + 4ab2]
= – 2a(1 + a2 + b2)
7 8 9
B.
7 8
A.
1 2 GST (¸”Q)
7 8 1 2
1 2 1 2 2 3 1
C.
7 8 D. 01. 4 5 9 wbY©vqKwUi 7 Gi cofactor-Gi gvbÑ [IU-F. 12-13]
7 8 6 7 8
S C Sol n Ô6Õ Gi mn¸YK = 7 8
1 2 A. 14 B. –14 C. 23 D. –23
olve
2 3 1
B Sol n 4 5 9 7 Gi Co-factor = (–1) 4 9= – 4 9= –14
3+2 2 1 2 1
1 2
=
olve
S
7 8 6 7 8
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (2q Ask: wbY©vqK)
© Medistry 69
2 2
cÖkœg‡Z, –2x = – 6 D. 0 E. 2
x=3 2 3 x
C Sol
n 0 4 x
olve
1 0 2 S
1 3 1 x
03. X = 1 2 0 n‡j X Gi (3, 2) Zg mn¸YK KZ? [MBSTU-A. 16-17]
0 –2 3
(2, 1) th fzw³i mn¸YK =
3 x
A. 0 B. –2 3 1 x = 9
C. 2 D. –3 (3 3x 3x) = 9 6x 3 = 9 x = 2
n (3, 2) Zg Dcv`vbwU – 2 Gi mn¸YK 2 –3 7 5
olve
S C Sol
02.
3 205 1 u
wbY©vq‡Ki “1” Gi mn¸YK n‡jvÑ [KUET. 14-15]
= – 1 0 = – (0 – 2) = 2
1 2
–1 97 4
3
0 –7 k 7
04.
1 2 A. u B. k C. 0
3 4
g¨vwUª· G 2 Gi mn¸YK KZ? [JUST. 13-14]
D. –935 E. –297
A. –1 B. –2
S C Sol n 1 Gi (mvwi + Kjvg) = (2 + 3) = 5 we‡Rvo
olve
C. –3 D. –4
E. –5 2 –3 5 2 3 2
1+2 1 Gi mn¸YK = – 3 –1 4= 3 1 3; [C3 = C3 + C2]= 0
S C Sol n 2 Gi mn¸YK = (–1) |3| = –3
olve
0 –7 7 0 7 0
【
? 】 QUICK PRACTICE CONCEPT TEST ?
2 5 1 1 2 3
01. 3 4 2 wbY©vqKwUi (2, 3) Zg fzw³i Abyivwk wb‡¤œi †KvbwU? 02. 2 3 4 wbY©vqKwUi (3, 2) Zg fzw³i mn¸YK KZ?
1 5 7
1 3 2
2 1 2 5
C.
A. 2 B. 3 C. 4 D. 5
A.
3 1
B. D. None
4 3 1 2 1 3 Answer 01.C 02.A
wbY©vq‡Ki mvnv‡h¨ mgvavb wbY©q : †µgv‡ii m~‡Îi mvnv‡h¨ Lye mn‡RB GKNvZ mgxKiY †Rv‡Ui mgvavb †ei Kiv hvq| †hgb :
`yB PjK wewkó GKNvZ mgxKiY †Rv‡Ui †ÿ‡Î †µgv‡ii m~Î wZb PjKwewkó GKNvZ mgxKiY †Rv‡Ui †ÿ‡Î :
: a1x + b1y + c1z = d1 ......... (i)
a1x + b1y = c1 ......... (i) a2x + b2y + c2z = d2 ......... (ii)
a2x + b2y = c2 ......... (ii) a3x + b3y + c3z = d3 ......... (iii)
Dx Dy x y z 1
x= Ges y= Avgiv cvB, = = =
D D D x D y D z D
GLv‡b, x I y Gi mnM¸wj Øviv MwVZ wbY©vqK, a1 b1 c1
GLv‡b, x, y I z Gi mnM¸wj Øviv MwVZ wbY© v qK, D = a2 b2 c2 0
D=
a1 b1
a2 b2 0 a3 b3 c3
x Gi mn‡Mi cwie‡Z© aªæeK c` wb‡q MwVZ wbY©vqK, d1 b1 c1
x Gi mn‡Mi cwie‡Z© aª æeK c` wb‡q MwVZ wbY© v qK, D = d2 b2 c2
Dx =
c1 b1 x
c2 b2 d3 b3 c3
Ges y Gi mn‡Mi cwie‡Z© aªæeK c` wb‡q MwVZ wbY©vqK, a1 d 1 c1
Avevi, y Gi mn‡Mi cwie‡Z© aªæeK c` wb‡q MwVZ wbY©vqK, Dy =a2 d2 c2
Dy =
a1 c1
a2 c2 a3 d3 c3
1 b1 d1
a
Ges z Gi mn‡Mi cwie‡Z© aªæeK c` wb‡q MwVZ wbY©vqK, Dz = a2 b2 d2
a3 b3 d3
Dx Dy Dz
x= ,y= I z = D n‡Z x, y I z Gi gvb A_©vr, cÖ`Ë mgxKiY †Rv‡Ui
D D
mgvavb wbY©q Kiv hvq|
x y 1 x y 1 x y 1
eRª¸Yb m~Îvbymv‡i, = = = = = =
– b1c2 + b2c1 – c1a2 + c2a1 a1b2 – a2b1 c 1 b 1 a 1 c 1 a 1 b 1 D x D y D
c2 b2 a2 c2 a2 b2
Note : hw` D 0 nq, Z‡e mgxKiY †Rv‡Ui Abb¨ mgvavb we`¨gvb| †Kej D 0 k‡Z©B †µgv‡ii wbqg cÖ‡hvR¨|
1 2 3
MEx 01 4 5 6 wbY©vq‡Ki gvb KZ?
0 8 0
General Rules [Written] & [MCQ]
1(5.0 – 8.6) –2(4.0 – 0.6) + 3(4.8 – 5.0) = – 48 – 0 + 96 = 48
Procedure With Steps and Figure
†h fv‡e AsKwU Ki‡Z n‡e: cv‡ki wPGwU fv‡jv K‡i jÿ Ki| c×wZwUi myweav :
0
†Kvb mvwi Kjvg GK Kivi †Kvb Sv‡gjv/Tension _v‡K bv| 48 †hvMdj
cix¶vi n‡j wM‡q ‡PvL eyu‡S AsK Kiv ïiy Ki‡Z cvi‡e| 1 2 3 0
gy‡L gy‡L Kiv m¤¢e| 40 sec Gi †ewk mgq jvM‡e bv| cix¶vq G ai‡bi 4 5 6
we‡qvM
AsKB †ewk Av‡m | 0 8 0
Step-1: 1st Ges 2nd Row `ywU cv‡ki wP‡Îi gZ wb‡P wb‡P wjL|
2
Step-2: Zvici Ggb fv‡e Zxi KvU‡Z n‡e †hb cÖwZwU Zx‡i wZbwU K‡i msL¨v 1 3
_v‡K | 4 5 6 0
Step-3: cÖwZwU Zx‡ii msL¨v¸‡jv Avjv`v Avjv`v fv‡e ¸b K‡i †hvM Ki | 0
96
†hvMdj
Step-4: AZtci wb‡Pi Zx‡ii †hvMdj n‡Z Dc‡ii Zx‡ii †hvMdj we‡qvM
Ki‡e| hv cv‡e ZvB Answer| wbY©vq‡Ki gvb = (0 + 96 + 0) – (0 + 48 + 0) = 48
–2
0
3 0 0 4
2 0 0 0
MEx 02 gvb wbY©q Ki 0 –1 0 5 –3 [RUET. 2015-16]
–4
0
0 1 0 6
–1 0 3 2
General Rules [Written] & [MCQ]
0 –2 4
3 0
0 2 0 0 0 3 0 –2 4 2 0 0
0
0 2 0
0 –1 0 5 –3 3q Kjvg eivei we¯Ívi K‡i = –1 0 –1 5 –3 = (–1) 3 –1 5 –3
–4 –1 3 2
0 –1 3 2
0 1 0 6
0 –1 0 3 2
–3
= (–1) 3 2 3
5
2 = –6(10 + 9) = –114
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (2q Ask: wbY©vqK)
© Medistry 71
S B Sol n 20 21 24 S
olve
10 10 10
1 0 6
'0' Gi mn¸YK = ( 1)3+2
2 5
1 1 12 c1 = c1 c2 = ( 4 20) = 24
1 1 4 2
= 1 3 24 c = c c = 10 = 10 (3 1) = 20
1 3 02.
a3 1
0 0 10 2 2 3 8 a + 4wbY©vqKwUi gvb k~b¨ n‡j "a" Gi gvb †KvbwU?
5 6 7 [JU-A, Set-S. 22-23; DU. 07-08]
02. 1 2 3 wbY©vqKwUi gvb KZ? [DU. 97-98; RU. 06-07] A. 4 or 5 B. 5 or 4
3 6 9 C. 3 D. 10
A. 2 B. 0 C. 1 D. 12 a 3 1
S A Sol n 8 a + 4 = 0
olve
(a 3) (a + 4) 8 = 0 a2 + a 20 = 0 a = 4 or 5
10 20 30
03. 40 50 60 wbY©vqKwUi gvb KZ? [DU. 96-97] 13 16 19
03. 14 17 20 wbY©vqKwUi gvb †KvbwU?
50 70 90 15 18 21
[JU-A, Set-R. 22-23]
A. 0 B. 100
A. 1 B. 0
C. 100 D. 140 C. 1 D. 2
10 20 30 10 10 30 +3 +3
c1 = c1 c2
S A Sol 40 50 60 =
n 10 10 60 =
olve
=0
50 70 90 2 = c2 c3
c 13 16 19
20 20 90 S B Sol n 14 17 20 mgvšÍi avivq we`¨gvb _vKvq wbY©vqKwUi gvb 0|
olve
1 1 1 04. wbY©vq‡Ki mvwi I Kjvgmg~n ci¯úi ¯’vb wewbgq Ki‡j wbY©vq‡Ki gvb- [RU. 15-16]
04. 1 2 3 wbY©vq‡Ki gvb 2 n‡j, K Gi gvb KZ? [JU-A, Set-F. 2021-22] A. k~b¨ n‡e B. cwieZ©b n‡e bv
1 4 K C. cwieZ©b n‡e D. wecixZ wPýwewkó n‡e
A. 9 B. 8 n wbY©vq‡Ki mvwi I Kjvg mg~n ci¯úi ¯’vb wewbgq Ki‡jI
olve
C. 7 D. 6 S B Sol
wbY©vq‡Ki gv‡bi †Kvb cwieZ©b n‡e bv|
1 1 1 05. †Kvb wbY©vq‡Ki GKwU mvwi ev Kjv‡gi Dcv`vb¸‡jv‡K C Øviv ¸Y K‡i wbY©vqKwUi
S A Sol n 1 2 3 = 2
olve
1 4 K Aci GKwU mvwi †_‡K we‡qvM Kiv n‡j wbY©vqKwUi gvb n‡e- [RU. 13-14]
A. C ¸Y †ekx B. C cwigvY †ekx
1(2K – 12) – 1(K –3) + 1(4 – 2) = 2
C. k~b¨ D. AcwiewZ©Z _vK‡e
2K – 12 – K + 3 + 2 = 2 K = 9 n †Kvb wbY©vq‡Ki GKwU mvwi ev Kjv‡gi Dcv`vb ¸‡jv‡K C
olve
2 4 6 S D Sol
05. 0 8 10 wbY©vq‡Ki gvb wb‡Pi †KvbwU? [JU. 18-19] Øviv ¸Y K‡i wbY©vqKwUi Aci GKwU mvwi †_‡K we‡qvM Kiv n‡j
0 0 12 wbY©vqKwUi gvb AcwiewZ©Z _vK‡e|
A. 48 B. 80 C. 12 D. 192 1 3 4
n 2(8 12 10 0) = 192 06. A = 2 1 0 n‡j bx‡Pi †KvbwU mwVK?
olve
S D Sol
[RU. 12-13]
5 1 3 3 2 5
06. M = –3 2 6 n‡j |M| = †KvbwU?
A. det(A) = 3 B. det(A) = 0
[JU. 17-18]
C. det(A) = 63
2 3 9 D. det(A) wbY©q Kiv m¤¢e bq
A. 1 B. –1 C. 0 D. 2
S C Sol n det (A) = 1(5 – 0) – (–3) (10 – 0) + (– 4) (– 4 – 3)
olve
S C Sol n 2q I 3q Kjvg ¸‡YvËi m¤ú‡K© i‡q‡Q|
olve
= 5 + 30 + 28 = 63
3 4 5
07. 6 7 8 Gi gvb KZ? [JU. 12-13, 11-12, 09-10]
Chittagong University
0 2 0 5 3 2
A. 6 B. 12 C. 6 D. 12 01 . If A = 0 4 1 then |A| = KZ? [CU-I. 16-17]
n wbY©vq‡Ki gvb = 3(0 – 16) – 4(0 – 0) + 5 (12 – 0) 0 0 3
olve
S D Sol
A. 30 B. 40
= 3.(–16) – 4.0 + 5.12 = – 48 – 0 + 60 = 12
C. 50 D. 60
Rajshahi University E. 66
x 0 0 S D Sol n |A| = 5(12 – 0) + 0 + 0 = 60
olve
1 4
01. A =
1 2
I B = 3 4 1 n‡j, x-Gi †Kvb gv‡bi Rb¨ |A| = |B| n‡e?
2 2 1 a 0 1
02. hw` 3 2 5 = 4 nq, Z‡e a Gi gvb KZ? [CU-A, Set-2. 20-21]
A. 1 B. 1
[RU-C, Feldspar-1. 22-23]
4 0 3
A. 2 B. 3
C. 0 D. 2
C. 4 D. 5
4 x 0 0
S A Sol n |A| = |B| 1 2 = 3 4 1
1 a 0 1
olve
S A Sol n 2 2 5 = 4 6a 8 = 4 a = 2
olve
2 2 1 4 0 3
2 – (– 4) = x (4 + 2) 6 = x.6 x = 1 –3i
6i 1
1 2 3 03. hw` 4 3i –1= x + iy nq, Z‡e †KvbwU mwVK? [CU-A, Set-1. 20-21]
02. P Gi ‡Kvb gv‡bi Rb¨ 1 2 P wbY©vqKwUi gvb k~b¨ n‡e? 20 3 i
3 4 0 A. x = 3, y = 1 B. x = 1, y = 3
[RU-C, Topaz-3. 22-23]
A. – 3/5 B. 3 / 5 C. x = 0, y = 3 D. x = 0, y = 0
C. – 3 D. 3 6i 3i 1
Sol 4 3i 1 = x + iy
n
olve
1 2 3 S D
20 3 i
S D Sol n 1 2 p = 0
olve
3 4 0 6i 1 1
3(4 6) P(4 6) = 0 6 + 2P = 0 P = 3 3i 4 1 1 = x + iy
03. wb‡Pi †Kvb wbY©vq‡Ki gvb k~b¨? [RU-Uranus-1, Set-1. 21-22] 20 i i
x + iy = 0 x = 0, y = 0
1 0 2 4 0 8
A. 2 0 1 B. 2 3 4 1 2 3
1 3 0 1 5 2 04. 4 5 6 = KZ? [CU. 14-15, 09-10, 06-07, 03-04; KU. 13-14, 03-04]
1 0 0 0 0 1 7 8 9
C. 0 1 0 D. 1 2 3 A. 0 B. 1 C. 2
0 0 10 0 6 0 D. 3 E. 4
S B Sol n Option C Gi 1g I 3q KjvgØq ¸‡YvËi MVb K‡i ZvB S A Sol n †h‡nZz wbY©vqKwUi mvwi ¸‡jv Ges Kjvg ¸‡jv mgvšÍi cÖMgb
olve
olve
olve
5 3 2 1 4 2 1
S C Sol
wbY©vqK cÖwµqv‡K †µgvi cÖwµqv e‡j|
10 0 0 04. wbY©vq‡Ki mvnv‡h¨ mgvavb Ki: 5x + 2y –11 = 0 Ges 3x + 4y –1 = 0
06. D = 0 10 0 n‡j D Gi gvb KZ n‡e? [CU. 08-09] [CoU. 15-16]
0 0 10 A. (x, y) = (3, –2) B. (x, y) = (–2, 3)
A. 10 B. 102 C. (x, y) = (5, 4) D. (x, y) = (5, –1)
C. 103 D. 0 n Shortcut: 10x + 4y – 22 = 0 ............... (i)
olve
S A Sol
E. c~e©eZ©x †KvbwUB bq 3x + 4y – 1 = 0 ............... (ii)
10 0 0 1 0 0 {(i) (ii)} 7x – 21 = 0
S C Sol n D = 0 10 0 = 10 0 1 0 = 10
3 3
olve
x=3
0 0 10 0 0 1 15 + 2y – 11 = 0 2y = –4
GST (¸”Q) y = –2 (3, –2)
01. †µgv‡ii cÖwµqvq wb‡Pi mgxKiY‡Rv‡Ui mgvavb Ki‡j △x KZ n‡e? 10 13 16
05. 11 14 17 wbY©vq‡Ki gvb- [JnU. 10-11; RU. 10-11]
mgxKiY‡RvU : 2x + 3y = 5, 5x – 2y = 3
[JKKNIU. 19-20; BRUR-E. 16-17]
12 15 18
A. –19 B. 19 A. 0 B. 1
C. 15 D. –15 C. 10 D. 5
S A Sol †h‡nZz wbY©vqKwUi mvwi ¸‡jv Ges Kjvg ¸‡jv mgvšÍi cÖMgb
n
olve
C. 3 D. 0
n †h‡nZz 2q I 3q mvwi ¸‡YvËi m¤ú‡K© i‡q‡Q ZvB gvb k~b¨
olve
1 1 1
MEx 02 gvb wbY©q Ki : 1 p p2 [BUET. 07-08; RUET. 13-14, 12-13, 08-09, 07-08; Xv.†ev: 12, 07; iv.†ev: 11-10; Kz.†ev: 15]
1 p2 p4
General Rules [Written] & [MCQ]
1 1 1 0 0 1
1 p2 p2=1 – p p – p2 p2[c1= c1 – c2;c2= c2 – c3]
1 p p4 1 – p2 p2 – p4 p4
0 0 1
= (1 – p)21 + p (1 + p)p2
1 p
= (1 – p) (1 – p)
2
1 p p
1 + p (1 + p)p p
2 4
= (1 – p)2 (p2 + p3 – p – p2) = (1– p)2 (p3 – p) = p(1– p)2 (p2 –1)
0 3 2x +7
MEx 03 2 7x 9 + 5x = 0 n‡j, x Gi gvb- [RU-C, Jupitar-1, Set-1. 2021-22,DU. 13-14]
0 0 2x + 5
General Rules [Written] & [MCQ]
5
2{3(2x+5) – 0 (2x+7)} = 0 2(6x+15) = 0 6x = – 15 x =
2
3 + x 4 2
MEx 04 4 2+x 3 = 0 n‡j, x Gi gvb- [CUET. 13-14; Xv.†ev: 05; Kz.†ev: 07; P.†ev: 16,07]
2 3 4 + x
General Rules [Written] & [MCQ]
3 + x 4 2 3 + x + 4 + 2 4 2
4 2+x 3 = 0 4 + 2 + x + 3 2 + x 3 = 0 [∵ c1 = c2 + c2 + c3]
2 3 4 + x 2 + 3 + 4 + x 3 4 + x
x + 9 4 2 1 4 2 0 2 – x –1
x + 9 2 + x 3 = 0 (x + 9) 1 2 + x 3 = 0 (x + 9) 0 x – 1 –1– x= 0 [r1 = r1 – r2 Ges r2 = r2 – r3]
x + 9 3 4 + x 1 3 4 + x 1 3 4 + x
– – –1
(x + 9)
(x 2)
x – 1 –1– x= 0 (x + 9) (x – x – 2 + x – 1) = 0 (x + 9) (x – 3) = 0
2 2
1 1 1
01. k Gi †Kvb gv‡bi Rb¨ 1 k k wbY©vqKwUi gvb k~b¨ n‡e bv? [DU. 17-18]
2 ( 2) ( + 4) + 5 = 0 2 + 2 3 = 0 = 1 or 3
Chittagong University
1 k2 k4
B. k = –1
A. k = 1
a 0 1
C. k = 3 D. k = 0 01. hw` 3 2 5 = 4 nq, Z‡e „a‟ Gi gvb KZ? [CU. 15-16]
1 1 1
2
Aspect Special: 4 0 3
S C Sol n 1 k k = 0
olve
1 k–1 k –k = 0
2
nq|
2 4 0 3
1 k –1 k –k
2 4
k = 1 n‡j cÖ`Ë
2(3a – 4) = 4 6a – 8 = 4
1 0 0 wbY©vqKwUi 1g I 3q Kjvg
(k–1) (k –1) 1 1 k = 0
2 `ywU GKB nq Ges 6a = 12 a = 2
2 1 1 1
1 1 k wbY©vq‡Ki gvb k~b¨ nq|
(k–1) (k2–1) (k2–k) = 0 k = 3 n‡j †Kv‡bv fv‡eB
02 . 1 2 3 wbY©vqKwUi gvb 2; k Gi gvb KZ?
k = 1, –1, 0 wbY©vq‡Ki †h †Kvb `ywU Kjvg 1 4 k
[CU. 12-13; RU. 12-13; DU. 00-01; SUST. 04-05]
k = 3 Gi Rb¨ wbY©vqKwUi gvb k~b¨ n‡e bv ev mvwi GKB n‡e bv| A. 9 B. 8
02. wbY©vqKwUi gvb 0 n‡j, Gi gvb KZ?
2 1 C. 7 D. 6
5 + 4 1 1 1
S A Sol n 1 2 3 = 2
olve
1 2 a 5 6 x
03. 4 5 6 ; a Gi gvb KZ n‡j wbY©vqKwU singular n‡e? S C Sol 1 2 3 = 4
n
olve
[CU. 10-11]
7 8 9 3 2 1
A. 1 B. 2 C. 3 D. 4 E. 5 5 6 x
1 2 3 = 4 ; [r3 = r3 r2]
S C Sol wbY©vqKwU Singular n‡j wbY©vq‡Ki gvb k~b¨ n‡e
n
olve
2 0 2
1(45 – 48) – 2(36 – 42) + a(32 – 35) = 0
– 3 + 12 – 3a = 0 a = 3
5+x 6 z
4 2 3 = 4 ; [c1 = c1 + c3]
1 1 x 0 0 2
04. x Gi gvb KZ n‡j 2 2 2 = 0 n‡e? [CU. 07-08] 2(10 + 2x 24) = 4
3 4 5 2x 14 = 2 x = 8
A. 2 B. 5 C. 2 Engineering
D. 3 E. 1 4 2
1 1 x 0 1 x x x a
01 . 3 1 b = 0 n‡j a Gi gvb wbY©q Ki| [CKRUET 2021-22]
S E Sol n 2 2 2 = 0 0 2 2 = 0 [c1 = c1 c2] 0 0 c
olve
3 4 5 1 4 5 A. 0 a B. 0 2 C. 0, b
(2 2x) = 0 x =1 D. 0, 3 E. 0, 3
hw` wbY©vqK
3 4
S D Sol n cÖ‡kœ a Gi RvqMvq x n‡e| A_©vr x Gi gvb †ei Ki‡Z n‡e|
olve
05.
5 2a Gi gvb k~b¨ nq, Zv n‡j a Gi gvb n‡e- [CU. 05-06] 4 2
A.
10
B.
6
C.
15 x x a
3 5 8 3 1 b= 0 c (x4 – 3x2) = 0
10 5
0 0 c
D. E. x2 (x2 – 3) = 0 x = 0, 3
3 6
02. x-Gi †Kvb †Kvb gv‡bi Rb¨ wb¤œwjwLZ wbY©vq‡Ki gvb k~b¨ n‡e?
S D Sol n 5 2a = 0 6a 20 = 0 a =
3 4 10
olve
2
x x 2
3 2 1 1
GST (¸”Q)
[BUET. 05-06; KUET. 10-11]
3 3 0 0 5
i3 i5 i3 + i 5 A. x=0, -2 B. x =1,2
01. i 1 n‡j, i i i + i = ?
2
[GST-A. 20-21] C. x= 0,1 D. x =0, 2
i3 i7 i5 + i7 2
x x 2
n 2 1 1 = 5
A. –1 B. 0 C. 1 D. i x2 x
= 0 (x2 2x) = 0
olve
i3
3 5 3 5 3 5 3
i i + i 3
i i3
i S D Sol 2 1
0 0 5
S B Sol n i i i + i i i i ; [c3 = c3 c2] = 0
olve
x (x 2) = 0 x = 0, 2
i3 i7 i5 + i7 i3 i7 i5
2
x x 2 ✍ Written
x Gi †Kvb gv‡bi Rb¨ 3 1 1 = 0 n‡e? x + 4 3 3
02.
[IU. 17-18]
01. x Gi mgvavb Ki 3 x + 4 5 = 0
0 0 –5 5 5 x+1
A. 0, – 3 B. 0, 3 C. 2, 0 D. 0, –2 [BUET. 01-02, 13-14; RUET. 04-05; KUET. 04-05]
2
S B Sol n x (–5 – 0) – x(–15 – 0) + 2(0 – 0) = 0
olve
x+1 3 3
ev, –5x + 15x + 0 = 0 ev, x2 – 3x = 0 ev, x(x – 3) = 0 ev, x = 0, 3
2
Solve
x 1 x + 4 5 = 0 [C1 = C1 – C2]
03. 3 x wbY©vqKwUi gvb (–1) n‡j x Gi gvb KZ? 0 5 x+1
2 1 [KU. 16-17]
1 3 3
A. –2 B. 0 C. 2 D. 4
(x + 1) 1 x + 4 5 = 0
S C Sol n 2 1 = –1 3 – 2x = –1 2x = 4 x = 2
3 x
olve
0 5 x+1
DU Affiliated College Question 1 3 3
(x + 1) 0 x + 7 8 = 0 [r1= r1+r2]
5 6 x 0 5 x+1
01. 1 2 3 g¨vwU·wUi wbY©vqK –4 n‡j, z Gi gvb KZ? [DU Tech. 2020-21]
3 2 1 (x + 1) [(x + 7) (x + 1) – 40] = 0 (x + 1) (x2 + 8x – 33) = 0
A. 7 B. 6 C. 8 D. 1 (x + 1) (x + 11) (x – 3) = 0 x= – 1, – 11, 3
【
? 】 QUICK PRACTICE CONCEPT TEST ?
1 x y+z
MEx 02 1 y z + x Gi gvb-
1 z x+y
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
1 x y + z 1 x x+y+z x = 1, y = 2, z = 3 a‡i,
1 y z + x = 1 y x + z + x ; [c3 = c2 + c3] 1 x y + z 1 1 5
1 z x+y 1 z x+y+z 1 y z + x = 1 2 4
1 z x + y 1 3 3
1 x 1
= (x + y + z) 1 y 1 = 1(–6) –1(–1) + 5(1) = 0
weKí Element ¸‡jv PµvKvi
1 z 1
= (x + y + z) 0 = 0 [x y + z; y z + x; z x + y]
ZvB Ans: 0
2 2
a ab b
MEx 03 2a a + b 2b Gi gvb- [wm.†ev: 03]
1 1 1
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
2 2
a ab b a(a b) b(a b) b 2
a = 1, b = 2, c = 3 a‡i,
2a a + b 2b = a b a b 2b ; 1 2 4
1 1 1 0 0 1 2 3 4= 1(3 – 4) – 2(2 – 4) + 4 (2 – 3) = –1
[c1 = c1 + c2] Ges [c2 = c2 + c3] cÖ‡qvM K‡i] 1 1 1
2 Verification: a = 1, b = 2, c = 3 a‡i Option Gi gvb wbY©q Ki‡Z
a b b n‡e| Zvici †hB Option †_‡K –1 cvIqv hv‡e †mB Option wU Answer
= (a b) (a b) 1 1 2b
0 0 1 n‡e| †hgb: (a – b)3 = (1 – 2)3 = –1
= (a b) (a b)
a b
1 1
= (a b) (a b) (a b) = (a b)3
1 a b + c
MEx 04 1 b c + a wbY©q‡Ki gvb KZ? [BUTex. 15-16]
1 c a + b
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
1 a b + c 1 a a + b + c a = 1, b = 2, c = 3 a‡i,
1 b c + a = 1 b a + b + c; [c3 = c3 + c2] 1 a b + c 1 1 5
1 c a + b 1 c a + b + c 1 b c + a = 1 2 4
1 a 1 1 c a + b 1 3 3
= (a + b + c) 1 b 1 = 1(–6) –1(–1) + 5(1) = 0
1 c 1 weKí Element ¸‡jv PµvKvi [a b + c; b c + a; c a + b]
= (a + b + c) 0 = 0 ZvB Ans: 0
logx logy logz
MEx 05 The value of log2x log2y log2z is: [BUET. 09-10, 11-12; CUET. 07-08;RUET. 11-12; e.†ev: 13]
log3x log3y log3y
General Rules [Written] 3 in 1 ASPECT Tricks & Tips [MCQ]
logx logy logz
log2x log2y log2z
log3x log3y log3z
log log logz
x y
y z
†Kvb wbY©vq‡Ki GKwU mvwi ev Kjv‡gi f~w³¸‡jv Aci `yBwU mvwi ev
log log log2z
x y
= ; [c1' = c1 – c2, c2' = c2 – c3] Kjv‡gi Abyiƒc f~w³¸‡jvi mv‡_ mgvšÍi aviv MVb Ki‡j wbY©vq‡Ki gvb
y z
k~b¨ n‡e| A_©vr G‡ÿ‡Î `yB †Rvov mgvšÍi aviv cvIqv hv‡e|
log log log3z
x
y
y
z
y
1 1 logz
= log log 1 1 log2z = 0
x
y z
1 1 log3z
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
78 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
a b ax + by
MEx 06 cÖgvY Ki: b c bx + cy = (b2 – ac) (ax2 + 2bxy + cy2)
ax + by bx + cy 0
[Xv.†ev:15,10; Pv.†ev:15,13,12,09 ; Kz.†ev: w`.†ev: iv.†ev:16,12,09 ; e.†ev:14,07; wm.†ev:12,05; h.†ev:14,10]
General Rules [Written] & [MCQ]
a b ax + by a b 0
L.H.S = b c bx + cy= b c 0 ; [∵ c3 = c3 – (c1x + c2y)]
ax + by bx + cy 0 ax + by bx + cy –(ax2 + 2bxy + cy2)
= –(ax2 + 2bxy + cy2)
a b
b c [3q Kjv‡gi mv‡c‡ÿ we¯Ívi K‡i]
= – (ax2 + 2bxy + cy2) (ac – b2) = (b2 – ac) (ax2 + 2bxy + cy2) = R.H.S (Proved)
a – b – c 2a 2a
MEx 07 cÖgvY Ki: 2b b–c–a 2b = (a + b + c)3 [BUET. 11-12; Xv.†ev: 13; h.†ev: 11, 08; P.†ev: 08; Kz.†ev: 13,06]
2c 2c c – b – c
General Rules [Written] & [MCQ]
a + b + c a + b + c a + b + c
L.H.S = 2b b–c–a 2b ; [r1 = r1+ r2 + r3 cÖ‡qvM K‡i]
2c 2c c – a – b
1 1 1 0 0 1
= (a + b + c) 2b b – c – a 2b = (a + b + c) a + b + c –(a + b + c) 2b ; [c1 = c1 – c2 Ges c2 = c2 – c3 cÖ‡qvM K‡i]
2c 2c c – a – b 0 a + b + c c – a – b
–(a
= (a + b + c)
a + b + c + b + c)
0 a + b + c [1g mvwi mv‡c‡ÿ we¯Ívi K‡i]
= (a + b + c) {(a + b + c)2 – 0} = (a + b + c)3 = R.H.S (Proved)
x2 y z
MEx 08 cÖgvY Ki: z2 = (xyz – 1) (x – y) (y – z) (z – x)
2
x y
x – 1 y – 1 z – 1
3 3 3
[Xv.†ev:, w`.†ev :, wm.†ev: I h.†ev:2018 Gi m„Rbkxj-1(M); Xv.†ev:14,11,06,03; e.†ev:16,15,08; h.†ev:06; wm.†ev:15,14,11,04; iv.†ev:06; w`.†ev:16,13,10]
General Rules [Written] & [MCQ]
2 3
x x x – 1
L.H.S = y y y – 1 [1g, 2q I 3q mvwi‡K h_vµ‡g 1g, 2q I 3q Kjv‡g ¯’vcb K‡i]
2 3
z z2 z3 – 1
2 3 2 2 2
x x2 x3 x x2 1 1 x x2 1 x x2
= y y y – y y 1= xyz 1 y y – 1 y y
z z2 z3 z z2 1 1 z z2 1 z z2
[2q wbY©vq‡K 2q I 3q Kjvg ¯’vb wewbgq Kivi ci 1g I 2q Kjvg ¯’vb wewbgq Kiv n‡q‡Q|]
2
– x2 – y2
2
1 x x 0 x y
= (xyz – 1) 1 y y = (xyz – 1) 0 y – z y – z ; [r1 = r1 – r2 Ges r2 = r2 – r3 cÖ‡qvM K‡i]
2 2
1 z z 2
1 z z
2
2 2
– –
= (xyz – 1)
(x y) (x y )
(y – z) (y2 – z2); [cÖ_g Kjvg mv‡c‡ÿ we¯Ívi K‡i|]
(x – y) (x – y)(x + y)
= (xyz – 1) (y – z) (y – z)(y + z) = (xyz – 1) (x – y) (y – z)1 y + z
1 x + y
= (xyz – 1) (x – y) (y – z) (y + z – x – y) = (xyz – 1) (x – y) (y – z) (z – x) = R.H.S (Proved)
2 2
1 + a – b 2ab –2b
MEx 09 cÖgvY Ki: 2ab 1 – a 2 + b2 2a = (1 + a2 + b2)3 [Kz‡qU:03-04,11-12; iv.†ev:09; h.†ev:16; w`.†ev:14; P.†ev:16; wm.†ev:16,13,10]
2b –2a 1–a –b
2 2
olve
Aspect Special: S A Sol
S B Sol = 0
n
†h †Kvb wbY©vq‡Ki `ywU mvwi we‡ePbv Ki‡j wbY©vqKwUi AvKvi nq,
olve
1 bc bc (b + c) 1 1 1 Aspect Special:
S D Sol 2 2 2
n
olve
x a b = 0 x = a n‡j wbY©vq‡Ki
03. wbY©vqK 1 ca ca (c + a) Gi gvb KZ? [DU. 10-11] x a b
1 ab ab (a + b) 1g I 2q Kjvg `ywU
0 0 1
x – a a – b b = 0
c1 = c 1 – c2 GKB nq Ges
A. abc(a+b) (b+c) (c+a) B. abc (a+b+c)
C. 1 D. 0 x2 – a2 a2 – b2 b2 2 2 3 c = c – c wbY© vq‡Ki gvb k~ b¨ nq|
Abyiƒc fv‡e x = b n‡j
1 bc bc(b + c) 1 a abc abc(b + c) 0 0 1
S D Sol 1 ca ca(c + a) = abc b aba abc(c + a)
n (x – a) (a – b) 1 1 b = 0 1g I 3q Kjvg `ywU
olve
a b
– 2
– 2
– ab
1 a bc b ca c
2
0 0 1
c 1
04.
2
1 hw` 1 Gi GKwU RwUj Nbg~j nq, Z‡e cÖ`Ë c = c1 – c2
2 = a–b b–c
1 a2 – bc – b2 + ca b2 – ca – c2 + ab c2 – ab c2 = c2 – c3
wbY©vqKwUi gvb- [DU. 09-10; JU. 09-10; SUST. 09-10; CU. 07-08] = 1{(a – b) (b2 – c2 + ab – ca) – (b – c) (a2 – b2 + ca – bc)}
A. 0 B. 1 = (a – b){(b – c)(b + c) + a(b – c)} – (b – c){(a – b)(a + b) + c(a – b)}
C. D. 2 = (a – b) (b – c) (a + b + c) – (a – b) (b – c) (a + b + c) = 0
weKí a = 1, b = 2, c = 3 ai‡j
1 2 1 + + 2 2
2 2 2 Aspect Special:
1 1 + + 1 2 a b c PµvKv‡i i‡q‡Q
a – bc b2 – ca c2 – ab [a a2 – bc;
0 2
2
= 0 1 ; [∵ 1 + + 2 = 0] 1 1 1 b b2 – ca; c c2 – ab]
= 1 2 3= 0
0 1 –5 1 7 ∵ Element ¸‡jv PµvKv‡i
=0 i‡q‡Q ZvB wbY©vq‡Ki gvb k~b¨|
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
80 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
1 1 1 0 b – a c – a Aspect Special:
02. 1 1 + x 1 wbY©vq‡Ki gvb †KvbwU? S D Sol a – b 0 c – b
n
olve
[JU-A, Set-Q. 2021-22]
1 1 1 + y a – c b – c 0 Element ¸‡jv
A. x + y B. – xy a – b b – c c – a c1 = c1 – c2 PµvKv‡i Av‡Q ZvB
C. xy D. 1 – xy = a – b b – c c – b; wbY©vqKwUi gvb k~b¨|
1 0 0 1 a – b b – c 0 c2 = c2 – c3
1 1 c1 = c1 c2
S C Sol 1 1 + x 1 = x x 1 c2 = c2 c3
n
1 1 c – a
olve
1 1 1 + y 0 y 1 + y = (a – b) (b – c) 1 1 c – b= 0
1 1 0
x x
= = xy
0 y Chittagong University
03. †Kvb wbY©vq‡Ki `ywU mvwi ev Kjvg m`„k n‡j, H wbY©vq‡Ki gvb n‡e- [JU. 15-16]
a + b + 2c a b
A. 1 B. 0 01. c b + c + 2a b wbY©vqKwUi gvb KZ?
C. 2 D. 3 c a c + a + 2b
Sol †Kvb wbY©vq‡Ki `ywU mvwi ev Kjvg m`„k n‡j H wbY©vq‡Ki gvb k~b¨|
n
olve
[CU. 13-14]
S B
A. (a + b + c)3 B. 2(a +b + c)2
1 1 y+z
C. (a +b + c) D. 2(a + b + c)3
04. 1 1 z + x wbY©vqKwU gvb KZ? [JU. 09-10]
E. (a + b + c) 2
1 1 x+y
A. 3 + x + y + z B. 3 (x+y+z) a + b + 2c a b
S D Sol n c
olve
b + c + 2a b
C. 3 D. †KvbwUB bq c a c + a + 2b
1 1 y + z 2(a + b + c) a b
S D Sol n 1 1 z + x = 0 = ; [c1 = c1 + c2 + c3]
olve
2(a + b + c) b + c + 2a b
1 1 x+y 2(a + b + c) a c + a + 2b
[†h‡nZz wbY©vq‡Ki cvkvcvwk `yBwU Kjv‡gi Dcv`vb GKB|] 1 a b
= 2(a + b + c) 1 b + c + 2a b
Rajshahi University 1 a c + a + 2b
1 1 1 0 –(a + b + c) 0
01. 1 1 + a 1 Gi gvb- [RU. 15-16; KU. 03-04] = 2(a + b + c) 0 a + b + c –(a + b + c) ;
1 1 1+b 1 a c + a + 2b
A. ab B. 1–ab [r1 = r1 – r2, r2 = r2 – r3]
C. a + b + 1 D. 0 = 2(a + b + c) . 1({– (a + b + c) – (a + b + c)} = 2(a + b + c)3
1 0 0 1 Aspect Special: a = 1; b = 2; c = 3 a‡i,
1 1
S A Sol n 1 1 + a 1 = a a 1 ; c2 = c2 c3
c = c c
a + b + 2c
1 1 2 a b
olve
1 1 1 + b 0 b 1 + b c b + c + 2a b
a a
c a c + a + 2b
= = ab 9 1 2
0 b = 3 7 2
1 1 1 3 1 8
02. wbY©vqK a b c Gi gvb KZ? [RU. 15-16, 07-08] = 9(56 – 2) – 1(24 – 6) + 2(3 – 21) = 432
a2 b2 c2
Option D †Z a = 1; b = 2; c = 3
A. (a b) (b c) (c a) B. (a b ) (b c) (c a)
2 2
C. (a b) (b c ) (c a)
2 2
D. (a b) (b c) (c a )
2 2 a‡i, 2(a + b + c)3 = 2(1 + 2 + 3)3 = 2 63 = 432
1 1 1 1 x y + z
S A Sol 2 2 2
n 02. 1 y z + x Gi gvb n‡e- [CU. 12-13, 05-06]
olve
a b c
a b c 1 z x + y
A. (x + y + z)3 B. (1+ x + y + z)3
0 0 1
c ; 1 2
c = c – c
= a – b
1
b–c C. 0 D. (y + z) (z +x) (x+y)
a – b b – c c
2 2 2 2 2 c 2 = c 2 – c 3 E. y(x+y)
0 0 1 1 x y + z Aspect Special:
= (a – b) (b – c) 1 c S C Sol 1 y z + x
n
olve
1
a + b b + c c 2 1 z x + y wbY©vq‡Ki Element ¸‡jv
= (a – b) (b – c) (b + c – a – b) 1 x x + y + z PµvKv‡i i‡q‡Q|
= (a – b) (b – c) (c – a) = 1 y x + y + z; [c3 = c2 + c3] [x y + z; y z + x;
0 b – a c – a 1 z x + y + z
z x + y] ZvB wbY©vq‡Ki
03. a – b 0 c – b Gi gvb KZ? [RU. 08-09] 1 x 1
a – c b – c 0 = (x + y + z) 1 y 1 gvb k~b¨|
A. (a + b + c) 3
B. (a b) 3 1 z 1
C. (a b) (b c) (c a) D. 0 = (x + y + z) 0 = 0
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (2q Ask: wbY©vqK)
© Medistry 81
1 0 0 1 0 0 GST (¸”Q)
03. a 0 1 0 + b 0 1 0 = 0 n‡j- [CU. 12-13, 08-09]
2
S B Sol 0 1 0
0 0 1 0 0 1 2 2
S D Sol n 1 = 1
2
olve
a b = 0 a = b 3 1 2 1
1+ +
2 2 2 2
02 ab c a2
04. D = a b 0 bc Gi gvb- = 1 + + 1 ; [c1 = c1 + c2 + c3]
[CU. 11-12] 2 2
a2c b2c 0
1+ + 1 2
A.0 B. a+b + c
0
2
D. a2c ab2 + a2b
= (1 + + 2) 0 1 = (1 + + 2) 0 = 0
C. 2a3b3c3 2
0 ab2 c2a
S C Sol n a2b 02 bc
2 2 0 1
olve
a c b c 0 a a x
0 a a 2 2 2 0 0 a 02. hw` = m m nnq, Z‡e Δ = 0 mgxKi‡Yi g~j n‡”Q- [SUST. 05-06]
= a b c b 0 b= a b c b –b b; [c2 = c2 – c3]
2 2 2 b x b
c c 0 c c 0 A . x = a, x=m B. x = b, x = m
2 2 2 2 2 2
= a b c {a(bc + bc)}= a b c .2abc = 2a b c 3 3 3
C . x = a, x = b D. †KvbwUB bq
Aspect Special: a = 1; b = 2; c = 3 a a x 0 a x
S D Sol = m m n = 0 m n ; [c1 = c1 + c3]
2 2
02 ab c a2 0 4 9 olve
n
C. 4a2b2c2 D. a2b2c2
2(x + y) 1 2z
a ab ac
2
b+c a
1 1 1
06. wbY©vqK D = c +a b Gi gvb n‡e-
[CU. 05-06]
1 a b+c
a+b c 02. 1 b c + a wbY©q‡Ki gvb KZ? [BUTex. 15-16]
A. abc + B. 0 C. (bc) (ca) (ab) 1 c a+b
A. a + b + c B. 0 C. 1 D. abc
D. E. a b c
abc 1 a b + c 1 a a + b + c
b+c a a+b+c a S B Sol n 1 b c + a = 1 b a + b + c ; [c3 = c3 + c2]
olve
1 c a+b 1 c a+b+c
S B Sol n D = c + a b = a + b + c b ; [c1 = c1+c3]
olve
a+b c a+b+c c 1 a 1
1 1 a = (a + b + c) 1 b 1
= (a + b + c) 1 1 b = (a + b + c) 0 = 0 1 c 1
1 1 c = (a + b + c) 0 = 0 = (a + b + c)
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
82 An Exclusive Parallel Text Book Of Mathematics
© Medistry ASPECT MATH
03. hw` 1 Gi GKwU RwUj Nbg~j nq, Z‡e wb‡Pi wbY©vqKwUi gvb KZ? logx logy logz
1 S B Sol log2x log2y log2z
2 n
olve
1 2 log3x log3y log3z
2
[BUET. 10-11; KUET. 06-07; SUST. 08-09]
1 log log logz
x
x y
A. 4 B. 2 C. 3 D. None of the above y z
1
logy
2
log log2z
y
= z [c1 = c1 c2, c2 = c2 c3]
S D Sol n 1 = 1 + ( ) + ( )
2 3 2 2 2 4
olve
2 1
= 2 + 0 + 2 ( 3.) = 2 23 = 4 logxy log log3z
y
z
logx logy logz y
1 1 logz
= log log = 1 1 log2z = 0
x
04. The value of log2x log2y log2z is- [BUET. 09-10; RUET. 11-12; KUET. 07-08]
log3x log3y log3z y z
1 1 log3z
2 3 [wbY©vq‡Ki `yBwU Kjvg GKB nIqvq wbY©vqKwUi gvb k~b¨]
A. log B. 0 C. log D. 1
3 2
【
? 】 QUICK PRACTICE CONCEPT TEST ?
a + b + 2c a b 0 (x y) (x z)3
3
01. =? 02. (y x) (y z)3 =?
c b + c + 2a b 3
0
c + a + 2b
c a (z x) (z y)
3 3
0
A. 2(a + b + c)3 A. x+y + z B. x3+ y3 + z3
B. 2(a + b + c) C. 0 D. 1
C. 2(a + b + c)
D. a3 + b3 + c3 3abc Answer 01. A 02. C
HSC BOARD QUESTIONS ANALYSIS
5 0 1 1 2 3
01. –3 2 3wbY©vq‡K (2, 1) Zg fzw³i mn¸YK KZ? [Xv.†ev: 2017] 03. p Gi †Kvb gv‡bi Rb¨ 1 2 pwbY©vq‡Ki gvb k~b¨ n‡e? [iv.†ev: 2017]
6 7 –1 3 4 0
A. –7 B. –3 3 3
A. – B.
C. 3 D. 7 5 5
5 0 1 C. –3 D. 3
S D Sol –3 2 3wbY©vq‡K (2,1) Zg fzw³i mn¸YK
n
1 2 3
olve
3 4 0
= (–1)2+1
0 1
7 –1 = –1(0 – 7) = 7 AYyiƒc Dcv`vb¸‡jv mgvb n‡e Ges wbY©vq‡Ki gvb n‡e k~b¨|
3 2 4 p = 3 n‡e|
02. 0 3 6 wbY©vqKwUi- [iv.†ev: 2019] 1 4 – 3
1 1 2 04. 2 – 1 x Gi (1, 1) Zg fzw³i Abyivwk 4 n‡j x Gi gvb KZ?
(i) gvb 0 6 2 8
(ii) (2, 3) Zg fzw³i Abyivwk 5 [w`.†ev. 22]
(iii) (2, 1) Zg fzw³i mn¸YK 0 A. 6 B. 2 C. – 2 D. – 6
–1 x
wb‡Pi †KvbwU mwVK? S C Sol n (1,1) Zg fzw³i Abyivwk 2 8= – 4
olve
A. i I ii B. ii I iii – 8 – 2x = – 4 – 2x = 8 – 4 x = – 2
C. i I iii D. i, ii I iii = 54 – 72 + 18 = 72 – 72 = 0
3 2 4 2 4 6
S C Sol 0 3 6 = 3(– 6 + 6) – 2(0 – 6) + 4(0 – 3)
n
05. 3 x 5 = 0 n‡j, x Gi gvb †KvbwU?
olve
i. [w`.†ev: 2019]
1 1 2 5 10 9
= 0 + 12 – 12 = 0 A. 4 B. 6
3 2 4 C. 5 D. 6
ii. 0 3 6 wbY©vqKwUi (2, 3) Zg f~w³i AYyivwk =
3 2
1 –1 2 4 6
1 1 2 S B Sol n 3 x 5 = 0
olve
= – 3 – 2 = –5 5 10 9
3 2 4 2(9x – 50) + 4(27 + 25) + 6(– 30 – 5x) = 0
iii. 0 3 6wbY©vqKwUi (2,1) Zg f~w³i mn¸YK = (–1)2+1
2 4
–1 –2 18x – 100 + 208 – 180 – 30x = 0
1 1 2 – 12x – 72 = 0
= – (– 4 + 4) = 0 12x = – 72 x = – 6
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (2q Ask: wbY©vqK)
© Medistry 83
2 10 x 1 1
1
06. 23 12 y wbY©vq‡Ki mgvb †KvbwU? [w`.†ev: 2019] 09. A = 2 – 2 2 Gi gvbÑ [Kz.†ev: 2017]
4 14 z –3 3 –3
4 10 x 4 10 2x 1 2 –3
A. 6 12 y B. 6 12 2y (i) 1 –2 3 Gi gv‡bi mgvb
8 14 z 8 14 2z 1 2 –3
4 7 x + 2 2 10 x 1 + c2 2 –3
C. 6 8 y + 2 D. 3 12 y
8 9 z + 2 4 14 z (ii) 1 – c2 –2 3 Gi gv‡bi mgvb
1 + c2 2 –3
2 10 x 1 1 1
S A Sol n 23 12 y
olve
07. q 2 r + p wbY©vqKwUi gvb KZ? C Sol n (i) 1 –2 3 = 2 –2 2
olve
[w`.†ev: 2017] S
r 2 p + q 1 2 –3 –3 3 –3
A. 0 B. 1 wbY©vq‡Ki †iv¸‡jv Kjvg Ges Kjvg¸‡jv †iv n‡j gv‡bi cwieZ©b nq bv|
C. pqr D. p + q + r 1 + c2 2 –3 1 + c2 c2 –3
n p=1
(ii) 1 – c2 –2 3= c 1 – c2 –c2 3
olve
S A Sol
q=2 1 + c2 2 –3 1 + c2 c2 –3
r=3 1 c2 –3 1 2 –3
1 2 5 =c 1 –c 2 3 [c1 = c1 – c2] = c. c 1 –2 3
2 2 4= 1(6 – 8) –2(6 – 12) + 5(4 – 6) 1 c2 –3 1 2 –3
3 2 3 1 2 –3 1 1 1
= – 2 + 12 – 10 = 0 = c2 1 –2 3 = c2 2 –2 2
1 2 3 1 2 –3 –3 3 –3
08. 1 2 3 Gi gvb| [Ky.‡ev. 2017] 1 1 1 1 1 1
1 2 3 (iii) –3 3 –3= – 2 –2 2
2 –2 2 –3 3 –3
1 1 1 \ †Kvb wbY©vq‡Ki †h †Kvb `yBwU mvwi ev Kjvg ci¯úi ¯’vb wewbgq Ki‡j,
i. 2 2 2 Gi gv‡bi mgvb|
3 3 3 wbY©vqKwUi wPý e`‡j hvq wKš‘ wbY©vq‡Ki gv‡bi †Kvb cwieZ©b nq bv|
10. x Gi †Kvb gv‡bi Rb¨ |A| = D n‡e? [P.†ev: 2019]
1 + c2 2 3 A. 5 B. 1 C. 1 D. 5
ii. 1 c2 2 3 Gi gv‡bi mgvb| 3 2
S D Sol n A = 2 2
x 0 0
1 + c2 2 3
olve
kZ©g‡Z, 2 4 1 = 10
1 1 1 |A| = 6 + 4 = 10 3 2 0
iii. 3 3 3 Gi gv‡bi mgvb| x(0 + 2) = 10 2x = 10 x = 5
2 2 2 1 –2 3
wb‡Pi †KvbwU mwVK? 11. 0 1 –2G (1, 2) Zg fzw³i mn¸YK †KvbwU? [P.†ev: 2017]
–1 0 2
A. i I ii B. ii I iii
A. –4 B. –2 C. 2 D. 4
C. i I iii D. i, ii I iii –2
1 3
1 2 3 S C Sol n 0 1 –2G (1, 2) Zg fzw³i mn¸YK
olve
1 2 3 –2
= (–1)2+1
0
1 1 1 –1 2 = – (0 – 2) = 2
= 2 2 2 [r1 c1, r2 c2, r3 c3] 1 1 1
3 3 3 12. A = e π 3 n‡j, |A| = ? [wm.†ev. 22]
1 2 3 3 3 3
(ii) mZ¨ KviY, A = 1 2 3 A. e B. π C. 2 (e – π + 3) D. 0
1 2 3 1 1 1
1 + c2 2 3 S D Sol n |A| = e π 3
olve
olve
S C Sol
wb‡Pi †KvbwU mwVK? wbY©vq‡Ki gvb k~b¨|
A. i I ii B. i I iii C. ii I iii D. i, ii I iii 18. wb‡Pi †Kvb wbY©vq‡Ki gvb k~b¨? [e.‡ev. 2017]
n A=
2 3
n‡j 1 0 2 1 0 0 4 0 8 0 1
0
olve
S B Sol 5 4 |A| = 7
1+2 A. 2 0 1 B. 0 1 0 C. 2 3 4 D. 1 2 3
(1, 2) Zg fzw³i mn¸YK = (–1) |5| = –5 1 3 0 0 0 1 1 5 2 0 6 0
(2, 1) Zg fzw³i Abyivwk = |3| = 3
n i. Gi gvb = 3
1 2
2 1= 3(1 4) = 9
olve
1 –2 3 S C Sol
14. 0 1 – 2 wbY©vqKwUi (1, 2) Zg fzw³i mn¸YK †KvbwU? [h.†ev. 22]
ii. Gi gvb = 1
1 0
–1 0 2 0 1= 1(1 0) = 1
A. 4 B. 2 C. – 2 D. – 4
– 4 0 8 4 0 4
1 2 3 iii. Gi gvb = 2 3 4= 22 3 2= 2 0 = 0 [∵ c1 = c3]
S B Sol n cÖ`Ë wbY©vqK, 0 1 – 2 1 5 2 1 5 1
olve
1 3 3 2
kZ©g‡Z, – x = –3 x = 3 A. 8 B. 3
C. 8 D. 17
16.
0 1
2 –1 Gi gvb †KvbwU? [h.†ev: 2017] 2 3 1
S A Sol n 5 6 0 wbY©vqKwUi (2, 3) Zg mn¸YK = (–1) –2 1
2+3 2 3
olve
A. –1 B. –2 C. 2 D. 1
2 1 4
S B Sol n 2 –1 Gi gvb = 0 – 2 = –2
0 1
olve
= – (2 + 6) = –8
3 1 9 0 n‡j A =?
2x2 2 6 GKwU e¨wZµgx g¨vwU· n‡j x Gi gvb wbY©q Ki| A. I2
05. B. A
x 3 3 C.
A
D. I
A. 1,3 B. – 1, – 3 C. 2,3 D. – 2, 3
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES
ASPECT MATH cÖ_g cÎ g¨vwUª· I wbY©vqK (2q Ask: wbY©vqK)
© Medistry 85
DËi:.......................................................................................
12 D |( |
2I – A) = (2 2 – 2 2) = 0
10 11 10 12 11 10 1 11 132
xa yb 11 12 11 13 12 11= 10 11 12 1 12 156
04. z c x + a = 0 12 13 12 14 13 12 1 13 182
y+b z+c 13 A 1 11 132 r3 = r3 r2
DËi:....................................................................................... = 10 11 12 0 1 24 ;
0 1 26 r2 = r2 r1
Answer Analysis = 2 10 11 12
2
cÖkœ DËi e¨vL¨v 14 B [4 5 6] 3 = [8 + 15 6] = [17]
1
C
0 x
01
1 3 = 3 0 x = 3 x = 3 15
2
A eM©vKvi g¨vwUª· A Gi †ÿ‡Î A = A n‡j A GKwU mgNvwZ g¨vwUª·|
ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES ASPECT SERIES
ASPECT SERIES