Geometry: Areas and Volumes Guide
Geometry: Areas and Volumes Guide
120
Area of the sector 92 cm 2 5. Volume of the cylinder 6 2 14 cm3
360
27 cm 2 504 cm3
Total surface area of the cylinder
1 (2 6 14 2 6 2 ) cm 2
2. (a) Base area of the prism 12 5 cm 2
2 240 cm 2
30 cm 2
Volume of the prism 30 30 cm 3 6. ∵ ABCD ~ EFGH
900 cm 3 EH HQ
∴
AD DP
(b) Total area of all lateral faces of the prism x 8
(12 5 13) 30 cm 2 9 6
x 12
900 cm 2
Total surface area of the prism (900 30 2) cm 2
7. ∵ △ABC ~ △ADE
960 cm 2
BC AB
∴ (corr. sides, ~△s)
DE AD
3. ∵ △ABC ~ △EFG y 10 5
EH FG
∴ (corr. sides, ~△s) 12 10
AD BC y 15
EH 12 cm
12 10
6 cm 10 cm y 18
EH 7.2 cm
20 cm
2 © Pearson Education Asia Limited 2022
7 Areas and Volumes (III)
1 (b) In △VON,
OB BD
2 VN 2 VO 2 ON 2 (Pyth. theorem)
1 2
20 cm 20
2 VN ( 189) 2 cm
10 cm 2
In △VOB, 189 102 cm
VO 2 OB 2 VB 2 (Pyth. theorem) 17 cm
1
VO ( 181) 2 10 2 cm Area of △VBC BC VN
2
9 cm 1
∴ The height of the pyramid is 9 cm. 12 17 cm 2
2
1 102 cm 2
(b) Volume of the pyramid (16 12) 9 cm 3
3
576 cm 3 (c) Total surface area of pyramid VABCD
2 area of △VAB 2 area of △VBC base area
Quick Practice 7.4 (p. 7.15) (2 150 2 102 20 12) cm 2
(a) ∵ △VAE △VBE (RHS) 744 cm 2
∴ AE = BE (corr. sides, △s)
AB Quick Practice 7.6 (p. 7.24)
∴ BE
2 1
12 Volume of the cone 6 2 13 cm 3
cm 3
2 156 cm 3
6 cm
AB = DA (definition of square)
= 12 cm Quick Practice 7.7 (p. 7.25)
In △VBE, (a) In △OVA,
OV 2 OA2 AV 2 (Pyth. theorem)
VE 2 BE 2 VB 2 (Pyth. theorem)
OA 82 7 2 cm
VE 10 2 6 2 cm
8 cm 15 cm
1 3.87 cm (cor. to 3 sig. fig.)
Area of △VAB AB VE
2 ∴ The base radius of the cone is 3.87 cm.
1
12 8 cm 2 1
2 (b) Volume of the cone ( 15) 2 7 cm3
48 cm 2 3
110 cm3 (cor. to 3 sig. fig.)
(b) Total surface area of pyramid VABCD
4 area of △VAB base area Quick Practice 7.8 (p. 7.25)
(4 48 12 12) cm 2 Let h cm be the height of the cone.
Volume of the cone volume of the cylinder
336 cm 2
1
82 h 82 7
3
Quick Practice 7.5 (p. 7.16) h 21
(a) In △VOM, ∴ The height of the cone is 21 cm.
VM 2 VO 2 OM 2 (Pyth. theorem)
2 Quick Practice 7.9 (p. 7.27)
12
VM ( 189) 2 cm Curved surface area of the cone 4 6 cm 2
2
24 cm 2
189 62 cm
Base area of the cone 4 2 cm 2
15 cm
1 16 cm 2
Area of △VAB AB VM
2 ∴ Total surface area of the cone (24 16 ) cm 2
1 40 cm 2
20 15 cm 2
2
150 cm 2
Quick Practice 7.16 (p. 7.45) Quick Practice 7.21 (p. 7.56)
Volume of the hemisphere 1 4 33 mm 3 Let x cm2 be the area of the smaller octagon.
2 3 x 4
2
18 mm 3
98 7
Volume of the cylinder 32 22 mm 3
x 16
198 mm 3 98 49
Volume of the bullet (18 198 ) mm 3 16
x 98
216 mm 3 49
32
∴ The area of the smaller octagon is 32 cm2.
Quick Practice 7.17 (p. 7.45)
Let r cm be the base radius of the vessel.
Quick Practice 7.22 (p. 7.56)
∵ Volume of the sphere
Let x cm be the length of a side of the larger hexagon.
= volume of water above the original water level 2
4 x 25
∴ 53 r 2 2
3 21
9
250 x 25
r2
3 21 9
r 9.13 (cor. to 3 sig. fig.) 5
x 21
∴ The base radius of the vessel is 9.13 cm. 3
35
Quick Practice 7.18 (p. 7.47) ∴ The length of a side of the larger hexagon is 35 cm.
2
20
Surface area of the sphere 4 cm 2
2 Quick Practice 7.23 (p. 7.57)
(a) Let x cm2 be the area of quadrilateral ABED.
400 cm 2
∵ △DEF ~ △ABF (AAA)
2
Area of △ DEF DF
Quick Practice 7.19 (p. 7.47) ∴
Total surface area of the hemisphere Area of △ ABF AF
2
= curved surface area + area of the flat surface 15 1
1 x 15 3 1
4 r 2 r 2 cm 2
2 15 1
(2 r r ) cm 2
2 2
x 15 16
3 r 2 cm 2 240 x 15
∵ Total surface area of the hemisphere 75 cm2 x 225
3 r 2 75 ∴ The area of quadrilateral ABED is 225 cm2.
∴
r 2 25
(b) Let y cm2 be the area of △CEB.
r 5
∵ △CEB ~ △DEF (AAA)
2
Area of △CEB CB
Quick Practice 7.20 (p. 7.48) ∴
(a) Let r cm be the outer radius of the mould. Area of △ DEF DF
∵ Outer curved surface area 200 cm2 y AD
2
1 15 DF
∴ 4πr 2 200π
2 y 3
2
r 2 100
15 1
r 10 y
∴ Inner radius of the mould (10 2) cm 9
15
8 cm y 135
3 3
r 1 1 1 1
(b) ∵ 2. (a) Volume of the pyramid 5 9 10 cm3
R 3 27 3 2
volume of the smaller cone 1 75 cm3
and
volume of the larger cone 18
3
Volume of the smaller cone r (b) Volume of the pyramid
1
∴ (11 7) 15 cm3
Volume of the larger cone R 3
∴ The two cones are not similar. 385 cm3
∴ Percy’s claim is disagreed.
3. (a) 1
Area of △VAB AB VH
2
1
18 13 cm 2
2
117 cm 2
∵ △VBK △VCK (RHS)
∴ BK = CK (corr. sides, △s)
BC
With the notations in the figure, ∴ BK
in △VOH, 2
1 10
OH BC cm
2 2
1 5 cm
16 cm In △VBK,
2
8 cm VK 2 BK 2 VB 2 (Pyth. theorem)
VO 2 OH 2 VH 2 (Pyth. theorem) VK ( 250) 2 52 cm
VO 17 2 82 cm 15 cm
15 cm 1
Area of △VBC BC VK
∴ The height of the pyramid is 15 cm. 2
1
10 15 cm 2
1 2
(b) Volume of the pyramid (16 16) 15 cm3
3 75 cm 2
1280 cm3 Total surface area of the pyramid
2 area of △VAB 2 area of △VBC base area
Consolidation Corner (p. 7.17) (2 117 2 75 18 10) cm 2
1. (a) Total surface area of the pyramid 564 cm 2
4 area of △VBC base area
(4 80 13 13) cm 2 2.
489 cm 2
h 252 7 2
total surface area r 2
24
r
∴ The height of the cone is 24 cm.
198 92
cm
1 9
(b) Volume of the cone 7 2 24 cm3 13 cm
3
392 cm3 Curved surface area r
9 13 cm2
1 117 cm2
3. Capacity of the cup 6 2 12 cm3
3
144 cm3 2. Let cm be the slant height of the cone.
2
62 42 (Pyth. theorem)
Capacity of the cylindrical container 12 20 cm
2 3
2880 cm3 6 4
2 2
2880 52
Number of cups of water needed
144 ∴ The slant height of the cone is 52 cm .
20
Curved surface area of the cone 4 52 cm 2
∴ 20 cups of water are needed to completely fill up the
cylindrical container. 4 52 cm 2
Base area of the cone 4 2 cm 2
16 cm 2
∴ Total surface area of the cone
(4 52 16 ) cm 2
141 cm 2 (cor. to the nearest cm 2 )
(b) In △VOA,
VO 2 OA2 VA2 (Pyth. theorem)
VO 122 82 cm
80 cm
Capacity of the cone ∵ △VQN ~ △VPM (AAA)
1 VQ QN
82 80 cm3 ∴ (corr. sides, ~△s)
3 VP PM
599.45 cm3 VQ 9 cm
8 cm 3 cm
600 cm3
VQ 24 cm
∴ Kevin’s claim is disagreed.
1 3
Volume of cone VPQ 62 (4 4) cm3
3 96 cm3
96 cm3 Volume of the frustum (2592 96) cm
3
1 4
2 (b)
4 cm2 18
405
2 2
y 25
8 cm2
18 81
2
Area of the flat surface of the hemisphere cm2
4 5
y 18
2 9
4 cm2 10
Total surface area of the hemisphere (8 4 ) cm
2
∴
12 cm2 3. (a) ∵ △CBA ~ △CDE (AAA)
Perimeter of △CDE ED
∴
Perimeter of △ ABC AB
3. (a) Let r cm be the inner radius of the sphere.
Perimeter of △CDE 3
∵ Inner surface area of the sphere 729 cm2
32 cm 2
∴ 4r 2 729 3
Perimeter of △CDE 32 cm
r 2 182.25 2
r 13.5 48 cm
∴ The inner radius of the sphere is 13.5 cm.
(b) ∵ △CBA ~ △CDE (AAA)
(b) Outer radius of the hollow sphere (13.5 1.5) cm 2
Area of △ ABC AB
15 cm ∴
Area of △CDE ED
Volume of the hollow sphere 2
Area of △ ABC 2
4 4
153 13.53 cm3 180 cm 2 3
3 3
Area of △ ABC 4
3831 cm3 (cor. to the nearest cm3 )
180 cm 2 9
4
Area of △ ABC 180 cm 2
Consolidation Corner (p. 7.59) 9
2
x 8 80 cm 2
1. (a)
252 12
x 2
2 Consolidation Corner (p. 7.65)
3
252 3 x 125
1. (a)
4 8 64
x 252
9 x 3 125
112 8 64
5
x 8
x 28
2 4
(b) 10
40 35
2
x 4
x
2
36
40 5 (b)
16 9 81
x 40
25 x 36
25.6 9 81
x 6
9 9
x6
8 cm
1 1 1
(b) Area of △VBC BC VE
Volume of the pyramid 6 8 8 cm
3
2 3 2
1
18 15 cm 2 64 cm3
2
135 cm 2
∴ Total surface area of the pyramid 16. (a) In △BDA,
4 area of △VBC base area
( 4 135 18 18) cm 2
864 cm 2
2
20 8 cm
cm 1
2 OD BD
10 cm 2
In △VAE, 1
8 cm
VE 2 AE 2 VA2 (Pyth. theorem) 2
4 cm
VE 262 102 cm In △VOD,
24 cm
1
(b) Area of △VAB AB VE
2
1
20 24 cm 2
2 VO 2 OD 2 VD 2 (Pyth. theorem)
240 cm 2 VO 5 42 cm
2
1 13 cm
(c) Volume of the pyramid (4 4) 92 cm3 ∵ △VBG △VCG (RHS)
3
∴ BG = CG (corr. sides, △s)
51.2 cm3 (cor. to 3 sig. fig.)
BC
∴ BG
2
18. (a) In △ABC, 8
AC 2 AB 2 BC 2 (Pyth. theorem) cm
2
AC 162 122 cm 4 cm
20 cm In △VBG,
1 VG 2 BG 2 VB 2 (Pyth. theorem)
OC AC
2 VG 13 42 cm
2
1
20 cm 153 cm
2
10 cm 12.4 cm (cor. to 3 sig. fig.)
In △VOC,
VO 2 OC 2 VC 2 (Pyth. theorem) 1
(b) Area of △VAB AB VH
VO 12.5 10 cm 2 2 2
1
7.5 cm 10 12 cm 2
2
60 cm 2
1
(b) Volume of the pyramid (16 12) 7.5 cm3 1
3 Area of △VBC BC VG
2
480 cm3
1
8 153 cm 2
2
19. (a) In △ABC,
4 153 cm 2
AB 2 BC 2 AC 2 (Pyth. theorem) ∴ Total surface area of the pyramid
AB 32 242 cm
2
2 area of △VAB 2 area of △VBC
448 cm base area
21.2 cm (cor. to 3 sig. fig.) (2 60 2 4 153 10 8) cm 2
299 cm 2 (cor. to 3 sig. fig.)
(b) In △VEC,
1 21. (a) With the notations in the figure,
EC AC
2
1
32 cm
2
16 cm
VE 2 EC 2 VC 2 (Pyth. theorem)
VE 26 162 cm
2
420 cm
1
20.5 cm (cor. to 3 sig. fig.) (i) MH AB
2
1
1 12 cm
(c) Volume of the pyramid ( 448 24) 420 cm3 2
3 6 cm
3470 cm3 (cor. to 3 sig. fig.)
In △VMH, 1
(c) Volume of the pyramid 144 8 cm3
VH VM MH
2 2 2
(Pyth. theorem) 3
VH 8 6 cm
2 2 384 cm3
10 cm
1 23. (a) Let h cm be the height of the pyramid.
∴ Area of △VBC BC VH ∵ Volume of the pyramid = 400 cm3
2
1 1
8 10 cm 2 ∴ (10 10) h 400
2 3
h 12
40 cm 2
∴ The height of the pyramid is 12 cm.
1
(ii) MG BC
2 (b)
1
8 cm
2
4 cm
In △VGM,
VG 2 VM 2 MG 2 (Pyth. theorem)
VG 8 4 cm
2 2
80 cm
1 With the notations in the figure,
∴ Area of △VAB AB VG in △VOE,
2
1 VE 2 OE 2 VO 2 (Pyth. theorem)
12 80 cm 2 2
2 10
VE 122 cm
6 80 cm 2 2
53.7 cm 2 (cor. to 3 sig. fig.) 13 cm
1
Area of △VBC BC VE
(b) Total surface area of pyramid VABCD 2
2 area of △VAB 2 area of △VBC base area 1
10 13 cm 2
2
(2 6 80 2 40 12 8) cm 2
65 cm 2
283 cm 2 (cor. to 3 sig. fig.) ∴ Total surface area of the pyramid
4 area of △VBC base area
22. (a) Base area of the pyramid 12 12 cm
2
(4 65 10 10) cm 2
144 cm2 360 cm 2
∵ Total surface area of the pyramid
4 area of the lateral face VBC base area 24. (a) In △VBM,
∴ 4 area of the lateral face VBC 144 cm2 VM 2 BM 2 VB 2 (Pyth. theorem)
384 cm 2
2
8
∴ 4 area of the lateral face VBC 240 cm2 VM 82 cm
2
1
∴ Area of lateral face VBC 240 cm2 48 cm
4
60 cm2 6.93 cm (cor. to 3 sig. fig.)
1
1 (b) Area of each lateral face 8 48 cm 2
(b) ∵ Area of △VBC BC VE 2
2
1 4 48 cm 2
60 cm2 12 cm VE Total surface area of the tetrahedron
2
VE 10 cm 4 area of each lateral face
∴
4 4 48 cm2
In △VHE,
VH 2 HE 2 VE 2 (Pyth. theorem) 111 cm2 (cor. to 3 sig. fig.)
2
12
VH 102 cm
2
8 cm
25. (a) In △ABC, 27. Let A and h be the base area and the height of the
AC AB BC
2 2 2
(Pyth. theorem) rectangular tank respectively, then
volume of the water
AC 5 5 cm
2 2
capacity of the tank volume of the pyramid
50 cm 1
Ah Ah
In △VBA, 3
VA2 VB 2 AB 2 (Pyth. theorem) 2
Ah
3
VA 12 5 cm2 2
∴ After the pyramid is taken out,
13 cm 2
Similarly, VC = 13 cm Ah
Construct VE AC . the water level 3
A
2
h
3
∴ Percentage decrease in the water level
2
h h
3 100%
h
2
∵ △VAE △VCE (RHS) 1 100%
3
∴ AE = CE (corr. sides, △s)
1
AC 33 %
∴ AE 3
2
50
cm Exercise 7B (p. 7.31)
2 Level 1
In △VEA, 1
1. Volume of the cone 6 2 10 cm3
VE 2 AE 2 VA2 (Pyth. theorem) 3
50
2 120 cm3
VE 132 cm
2
1
313 2. Volume of the cone 32 7 cm 3
cm 3
2 21 cm3
1
Area of △VAC AC VE
2 2
1 10
1 313 3. Volume of the cone 12 m 3
50 cm2 3 2
2 2
100 m 3
44.2295 cm2
44.2 cm2 (cor. to 3 sig. fig.) 4. (a) Let r cm be the base radius of the cone.
92 r 2 152 (Pyth. theorem)
(b) Total surface area of the pyramid
area of △VAC 2 area of △VBC base area r 152 92
12
1 1
44.2295 2 5 12 5 5 cm 2 ∴ The base radius of the cone is 12 cm.
2 2
117 cm (cor. to 3 sig. fig.)
2
1
(b) Volume of the cone 12 2 9 cm 3
3
26. Let x be the length of the side of the base of pyramid P, 432 cm 3
then the length of the side of the base of pyramid Q = 2x.
∵ Volume of pyramid P volume of pyramid Q
5. (a) Curved surface area of the cone 9 12 cm 2
1 2 1
∴ x hP (2 x) 2 hQ 108 cm 2
3 3
hP
4 (b) Total surface area of the cone (108 9 2 ) cm 2
hQ
∴ hP : hQ 4 : 1 189 cm 2
(b) Total surface area of the cone (270 152 ) cm 2 10. Let h cm be the height of the cone.
495 cm 2 1
52 h 100
3
12
16 h
7. (a) Curved surface area of the cone 21 m 2
2
3.82 (cor. to 3 sig. fig.)
168 m 2
∴ The height of the cone is 3.82 cm.
(b) Total surface area of the cone 11. Let r cm be the base radius of the cone.
r 8 50
16
2
168 m 2 25
2 r
4
232 m 2 1.99 (cor. to 3 sig. fig.)
∴ The base radius of the cone is 1.99 cm.
8. (a) Let cm be the slant height of the cone.
2
162 122 (Pyth. theorem) 12. (a) Let cm be the slant height of the cone.
16 12 2 2 3 32 150
150 9
20
∴ The slant height of the cone is 20 cm. 3
12.9155
(b) Total surface area of the cone 12.9 (cor. to 3 sig. fig.)
( 12 20 122 ) cm2 ∴ The slant height of the cone is 12.9 cm.
384 cm2
(b) Height of the cone
1 (or 4 2 cm) .
volume of the cone 62 8 cm3
3
96 cm3 (b) Height of the cone
92 ( 32) 2 cm (Pyth. theorem)
curved surface area of the cone 6 10 cm
2
7 cm
60 cm2
(c) Volume of the cone
(c) When h = 15 cm and = 17 cm, 1
32 7 cm 3
r 172 152 cm (Pyth. theorem) 3
224
8 cm cm 3
3
1
volume of the cone 82 15 cm3
3 14. (a) Let r cm be the base radius of the cone.
320 cm3 2 r 12
r 6
curved surface area of the cone 8 17 cm
2
∴ The base radius of the cone is 6 cm.
136 cm2
Slant height of the tent 22 2.52 m (Pyth. theorem) 152 4.52 cm (Pyth. theorem)
10.25 m 204.75 cm
1
Total surface area of the tent ( 2 10.25 4 ) m
2
Capacity of the vessel 4.5 2 204.75 cm3
3
32.7 m 2 (cor. to 3 sig. fig.) 303 cm3 (cor. to 3 sig. fig.)
22. Let r m be the base radius of the heap of rice. (b) Let be the angle of the sector.
∵ Circumference of the base = 2.8 m ∵ Curved surface area of the cover
∴ 2 r 2.8 = area of the sector
r 1.4
∴ 452 1620
360
Height of the heap of rice 1.82 1.4 2 m (Pyth. theorem)
288
1.28 m ∴ The angle of the sector is 288.
Volume of the heap of rice 1 1.42 1.28 m3
3 25. (a) Volume of the solid
2.3221 m3 1
1.52 2 1.52 20 m3
Weight of the heap of rice 2.3221 250 kg 3
580.525 kg 146 m3 (cor. to 3 sig. fig.)
600 kg
∴ Peter’s claim is disagreed. (b) Slant height of the cone
1.52 22 m (Pyth. theorem)
23. (a) Curved surface area of the vessel
area of the sector 2.5 m
Total surface area of the solid
90
82 cm2 (2 1.5 20 1.5 2.5 1.5 2 ) m 2
360
207 m 2 (cor. to 3 sig. fig.)
16 cm2
50.3 cm2 (cor. to 3 sig. fig.)
26. Let h cm be the height of the cone.
∵ Volume of the cone volume of the cylinder
(b) 1
∴ 52 h 52 4
3
h 12
∴ The height of the cone is 12 cm.
Slant height of the cone
122 52 cm (Pyth. theorem)
13 cm
Total surface area of the cone
( 5 13 52 ) cm 2
Let r cm be the base radius of the vessel. 90 cm 2
∵ Curved surface area of the vessel 16 cm 2 Total surface area of the cylinder
∴ r 8 16 (2 5 4 2 52 ) cm 2
r2 90 cm 2
∴ The base radius of the vessel is 2 cm. ∵ Total surface area of the cone
Height of the vessel 8 2 cm (Pyth. theorem)
2 2 = total surface area of the cylinder
∴ Alan’s claim is disagreed.
60 cm
1 27. (a) Height of the paper cup
Capacity of the vessel 2 60 cm
2 3
2 768 cm 3
Height of pyramid VEFGH (24 12) cm
(b) ∵ Volume of the cylinder = 600 cm3 12 cm
∴ r 2 h 600 Volume of pyramid VEFGH 1 (6 4) 12 cm3
3 2 3
∴ Volume of the cone r h 96 cm3
2
3 ∴ Volume of frustum ABCDHEFG
(600) = volume of pyramid VABCD
2
volume of pyramid VEFGH
900 cm3
(768 96) cm3
672 cm3
Exercise 7C (p. 7.39)
Level 1
1 1
1. (a) Volume of pyramid VEFGH (10 10) 6 cm3 5. (a) Volume of cone VAD 7 2 6 cm3
3 3
200 cm3 98 cm3
1 1
(b) Volume of pyramid VABCD (15 15) 9 cm3 (b) Volume of cone VBC 142 12 cm3
3 3
675 cm3 784 cm3
1 1
2. (a) Volume of pyramid VEFGH (5 5) 9 cm3 6. Capacity of the paper cup 5 2 8 cm3
3 3
200
75 cm3 cm3
3
Volume of water in the cup
(b) Volume of pyramid VABCD 1
1 32 4.8 cm3
(12.5 12.5) (13.5 9) cm3 3
3 14.4 cm3
1171.875 cm3 Volume of water needed to fill up the cup
= capacity of the paper cup – volume of water in the cup
(c) Volume of frustum ABCDHEFG 200
= volume of pyramid VABCD 14.4 cm3
3
– volume of pyramid VEFGH
(1171.875 75) cm3 164 cm3 (cor. to 3 sig. fig.)
1096.875 cm3
(a) Curved surface area of cone VCD 6 10 cm
2
7.
3. Height of pyramid VABC (12 8) cm 60 cm2
20 cm Curved surface area of cone VAB 3 5 cm
2
1 15 cm2
Volume of pyramid VABC 75 20 cm3
3
500 cm3
1
Volume of pyramid VDEF 27 12 cm3
3
108 cm3
19 © Pearson Education Asia Limited 2022
Junior Secondary Mathematics in Action 3B Full Solutions
11. EF 36 cm
6 cm
AB 64 cm
8 cm
Let PD = x cm.
Let K, L, M and N be the mid-points of EG, AC, FG and
∵ △VPD ~ △VQC (AAA)
BC respectively.
PD VP
∴ QC VQ (corr. sides, ~△s)
x 6
3 63
x 6
3 9
x2
∴ The radius of the upper base is 2 cm.
1 1
KM EF (ii) Volume of cone VAD 2 2 6 cm 3
2 3
1 8 cm 3
6 cm
2 1
Volume of cone VBC 32 (6 3) cm3
3 cm 3
1 27 cm 3
LN AB
2 Volume of the frustum
1
8 cm (27 8 ) cm3
2
59.7 cm3 (cor. to 3 sig. fig.)
4 cm
Let VK = x cm, then VL = (x + 6) cm.
∵ △VLN ~ △VKM (AAA) (b) (i) In △VPD,
∴ VL LN (corr. sides, ~△s) VD 2 VP 2 PD 2 (Pyth. theorem)
VK KM
VD 62 22 cm
x6 4
40 cm
x 3
3 x 18 4 x 6.32 cm (cor. to 3 sig. fig.)
x 18 In △VQC,
VL (18 6) cm VC 2 VQ 2 QC 2 (Pyth. theorem)
24 cm
Volume of the frustum VC (6 3) 2 32 cm
= volume of pyramid VABCD 90 cm
volume of pyramid VEFGH
9.49 cm (cor. to 3 sig. fig.)
1 1
64 24 36 18 cm3 (ii) Curved surface area of cone VAD
3 3
296 cm 3 2 40 cm 2
2 40 cm 2
Curved surface area of cone VBC
3 90 cm 2
3 90 cm 2
Curved surface area of the frustum
(3 90 2 40 ) cm2
Total surface area of the frustum
[(3 90 2 40 ) 22 32 ] cm 2
90.5 cm2 (cor. to 3 sig. fig.)
2 r 2 64
100 cm 2 r 8
Diameter 2r cm
1 4 2(8) cm
2. (a) Volume of the hemisphere 183 cm3
2 3 16 cm
3888 cm3
Total surface area of the hemisphere 5. (a) Let r cm be the radius of the sphere.
= curved surface area + area of flat surface ∵ Area of the largest cross-section = 81 cm2
1
4 182 182 cm 2 ∴ r 2 81
2 r 2 81
972 cm 2 r 9
∴ The radius of the sphere is 9 cm.
3
100 cm3
250
Volume of the solid 100 cm3
3
550
cm 3
3
(b) Total surface area of the solid Volume of water in the container
= curved surface area of the hemisphere 500 3
+ curved surface area of the cone 1000 cm
3
1
4 52 5 13 cm 2 Let h cm be the depth of water if the ball is taken out from
2
the container.
115 cm 2 500
10 10 h 1000
3
Level 2 500
15. Volume of water above the original water level 1000
2 h 3
64 2 100
cm3
2 3 4.76 (cor. to 3 sig. fig.)
2048 ∴ The depth of water is 4.76 cm.
cm3
3
Let r cm be the radius of the sphere. 19. Capacity of the can 52 (5 2) cm3
∵ Volume of the sphere 250 cm3
volume of water above the original water level 4
4 3 2048 Volume of the ball 53 cm3
∴ r 3
3 3 500
cm3
r 3 512 3
r 8 500
Volume of water in the can 250 cm
3
∴ The radius of the sphere is 8 cm. 3
250
3 cm3
4 2.2 3
16. Volume of the whole chocolate ball cm3
3 2 Let d cm be the depth of water if the ball is taken out from
1331 the can.
cm3 250
750 52 d
3
1331
Volume of chocolate 2.5 cm3 10
750 d
3
1331 10
Cost of a chocolate ball $ 2.5 3 0.8 ∴ The depth of the water is cm .
750 3
$10.0 (cor. to 3 sig. fig.)
20. The remaining capacity of the container
2
4
17. Let r cm be the radius of the metal ball. (10 7.5) cm 3
∵ Volume of the metal ball = 500 cm3 2
4 3 10 cm 3
∴ r 500 ∴ Total volume of 60 marbles
3
375 4
r3 60 0.53 cm3
3
10 cm3
375
r3 the remaining capacity of the container
2 ∴ The water will not overflow.
375 ∴ Harry’s claim is disagreed.
Surface area of the metal ball 4 3
2
cm
1 4
304.65 cm 2 21. Capacity of the hemispherical part 1.53 cm3
2 3
Cost of painting the metal ball $0.02 304.65
9
$6.093 cm3
4
$6 9 3
∴ Percy’s claim is disagreed. Volume of water in the cylindrical part 60 cm
4
Let d cm be the depth of water in the cylindrical part.
18. Capacity of the cubic container 10 10 10 cm
3
9
1000 cm3 1.52 d 60
4
3
4 10 9
Volume of the ball cm 3 60
3 2 d 4
500 1.52
cm 3 7.488
3
∴ Depth of water in the test tube Let h cm be the height of the cone.
(1.5 7.488) cm 1
6 2 h 96
8.99 cm (cor. to 3 sig. fig.) 3
h8
∴ The height of the cone is 8 cm.
22. (a) Volume of the hemisphere 1 4 63 cm3
2 3 (b) Slant height of the cone
144 cm3
62 82 cm (Pyth. theorem)
Volume of the cylinder 3 6 cm
2 3
10 cm
54 cm3 Total surface area of the solid
Volume of the solid (144 54 ) cm
3
= curved surface area of the cone
+ curved surface area of the hemisphere
198 cm3
1
6 10 4 62 cm 2
2
(b) Curved surface area of the hemisphere
132 cm 2
1
4 62 cm 2
2
72 cm 2 25. (a) (i) Radius of the larger sphere
Curved surface area of the cylinder 3 2r cm
2 3 6 cm2 6r cm
Volume of the larger sphere
36 cm2 4
Total area of the flat surfaces of the solid (6r )3 cm3
3
6 2 cm2 288 r 3 cm3
36 cm2 4
Total surface area of the solid (ii) Volume of the smaller sphere r 3 cm3
3
= curved surface area of the hemisphere
∵ Sum of the volumes of two spheres
+ curved surface area of the cylinder
+ total area of the flat surfaces of the solid = 7812 cm3
4 3
(72 36 36 ) cm 2 ∴ r 288 r 3 7812
3
144 cm 2
868 3
r 7812
3
23. Let x mm be the length of the capsule. r 3 27
Sum of the curved surface areas of the two hemispheres
r 3
1 4
2
2 4 mm 2
2 2 (b) Sum of the surface areas of the two spheres
16 mm 2 [4 32 4 (6 3) 2 ] cm 2
Curved surface area of the cylinder 1332 cm 2
4
2 ( x 2 2) mm2
2 26. (a) Let r cm be the external radius of the ceramic.
4 ( x 4) mm2 ∵ Area of the ring = 75 cm2
∵ Total surface area of the capsule = 60 mm2 ∴ r 2 112 75
∴ Sum of the curved surface areas of the two r 2 121 75
hemispheres + curved surface area of the cylinder
= 60 mm2 r 2 196
16 4 ( x 4) 60 r 14
4 ( x 4) 44 ∴ The external radius of the ceramic is 14 cm.
x 4 11
1
x 15 (b) External curved surface area 4 142 cm 2
2
∴ The length of the capsule is 15 mm. 392 cm 2
1
Internal curved surface area 4 112 cm 2
24. (a) Volume of the hemisphere 1 4 63 cm3 2
2 3
242 cm 2
144 cm3
Volume of the cone 2 144 cm3
3
96 cm3
Total surface area of the ceramic (b) Surface area of the sphere 4r 2 cm2
external curved surface area Slant height of the cone
+ internal curved surface area
+ area of the ring r 2 (4r ) 2 cm (Pyth. theorem)
(392 242 75 ) cm2
17 r cm
709 cm2
Curved surface area of the cone r 17r cm 2
27. (a) Let r cm be the inner radius of the cake mould. 17 r 2 cm 2
∵ Capacity of the mould = 144 cm3 Base area of the cone r 2 cm2
1 4 Total surface area of the cone ( 17r 2 r 2 ) cm 2
∴ r 3 144
2 3 (1 17 )r 2 cm 2
r 3 216
∵ (1 17 )r 2 4r 2
r6 ∴ The total surface area of the cone is larger than
∴ The inner radius of the cake mould is 6 cm.
the surface area of the sphere.
∴ James’s claim is agreed.
(b) Volume of the outer hemisphere
1 4 Exercise 7E (p. 7.65)
(6 0.1)3 cm3
2 3 Level 1
151.3207 cm3 Area of figure A 5
2
17. Let x kg be the weight of the larger horse. 20. Let 1 : n be the scale of the map.
∵ Weight of the horse is proportional to its volume. Area of the playground on the map 1
2
3
x 5 Actual area of the playground n
∴
0.8 3 49 cm 2 1
2
x 125
784 m 2 n
0.8 27 7 cm 1
125
x 0.8 28 m n
27
28 100
3.70 (cor. to 3 sig. fig.) n
7
∴ The weight of the larger horse is 3.70 kg.
400
∴ The scale of the map is 1 : 400.
Level 2
18. (a) Let h cm be the height of the smaller cone. 2
3 Area of AEFG AE
h 54 21.
Area of ABCD AB
16
128
2
3
h 3 27
5
16 64
9
3
h 16 25
4
Let 9k and 25k be the areas of AEFG and ABCD
12
respectively, where k ≠ 0.
∴ The height of the smaller cone is 12 cm. Area of the yellow region = 9k
Area of the blue region = 25k – 9k
Base radius of the smaller cone 12 3 = 16k
(b)
Base radius of the larger cone 16 4 Area of the yellow region 9k
∴ The ratio of the base radius of the smaller cone Area of the blue region 16k
to that of the larger cone is 3 : 4.
9
2 16
Curved surface area of the smaller cone 3 9
(c) ∴ The ratio of the area of the yellow region to that of
Curved surface area of the larger cone 4 16 the blue region is 9 : 16.
∴ The ratio of the curved surface area of the
smaller cone to that of the larger cone is 9 : 16. 22. (a) In △ADE and △ABC,
ADE ABC corr. s, BC // DE
19. (a) Curved surface area of A 18 AED ACB corr. s, BC // DE
Curved surface area of B 50 DAE BAC common
9 ∴ △ADE ~ △ABC AAA
25
∴ The ratio of the curved surface area of A to that (b) Let DB = k and AD = 4k, where k ≠ 0.
of B is 9 : 25. AB = AD + DB = 4k + k = 5k
∴ AD : AB 4k : 5k
2 4:5
Height of B 25 ∵ △ADE ~ △ABC
(b)
Height of A 9 Area of △ ADE AD
2
∴
Height of B 5 Area of △ ABC AB
Height of A 3 4
2
23. (a) Let x cm2 be the area of △CFD. ∵ △BDF ~ △BCA (AAA)
∵ △CFD ~ △CAB (AAA) Area of △ BDF BD
2
2 ∴
∴ Area of △CFD CD Area of △ BCA BC
Area of △CAB CB 2
2
x 3
2
3
8 2 4
x 9
9
8 4
∴ X : (X + Y + Z) 4 : 9
x 18
∴ The area of △CFD is 18 cm2. ∴ CD : CB k : 3k
1: 3
(b) Let y cm2 be the area of quadrilateral CEGD. ∵ △CED ~ △CAB (AAA)
∵ △CFD ~ △EFG (AAA) 2
Area of △CED CD
Area of △CFD DF
2
∴
Area of △CAB CB
∴
Area of △ EFG GF 2
1
18 2 1
2
3
18 y 1 1
18
9 9
18 y
∴ Z : (X + Y + Z) 1 : 9
18 162 9 y
(ii) ∵ X : Z : ( X Y Z ) 4 :1: 9
9 y 144
∴ Let Z = k, X = 4k and X + Y + Z = 9k, where
y 16 k ≠ 0.
∴ The area of quadrilateral CEGD is 16 cm2. ∴ Y 9 k k 4k
4k
Area of △ DEF EF ∴ Y : (X + Y + Z) = 4k : 9k 4 : 9
24. (a)
Area of △CDF FC
Area of △ DEF 2 (b) Area of △CED = 10 cm2
27 cm 2 1 Z = 10 cm2
2 k = 10 cm2
Area of △ DEF 27 cm 2
1 Area of parallelogram AFDE 4k
54 cm 2 4 10 cm 2
40 cm 2
(b) Let x cm2
be the area of quadrilateral ABED.
∵ △ABC ~ △DEC (AAA)
26. Let h be the height of the smaller pyramid.
2
Area of △ ABC BC Then, the height of the frustum is h.
∴ Let V1 and V2 be the volumes of the smaller pyramid and
Area of △ DEC CE
2
the whole pyramid respectively.
x 54 27 1 2 1 3
V1 h
54 27 2 1
V2 h h
2
x 81 4 1
81 3 8
x 81 16 ∴ V2 8V1
81 9 Volume of the smaller pyramid V1
∴
x 81 144 Volume of the frustum V2 V1
x 63 V1
∴ The area of quadrilateral ABED is 63 cm2.
8V1 V1
V1
25. (a) (i) Let DC = k and BD = 2k, where k ≠ 0.
BC = BD + DC = 2k + k = 3k 7V1
∴ BD : BC 2k : 3k 1
2:3 7
∴ The ratio of the volume of the smaller pyramid to that
of the frustum is 1 : 7.
Area of wet surface before pouring water 29. (a) Let A0, A1 and A2 be the total areas of lateral faces of
27. pyramid VABC, frustum ABCFDE and pyramid
Area of wet surface after pouring water VDEF respectively.
2 2
5 A0 VC
5 1 A2 VF
25 A0 2
2
36
A0 A1 2 1
Let 25k and 36k be the areas of wet surface before and
A0 4
after pouring water respectively, where k ≠ 0.
Percentage increase in the area of the wet surface A0 A1 9
36k 25k 9 A0 4 A0 4 A1
100%
25k 5 A0 4 A1
44% A0 4
A1 5
28. (a) Let r0 and r1 be the radii of the sphere before and ∴ The ratio of the total area of lateral faces of
after heating respectively; and y be the surface area of pyramid VABC to that of frustum ABCFDE is
the sphere before heating. 4 : 5.
Surface area of the sphere after heating
= (1 + 21%)y (b) Let x cm3 be the volume of pyramid VDEF.
= 1.21y 3
x VF
2
r1 1.21y
16 VC
r0 y
x 2 1
3
r1
1.1 16 2
r0
x 27
∴ r1 1.1r0
16 8
∴ Percentage increase in the radius of the sphere 27
r r x 16
1 0 100% 8
r0 54
1.1r0 r0 ∴ The volume of pyramid VDEF is 54 cm3.
100%
r0
3
10% Radius of the lower base of frustum BCED
30. (a)
Radius of the upper base of frustum BCED
3
(b) Let V0 and V1 be the volumes of the sphere before and base radius of cone ABC
after heating respectively.
base radius of cone ADE
V1
1.13 volume of cone ABC
V0
volume of cone ADE
V1 1.331V0 27
Percentage increase in the volume of the sphere 8
V V Radius of the lower base of frustum BCED 3 27
1 0 100%
V0 Radius of the upper base of frustum BCED 8
1.331V0 V0 3
100%
V0 2
33.1% ∴ The ratio of the radius of the lower base to that
of the upper base of frustum BCED is 3 : 2.
y 1
V 300 5
x 4
V 512
y 1
V 300 125
∴ x : y 4 :1 125V 512V 153 600
387V 153 600
3 3
x 4 64 V 397 cm3 (cor. to 3 sig. fig.)
(b) ∵
y 1 1 ∴ The final volume of water in the vessel is 397 cm3.
volume of cuboid A 32
and
volume of cuboid B 1 34. (a) Total volume of the two stone fish
3 20 12 1.2 cm3
Volume of cuboid A x
∴
Volume of cuboid B y 288 cm3
∴ The two cuboids are not similar.
2
∴ Eric’s claim is disagreed. Length of stone fish A 36
(b) Length of stone fish B 144
Alternative Solution
2
Let m cm and n cm be the heights of cuboid A and Length of stone fish A 1
cuboid B respectively.
Length of stone fish B 4
x 2 m 32 y 2 n
Length of stone fish A 1
m y2
32 2 Length of stone fish B 2
n x 3
2 Volume of stone fish A 1 1
y
32 Volume of stone fish B 2 8
x
1
1 Volume of stone fish A 288 cm 3
32 1 8
16
2 32 cm3
1 Volume of stone fish B (288 32) cm
3
x 4 m 2 x m 256 cm3
∵ , and
y 1 n 1 y n
∴ The two cuboids are not similar. 35. (a) ∵ The two frustums are similar.
∴ Eric’s claim is disagreed. AB CD
∴
CD EF
32. (a) Capacity of the vessel
r 18
1
8 2 10 cm3 18 30
3
640
r 10.8
cm3
3
(b) Volume of the cone with base radius 30 cm
1
(b) Let h cm be the depth of water in the vessel. 302 45 cm3
3 3
h 500
13 500 cm3
10 640
3 Let x cm3 be the volume of the cone with base radius
3 18 cm.
h 75 3
x CD
10
32
13 500 EF
h 3 75 3
x 18
10 32
13 500 30
75
h3 10 27
32 x 13 500
125
9.07 (cor. to 3 sig. fig.)
2916
∴ The depth of water in the vessel is 9.07 cm. ∴ The volume of the cone with base radius 18 cm
is 2916 cm3.
Volume of the larger frustum
(13 500 2916 ) cm3
10 584 cm3
Let y cm3 be the volume of the smaller frustum. ∴ The ratio of the areas of the smaller plane figure to
3
y CD the larger plane figure is 9 : 16.
10 584 EF
9. Volume of the frustum
3
y 18 volume of cone VBC volume of cone VAD
10 584 30 1 1
27 6 2 10 32 5 cm3
y 10 584 3 3
125
330 cm3 (cor. to 3 sig. fig.)
2286.144
∴ The volume of the smaller frustum is
Revision Exercise 7 (p. 7.74)
2286.144 cm3
Level 1
1
Check Yourself (p. 7.73) Volume of the pyramid (10 10) 12 cm
3
1.
1. (a) 3
400 cm 3
(b)
(c)
Total surface area of the hemisphere
= curved surface area + area of the flat surface
1
4 r 2 r 2 cm 2
2
(2 r 2 r 2 ) cm 2
3 r 2 cm 2
= 144 cm2
3
Area of the smaller plane figure 3
2
1 4 6
8. 4. Volume of the hemisphere cm3
Area of the larger plane figure 4 2 3 2
9 18 cm3
16
33 © Pearson Education Asia Limited 2022
Junior Secondary Mathematics in Action 3B Full Solutions
5. (a) Let r cm be the radius of the sphere. Total surface area of the solid
= base area of the cylinder
∵ Surface area of the sphere = 210 cm2
+ curved surface area of the cylinder
∴ 4 r 2 201 + curved surface area of the hemisphere
201 1
r2
= 1 2 1 8 4 12 cm 2
2
4 2
r 3.9994
= 19 cm
2
4.00
(cor. to 3 sig. fig.)
10. Height of the cone
∴ The radius of the sphere is 4.00 cm.
2
10
(b) Volume of the sphere 132 cm (Pyth. theorem)
4 2
3.99943 cm3 12 cm
3
Volume of the solid
268 cm3 (cor. to 3 sig. fig.)
= volume of the cone + volume of the cylinder
1 10
2
10
2
6. (a) Let cm be the slant height of the cone. = 12 10 cm3
∵ Curved surface area of the cone = 175 cm2 3 2 2
∴ 7 175 = 350 cm3
25
Total surface area of the solid
∴ The slant height of the cone is 25 cm.
= curved surface area of the cone
+ curved surface area of the cylinder
(b) Height of the cone + base area of the cylinder
252 7 2 cm (Pyth. theorem) 10 10 2
2
10
24 cm = 13 2 10 cm
2 2 2
Volume of the cone
1 = 190 cm2
7 2 24 cm3
3
392 cm3 11. Base radius of the cone = radius of the hemisphere
6
cm
7. Volume of the frustum 2
volume of pyramid VEFGH volume of pyramid VABCD 3 cm
1 1 Height of the cone = (7 – 3) cm = 4 cm
162 18 82 9 cm3
3 3 Slant height of the cone 32 42 cm (Pyth. theorem)
1344 cm3 5 cm
Volume of the solid
= volume of the cone + volume of the hemisphere
Curved surface area of cone VAB 2 6 cm
2
8.
1 1 4
= 3 4 33 cm3
2
12 cm 2
3 2 3
Curved surface area of cone VCD 6 (6 12) cm
2
= 30 cm3
108 cm 2
Total surface area of the solid
Curved surface area of the frustum
= curved surface area of the cone
(108 12 ) cm2 + curved surface area of the hemisphere
96 cm2 1
= 3 5 4 32 cm 2
Total surface area of the frustum 2
(96 2 2 6 2 ) cm2 = 33 cm2
427 cm (cor. to 3 sig. fig.)
2
12. Volume of the solid 17. Let A0 and A1 be the original area and the new area of the
= volume of the original cylinder heptagon respectively; and x be the original length of each
– volume of the cone removed side of the heptagon.
1 New length of each side = (1 20%)x
= 5 12 5 9 cm
2 2 3
= 0.8x
3 2
A1 0.8 x
= 707 cm (cor. to 3 sig. fig.)
3
A0 x
Slant height of the conical part A1 0.64 A0
52 92 cm (Pyth. theorem) Percentage decrease in the area of the heptagon
106 cm A A1
0 100%
Total surface area of the solid A0
= curved surface area of the conical part A0 0.64 A0
+ curved surface area of the cylindrical part 100%
A0
+ base area of the cylinder
36%
= ( 5 106 2 5 12 5 ) cm
2 2
= 617 cm2 (cor. to 3 sig. fig.) 18. (a) Let V0 be the volume of the size 4 football.
Volume of the size 5 football
13. Height of the can 3 4 2 cm = (1 + 72.8%)V0
= 1.728V0
24 cm 3
Volume of the empty space in the can Radius of size 5 football 1.728V0
= capacity of the can Radius of size 4 football V0
– total volume of the tennis balls
Radius of size 5 football 3
4 1.728
42 24 3 43 cm3 Radius of size 4 football
3 6
128 cm3 5
∴ The ratio of the radius of the size 5 football to
14. Let h cm be the rise in the water level. that of the size 4 football is 6 : 5.
∵ Volume of water above the original water level
2
= volume of the sphere
(b) Surface area of size 5 football 6
4 Surface area of size 4 football 5
∴ r 2h r 3
3 36
4r
h 25
3 ∴ The ratio of the surface area of the size 5 football
4r to that of the size 4 football is 36 : 25.
∴ The rise in the water level is cm .
3
19. Let hA cm and hB cm be the heights of cone A and cone B;
15. Let x cm2 be the area of the smaller figure. and V cm3 be the volume of cone B respectively.
2 2
x 4 hB 27
405 9 h 75
A
x 16
hB 9
405 81
16 hA 25
x 405
81 3
80 5
∴ The area of the smaller figure is 80 cm2. 3
V 3
16. Let x cm be the internal diameter of the smaller life buoy. 250 5
3 V 27
x 540
250 125
50
2500
27
x 3 27 V 250
125
50 125 54
x 3 ∴ The volume of cone B is 54 cm3.
50 5
3 Capacity of the larger bowl 6 cm
3
x 50 20.
5
Capacity of the smaller container 2 cm
30
27
∴ The internal diameter of the smaller life buoy is
∴ A participant must carry water at least 27 times so
30 cm.
that the larger bowl is fully filled.
(b) In △VOB,
VO 2 OB 2 VB 2 (Pyth. theorem)
VO 102 52 cm
75 cm
(a) In △VMB, 1
Volume of the cone 52 75 cm3
3
VM 2 MB 2 VB 2 (Pyth. theorem)
227 cm3 (cor. to 3 sig. fig.)
2
10
VM 132 cm
2
23. (a)
Length of AB
120
2 6 cm
12 cm 360
∴ The height of △VAB with the base AB is 12 cm. 4 cm
Let r cm be the base radius of the cone.
(b) In △VMN, ∵ Circumference of the base of the cone = 4 cm
VN 2 MN 2 VM 2 (Pyth. theorem) ∴ 2r 4
2 r2
10
VN 122 cm ∴ The base radius of the cone is 2 cm.
2
119 cm (b) Height of the cone 62 22 (Pyth. theorem)
Volume of the pyramid
32
1
(10 10) 119 cm 3 1
3 Volume of the cone 22 32 cm3
3
363.62... cm3
23.7 cm3 (cor. to 3 sig. fig.)
360 cm3
∴ Barry’s claim is agreed.
24. Volume of water in the hemispherical part
1 4
22. With the notation in the figure, 1.53 cm3
2 3
9
cm3
4
Volume of water above the hemispherical part
9 3
21 cm
4
(a) ∵ △VAO △VBO (RHS)
75
cm3
∴ AO = BO (corr. sides, △s) 4
AB Let h cm be the depth of water in the cylindrical part.
∴ OB 75
2 1.52 h
10 4
cm 25
2 h
5 cm 3
25
∵ OVA OVB (corr. s, △s) ∴ The depth of water in the cylindrical part is cm .
3
1
∴ OVB AVB Depth of water = depth of water in the cylindrical part
2 + radius of the hemisphere
1
60 25
2 1.5 cm
30 3
In △VOB, 59
cm
OB 6
sin 30
VB
5 cm
VB
sin 30
10 cm
25. Let h cm be the height of the cylinder. 29. (a) ∵ Volume of the hemisphere
∵ Curved surface area of the cylinder = volume of the cylinder
= curved surface area of the sphere
∴ Volume of the hemisphere 1 36 cm3
∴ 2rh 4r 2 2
h 2r 18 cm3
Let r cm be the radius of the hemisphere.
Volume of the cylinder r 2 h
1 4
r 2 (2r ) 18 r 3
2 3
2r 3 r 3 27
4
Volume of the sphere r 3 r 3
3 ∴ The radius of the hemisphere is 3 cm.
∵ Volume of the cylinder volume of the sphere
∴ Ben’s claim is disagreed. (b) Volume of the cylinder
= volume of the hemisphere
4
26. Total volume of the 23 solid spheres 23 23 cm3 = 18 cm3
3
Base radius of the cylinder
736
cm3 = radius of the hemisphere
3
= 3 cm
Total volume of the solid spheres and water
Let h cm be the height of the cylinder.
736
1500 cm 3 18 32 h
3
h2
2270.737... cm 3 ∴ The height of the cylinder is 2 cm.
Capacity of the conical vessel
1 (c) Total surface area of the solid
122 15 cm3
3 = curved surface area of the hemisphere
720 cm3 + curved surface area of the cylinder
+ base area of the cylinder
2261.947... cm3
1
total volume of the 23 solid spheres and water 4 32 2 3 2 32 cm 2
2
∴ Water will overflow.
39 cm 2
27. Volume of the steel part
= volume of the cylinder + volume of the hemisphere 30. (a) With the notations in the figure,
1 4
= 5 20 103 cm3
2
2 3
3500
= cm3
3
Let r cm be the radius of the sphere.
∵ Volume of the sphere volume of the steel part
4 3500
∴ r3
3 3
r 3 875 ∵ △VGD ~ △VHC (AAA)
VG GD
r 9.56 (cor. to 3 sig. fig.) ∴ (corr. sides, ~△s)
∴ The radius of the sphere is 9.56 cm. VH HC
12 h 2
28. Let r cm be the internal radius of the bowl. 12 3
1 4 3 36 3h 24
144 r
2 3 3h 12
r 3 216 h4
r 6
External radius of the bowl (6 0.5) cm (b) Volume of the frustum
= volume of cone VBC – volume of cone VAD
6.5 cm
∴ Volume of the material required to make the bowl 1 1
= 3 12 2 (12 4) cm
2 2 3
1 4 3 3
6.53 144 cm3
2 3 76
= cm3
123 cm3 (cor. to 3 sig. fig.) 3
(b) Let V0 cm3, V1 cm3 and V2 cm3 be the volumes of ∵ △DFH ~ △DAG (AAA)
solids A, B and C respectively. 2
Area of △ DAG DA
V0 h
3
∴
Area of △ DFH DF
V0 V1 h h 2
Area of △ DAG 2
3
V0 1 23 cm 2 1
V0 V1 2 Area of △ DAG 4 23 cm 2
V0 1 92 cm 2
V0 V1 8 ∴ Area of quadrilateral AGHF
8V0 V0 V1 = area of △ DAG area of △ DFH
V1 7V0 (92 23) cm 2
∴ V0 : V1 1 : 7 69 cm 2
2
V0 h
36. (a) △APB ~ △CPD (AAA)
V0 V1 V2 h h h
3
V0 1 (b) ∵ △APB ~ △CPD
V0 V1 V2 3 Area of △CPD CD
2
∴
V0 1 Area of △ APB AB
V0 7V0 V2 27 Area of △CPD 5
2
V0 1 45 cm 2 3
8V0 V2 27 25
Area of △CPD 45 cm 2
27V0 8V0 V2 9
V2 19V0 125 cm 2
∴ V0 : V2 1 : 19
∴ V0 : V1 : V2 1 : 7 : 19 (c) ∵ △APB ~ △CPD
∴ The ratio of the volumes of solids A to B to C is CP PD CD 5
∴ (corr. sides, ~△s)
1 : 7 : 19. AP PB AB 3
If we take AP and CP as the bases of △APB and
35. (a) ∵ AD BC △CPB respectively, the two triangles have the same
∴ AF DF BE EC height.
AF DF 2 EC Area of △CPB CP
∴ Area of △ APB AP
AF DF 2 AF
DF AF Area of △CPB 5
∵ △DFH ~ △BCH (AAA) 45 cm 2 3
FH DF 5
∴ (corr. sides, ~△s) Area of △CPB 45 cm 2
CH BC 3
AF 75 cm 2
BC If we take PB and PD as the bases of △APB and
EC △APD respectively, the two triangles have the same
BC height.
1 Area of △ APD PD
∴ Area of △ APB PB
2
∴ FH : HC 1 : 2 Area of △ APD 5
45 cm 2 3
(b) If we take FH and HC as the bases of △DFH and 5
Area of △ APD 45 cm 2
△CDH respectively, the two triangles have the same 3
height. 75 cm 2
Area of △ DFH FH ∴ Area of the trapezium
∴ Area of △CDH HC = area of △APB + area of △CPB
Area of △ DFH 1 + area of △CPD + area of △APD
46 cm 2 2 (45 75 125 75) cm2
1 320 cm2
Area of △ DFH 46 cm 2
2
23 cm 2
37. With the notation in the figure, 38. (a) Let V cm2 be the new volume of the liquid in the
funnel.
3
V 12 3
128 12
3
V 3
128 4
27
V 128
64
(a) ∵ △VAM △VBM (RHS) 54
∴ AM = BM (corr. sides, △s) Volume of liquid in the cylindrical container
AB (128 54) cm3
∴ MB
2
74 cm3
4
cm Base area of the cylindrical container
2 74
2 cm cm 2
5
In △VMB,
14.8 cm 2
VM VB 2 MB 2 (Pyth. theorem)
42 22 cm (b) Capacity of the cylindrical container
12 cm 14.8 8 cm3
1 118.4 cm3
∴ Area of △VAB 4 12 cm 2
2 128 cm3
2 12 cm 2 ∴ The water will overflow.
∴ Total surface area of the tetrahedron
39. (a) The frustum can be formed by cutting away a smaller
4 2 12 cm2 cone from a larger cone.
Let V0 cm3 and V1 cm3 be the volumes of the larger
27.7 cm2 (cor. to 3 sig. fig.) cone and the smaller cone respectively.
3
V0 6
(b) ∵ △ABC is an equilateral triangle.
V1 3
∴ ABC 60
∵ O is the incentre of △ABC.
V1 105
8
1 V1
∴ OBM ABC V1 105 8V1
2
1 V1 15
60
2 V0 15 105 120
30 Let h0 cm and h1 cm be the heights of the larger cone
In △OMB, and the smaller cone respectively.
OM 1
tan OBM 120 62 h0
MB 3
OM h0 10
tan 30
2 cm h0 6
OM 2 tan 30 cm
h1 3
In △VMO,
10 6
VO 2 OM 2 VM 2 (Pyth. theorem)
h1 3
VO ( 12) 2 (2 tan 30) 2 cm h1 5
VO 12 4 tan 30 cm 2
∴ h h0 h1
∴ Volume of the tetrahedron 10 5
1 5
base area height
3
1 Alternative Solution
2 12 12 4 tan 2 30 cm3
3 The frustum can be formed by cutting away a smaller
7.54 cm3 (cor. to 3 sig. fig.) cone from a larger cone.
Let hL cm and hS cm be the heights of the larger cone
and the smaller cone respectively.
hL 6
hS 3
∴ hL 2hS
165 cm (cor. to 3 sig. fig.)
2
V0 V1 10
3
7V0 10 d
1
40. (a) Volume of the whole pyramid (6 6) 18 cm 3 V0 7V0 10
3 3
216 cm 3
7 10 d
3
Let V cm be the volume of the pyramid that is above 8 10
the water surface. 10 d
3
0.956 47
V 18 3 10
9.5647 10 d
216 18
3 d 0.4353
V 5
0.435 (cor. to 3 sig. fig.)
216 6
∴ The depth of the water in the lower cone is 0.435 cm.
125
V 216
216 2. (a) Volume of water above the original water level
125 52 7 cm3
∴ Volume of the pyramid that is below the water
175 cm3
surface
= (216 – 125) cm3 ∵ Volume of the larger cylinder
volume of the smaller cylinder 175 cm3
3
= 91 cm
∴ Volume of the smaller cylinder
(b) Volume of water (6 6 3 91) cm 17 cm
3 3
175 cm3 volume of the larger cylinder
17 (175π 135π ) cm3
Depth of water cm
66 40 cm3
0.472 cm (cor. to 3 sig. fig.)
9. Answer: A
Let x and y be the heights of the smaller pyramid and the
larger pyramid respectively.
3
x 1
y
27
x 3 1
y 27
x 1
y 3
∴ The required ratio is 1 : 3.
Exam Corner
Alternative Solution
Let h cm be the depth of the water.
3
h 2304
1 +
60 152 60
3
3
h 64
60
125
h 4
60 5
h 48
∴ The depth of the water is 48 cm.
2. (a) Let h cm be the height of the cylinder.
∵ Volume of the cylinder = volume of the hemisphere
1 4
∴ 6 2 h 63
2 3
36h 144
h4
∴ The height of the cylinder is 4 cm.
Alternative Solution
Let r1 cm and r2 cm be the radii of the smaller sphere and the larger sphere;
S1 cm2 and S2 cm2 be the surface areas of the smaller sphere and the larger
sphere respectively.
r1 1
2r2 8
r1 1
r2 4
2
S1 1
S2 4
1
16
Surface area of the smaller sphere
1
612 cm 2
16 1
36 cm 2
656.25 cm 2
5. (a) Let V1 cm3 and V2 cm3 be the volumes of the larger pyramid and the smaller
pyramid respectively.
3
V1 3
V2 2
V1 27
V2 8
27
V1 V2
8
∵ Total volume of the two pyramids = volume of the prism
∴ V1 V2 250 7
27
V V2 1750
8
35
V2 1750
8
V2 400
∴ The volume of the smaller pyramid is 400 cm3.
2
R 2
r 1
R 2
r 1
∴ R:r 2 :1
48 cm 2