1.
The following fractional saturation data has been measured for a certain blood sample:
pO2 ,kPa θ
20 0.14
30 0.26
40 0.39
50 0.50
60 0.59
70 0.66
80 0.72
90 0 .76
θ
a. By plotting the graph of log( ) versus log[pO2] , put [pO2] on the x-axis
1−θ
while θ on the y-axis, Calculate the Hill constant, n, and state the cooperativity
type
b. Calculate P50 of this blood sample
Solution
θ
First Find the values of log(pO2) and log( ¿
1−θ
θ
pO2 ,kPa log(pO2) θ log( ¿
1−θ
20 1.301 0.14 -0.788
30 1.477 0.26 -0.454
40 1.602 0.39 -0.194
50 1.699 0.50 0.000
60 1.778 0.59 0.158
70 1.845 0.66 0.288
80 1.903 0.72 0.410
Page 1 of 2
90 1.954 0 .76 0.501
a.
Chart Title
0.6
0.4
0.2
0
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-0.2
-0.4
-0.6
-0.8
-1
Using linear regression or calculating the slope by ΔX/ΔY the Hill
constant, nH, is 1.991. This implies that the ligand binding is positively
cooperative.
θ
b. Log( ) = nLog(pO2)- LogKd
1−θ
θ
LogKd = nLog(pO2) - Log( )
1−θ
=1.991 *1.954-0.501
=3.389
Kd=Anti log 10^3.389 = 2.449kPa
Page 2 of 2