I D data
MUSIC Gt-r E
Rock
hmmmm
→
÷
:
( data )
2b
Image
ID data
GᵗIᵗ
Digit
G
music
Rock -
ummmm
→
◦
POP I
: .
i. ✓
1
OR
9
Cowan
COVID
→
Wthr NOT -
comb
ID data
music GERE .
Rock
MMMMM
→
Pop
↳
:
f - o ◦ • • •
• •
I 1 I • 1 I • I 1 1 I ☆ I 1 I 1-
• • • • •
,
'
- •
,
I D data
music Gt-r E .
Rock
Mmmmm
→
↳
:
i. Ii¥EH÷
• • •
•
-
I D data
music Gt-r E .
Rock
Mmmmm
→
↳
:
i. Ii¥EH÷
• • •
•
-
I D data
music Gt-r E .
Rock
Mmmmm
→
↳
:
i. Ii¥EH÷
• • •
•
-
I D data
music Gt-r E .
Rock
Mmmmm
→
↳
:
i. Ii¥EH÷
• • •
•
-
I D data
MUSIC GERE .
Rock
Mmmmm
→
Pop
↳
:
µ , , , amp .
m
RISING EDGE
LOW AMP .
Nh
FALL '
EDGE
i. Ii¥¥H÷
• • •
•
-
Filter
LOW Amplitude
'
-
I -
I -
I
i. I¥E÷: • • •
-
Filter
Low Amplitude
'
-
I -
I -
I
I
-1×1 -1×1-1×1
/
0 p =
= -3
iI¥E÷: ⑧ • •
Filter
LOW Amplitude
-
I -
I -
I
I
/
0 P = -1×1-1×1 -1×0
= -2
i.IE#::E- • • • •
'
• •
Filter
LOW Amplitude
-
I -
I -1
iii÷;•¥÷=
_ " ""
"
=
0
⑧ • •
Filter
LOW Amplitude
-
I -
I -
I
i.IE#:.E.! ⑧ • •
Filter
LOW Amplitude
-
I -
I -
I
/
0 P =3
i-IE.EE#- • • •
Filter
LOW Amplitude
-
I -
I -
I
/
0 P = 2
iIi¥F¥÷ ⑧ • •
' -
Filter
LOW Amplitude
-
I -
I -
I
/
0 P = 2
I ◦ ◦ • • •
i-IHI.io
-
• •
• • Do • •
-
④ F)
Can we
say
-
RELU ( at - * it -1k
amplitudes
>
us low
gives
AMPLITUDE FILITR El ,
-1 -1 ]
LOW ,
Amplitude Filter
HIGH
Filter
Rising adge
Filter
Falling Edge
• • •
•
⑧ • • •
'
• •
AMPLITUDE FILITR El ,
-1 ]
-1
LOW ,
Amplitude Filter [ 1,1 ☐ ,
HIGH
Filter E- 1,91]
Rising adge
Filter [ ☐
Falling Edge
i. 0
-
• • •
•
⑧ • • Do • •
Transfer learning
have anlw trained on Imagenet
Say we
classes)
-
( 1000
:
MLP
i
-
→
POOL → CONV . - r - r
CONV
i.
-
C. 1000
Transfer learning
have anlw trained on Imagenet
Say we
classes)
-
( 1000
:
MLP
•
-
→
POOL → CONV - r - r r
CONV
i.
-
& Ciooo
Feature
E- attractor
Transfer learning
-
we now have our dataset (
say R vis 5)
Change
K
:
MLP
;
-
→
POOL → CONV - r - r r
→ CONV -
i
I
& Ciooo
Feature
E- attractor
Transfer learning
-
we now have our dataset (
say R vis
s
)
→ CON V
- POOL → CONV - r - r r → MLP
-
-
Feature
E- attractor
Transfer learning
-
we now have our dataset (
say R vis
s
)
→ CON V
- POOL → CONV - r - r r → MLP
-
-
Feature
E- attractor
9- Fined
Transfer learning
-
we now have our dataset (
say R vis
s
)
→ CON V
- POOL → CONV - r - r r → MLP
-
-
1
Fine
tune
-
Feature
E- attractor