0% found this document useful (0 votes)
13 views24 pages

1d CNN

Uploaded by

samyakiitgn
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views24 pages

1d CNN

Uploaded by

samyakiitgn
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

I D data

MUSIC Gt-r E
Rock
hmmmm

÷
:
( data )
2b
Image
ID data

GᵗIᵗ
Digit
G
music

Rock -

ummmm


POP I
: .

i. ✓
1

OR
9

Cowan
COVID

Wthr NOT -
comb
ID data

music GERE .

Rock
MMMMM

Pop


:

f - o ◦ • • •
• •

I 1 I • 1 I • I 1 1 I ☆ I 1 I 1-
• • • • •
,
'
- •
,
I D data

music Gt-r E .

Rock
Mmmmm


:

i. Ii¥EH÷
• • •

-
I D data

music Gt-r E .

Rock
Mmmmm


:

i. Ii¥EH÷
• • •

-
I D data

music Gt-r E .

Rock
Mmmmm


:

i. Ii¥EH÷
• • •

-
I D data

music Gt-r E .

Rock
Mmmmm


:

i. Ii¥EH÷
• • •

-
I D data

MUSIC GERE .

Rock
Mmmmm

Pop


:

µ , , , amp .

m
RISING EDGE

LOW AMP .

Nh
FALL '
EDGE

i. Ii¥¥H÷
• • •

-
Filter
LOW Amplitude

'
-
I -
I -
I

i. I¥E÷: • • •
-
Filter
Low Amplitude

'
-
I -
I -
I

I
-1×1 -1×1-1×1
/
0 p =

= -3

iI¥E÷: ⑧ • •
Filter
LOW Amplitude

-
I -
I -
I

I
/
0 P = -1×1-1×1 -1×0
= -2

i.IE#::E- • • • •
'
• •
Filter
LOW Amplitude

-
I -
I -1

iii÷;•¥÷=
_ " ""
"

=
0

⑧ • •
Filter
LOW Amplitude

-
I -
I -
I

i.IE#:.E.! ⑧ • •
Filter
LOW Amplitude

-
I -
I -
I

/
0 P =3

i-IE.EE#- • • •
Filter
LOW Amplitude

-
I -
I -
I

/
0 P = 2

iIi¥F¥÷ ⑧ • •
' -
Filter
LOW Amplitude

-
I -
I -
I

/
0 P = 2

I ◦ ◦ • • •

i-IHI.io
-
• •

• • Do • •
-

④ F)
Can we
say
-
RELU ( at - * it -1k

amplitudes
>

us low
gives
AMPLITUDE FILITR El ,
-1 -1 ]
LOW ,

Amplitude Filter
HIGH
Filter
Rising adge
Filter
Falling Edge

• • •

⑧ • • •
'
• •
AMPLITUDE FILITR El ,
-1 ]
-1
LOW ,

Amplitude Filter [ 1,1 ☐ ,

HIGH
Filter E- 1,91]
Rising adge
Filter [ ☐
Falling Edge
i. 0
-

• • •

⑧ • • Do • •
Transfer learning

have anlw trained on Imagenet


Say we
classes)
-

( 1000

:
MLP
i
-

POOL → CONV . - r - r

CONV
i.
-

C. 1000
Transfer learning

have anlw trained on Imagenet


Say we
classes)
-

( 1000

:
MLP

-

POOL → CONV - r - r r

CONV
i.
-

& Ciooo

Feature
E- attractor
Transfer learning
-
we now have our dataset (
say R vis 5)
Change
K

:
MLP
;
-

POOL → CONV - r - r r

→ CONV -

i
I

& Ciooo

Feature
E- attractor
Transfer learning
-
we now have our dataset (
say R vis
s
)

→ CON V
- POOL → CONV - r - r r → MLP
-

-
Feature
E- attractor
Transfer learning
-
we now have our dataset (
say R vis
s
)

→ CON V
- POOL → CONV - r - r r → MLP
-

-
Feature
E- attractor
9- Fined
Transfer learning
-
we now have our dataset (
say R vis
s
)

→ CON V
- POOL → CONV - r - r r → MLP
-

-
1
Fine
tune
-
Feature
E- attractor

You might also like