Rational Functions
1.7          and Their Properties
                 Practice Set 1
Problems 1 − 4, for each rational function below, simplify in factored form, identify the domain, the
                zero(s), and the y-intercept.
             2𝑥𝑥 2 − 2𝑥𝑥                                              𝑥𝑥 2 +𝑥𝑥 −12
1. 𝑓𝑓 𝑥𝑥 =    𝑥𝑥 2 − 1
                                                         2. 𝑔𝑔 𝑥𝑥 =   𝑥𝑥 2 +6𝑥𝑥+8
  Domain: __________________________________                Domain: __________________________________
  Zero(s): __________________________________               Zero(s): __________________________________
  y-intercept: ______________________________               y-intercept: ______________________________
             𝑥𝑥 2 −2𝑥𝑥 −15                                             𝑥𝑥 2−𝑥𝑥 −6
3. ℎ 𝑥𝑥 =         𝑥𝑥 2 − 9
                                                         4. 𝑘𝑘 𝑥𝑥 =   𝑥𝑥 2 +4𝑥𝑥+3
  Domain: __________________________________                Domain: __________________________________
  Zero(s): __________________________________               Zero(s): __________________________________
  y-intercept: ______________________________               y-intercept: ______________________________
Problems 5 − 8, Use the graph of each function to complete the arrow notation statements.
                  𝑥𝑥−3
5. 𝑓𝑓 𝑥𝑥 =   𝑥𝑥 2 −5𝑥𝑥+6                                    There is a hole in the graph at: _______________
                                                             lim 𝑓𝑓 𝑥𝑥 = ______________
                                                            𝑥𝑥→−∞
                                                            lim 𝑓𝑓 𝑥𝑥 = ______________
                                                            𝑥𝑥→∞
                                                            lim 𝑓𝑓 𝑥𝑥 = ______________
                                                            𝑥𝑥→2−
                                                            lim 𝑓𝑓 𝑥𝑥 = ______________
                                                            𝑥𝑥→2+
                                                            lim 𝑓𝑓 𝑥𝑥 = ______________
                                                            𝑥𝑥→3−
                                                            lim 𝑓𝑓 𝑥𝑥 = ______________
                                                            𝑥𝑥→3+
                                                            Domain: _____________________________________
© 2022 Jean Adams                               Flamingo Math.com
             3𝑥𝑥 2−8𝑥𝑥−3
6. 𝑔𝑔 𝑥𝑥 =      𝑥𝑥 2− 9                 There is a hole in the graph at: _______________
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−∞
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→∞
                                          lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−3−
                                          lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−3+
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→3−
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→3+
                                        Domain: _____________________________________
              𝑥𝑥 2 −12𝑥𝑥−28
7. ℎ 𝑥𝑥 =          𝑥𝑥 2 − 4             There is a hole in the graph at: _______________
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−∞
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→∞
                                          lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−2−
                                          lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−2+
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→2−
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→2+
                                        Domain: _____________________________________
             2𝑥𝑥 2 −8𝑥𝑥+6
8. 𝑘𝑘 𝑥𝑥 =    𝑥𝑥 2 +𝑥𝑥 −2               There is a hole in the graph at: _______________
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−∞
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→∞
                                          lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−2−
                                          lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→−2+
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→1−
                                         lim 𝑓𝑓 𝑥𝑥 = ______________
                                        𝑥𝑥→1+
                                        Domain: _____________________________________
© 2022 Jean Adams             Flamingo Math.com
                Rational Functions
    1.7         and Their Properties
                Practice Set 2
 Problems 9 – 12, Find the holes, vertical asymptote(s) and x-intercepts for each function. Sketch.
              𝑥𝑥+2                                                2𝑥𝑥 2+7𝑥𝑥+6
9. 𝑓𝑓 𝑥𝑥 = 𝑥𝑥 2+5𝑥𝑥+6                               10. 𝑔𝑔 𝑥𝑥 =    𝑥𝑥 2−𝑥𝑥 −6
             2𝑥𝑥 2 +5𝑥𝑥+2                                         𝑥𝑥 2+6𝑥𝑥 −16
11. ℎ 𝑥𝑥 = 2𝑥𝑥 2−5𝑥𝑥−3                              12. 𝑘𝑘 𝑥𝑥 =       𝑥𝑥 2 −4
© 2022 Jean Adams                        Flamingo Math.com
Problems 13 – 16, Find the horizontal asymptotes for the given functions and provide a reason.
              3𝑥𝑥 2 +5𝑥𝑥−2                                          𝑥𝑥 2 +6𝑥𝑥+8
13. 𝑓𝑓 𝑥𝑥 =   𝑥𝑥 2 −5𝑥𝑥+6
                                                      14. 𝑔𝑔 𝑥𝑥 =       𝑥𝑥 3 −1
              𝑥𝑥−5                                                  2𝑥𝑥 3 + 8
15. ℎ 𝑥𝑥 = 𝑥𝑥+4                                       16. 𝑘𝑘 𝑥𝑥 =   4𝑥𝑥 3 − 12
Problems 17 – 20, Find the slant asymptote equation, if one exists, or give a reason if not possible.
              𝑥𝑥 2 −5𝑥𝑥 −6                                          2𝑥𝑥 3 +5𝑥𝑥 −3
17. 𝑔𝑔 𝑥𝑥 =       𝑥𝑥 + 2
                                                      18. 𝑘𝑘 𝑥𝑥 =       𝑥𝑥 − 4
              2𝑥𝑥 3 +3𝑥𝑥−5                                          3𝑥𝑥 2 −7𝑥𝑥+6
19. 𝑓𝑓 𝑥𝑥 =        𝑥𝑥−3
                                                      20. ℎ 𝑥𝑥 =        𝑥𝑥 −6
© 2022 Jean Adams                         Flamingo Math.com
Problems 21 – 22, For the given functions, analyze and graph.
              𝑥𝑥 2+𝑥𝑥−1
21. 𝑓𝑓 𝑥𝑥 =      𝑥𝑥−1
    A. Vertical asymptote: ____________________
    B. Horizontal asymptote: __________________
    C. Slant asymptote: _______________________
    D. y-intercept: _____________________
    E. x-intercept(s): _________________________
    F. Hole(s) in the graph: ___________________
    G. Domain: ________________________________
    H. Range: _________________________________
              2𝑥𝑥 2 −4𝑥𝑥−6
22. 𝑔𝑔 𝑥𝑥 =    𝑥𝑥 2−3𝑥𝑥−4
    A. Vertical asymptote: ____________________
    B. Horizontal asymptote: __________________
    C. Slant asymptote: _______________________
    D. y-intercept: _____________________
    E. x-intercept(s): _________________________
    F. Hole(s) in the graph: ___________________
    G. Domain: ________________________________
    H. Range: _________________________________
© 2022 Jean Adams                            Flamingo Math.com
                                 Free Response Table Problem
  𝒙𝒙   −80     −6   −4   −3 −2.005       −2     −1.995   0     1      1.995     2         2.005   6      80
𝒇𝒇(𝒙𝒙) 1.948   1    0    −2   −798 undefined 802         4   3.333 3.001 undefined 2.998          2.5   2.048
                                                                              2𝑥𝑥 2 + 4𝑥𝑥 − 16
23. The table above represents values on the graph of the function 𝑓𝑓 𝑥𝑥 =          𝑥𝑥 2 − 4
A. For what value(s) of x does the graph of 𝑓𝑓(𝑥𝑥) have a vertical asymptote? Give a reason for your
   answer.
B. Does the function contain a point discontinuity? If so, name the coordinates of the hole. Explain.
C. Use limit notation to describe the end behavior of the function.
D. Consider the values in the table, what factor will be guaranteed in the numerator. Give a reason
   for your answer.
E. Use the equation for the function and factor completely. Explain the connections to your
   conclusions in parts A-D and your work.
                                                                      © 2020 Jean Adams                         Fla
© 2022 Jean Adams                         Flamingo Math.com
                              Free Response Application Problem
24. The population 𝑃𝑃(𝑡𝑡) of an endangered species of turtles, t years after being introduced into a
                                               263
    safe habitat area is given by 𝑃𝑃 𝑡𝑡 = 1+3.62𝑒𝑒 −0.144𝑡𝑡
A. Find the y-intercept of 𝑃𝑃 𝑡𝑡 . Interpret this value in the context of the problem.
B. How many years will it take for the initial population to double in size?
C. How many turtles are expected to be in the habitat after 10 years?
D. Find lim 𝑃𝑃 𝑡𝑡 and interpret your answer in the context of the problem.
        𝑡𝑡→∞
                                                                       © 2020 Jean Adams               Fla
© 2022 Jean Adams                           Flamingo Math.com