Design of Reinforced Concrete Structures
Lecture 10: Design of Reinforced Concrete Columns
              Dr.-Ing. Mahmoud Elshahawi
1                                           Dr.-Ing. Mahmoud Elshahawi
                                            »«Columns
                                                                                                  -األعمدة
                                 • عنصر إنشائي رأسي يستخدم لنقل ردود أفعال الكمرات إلى القواعد.
• في حالة وجود كمرات ترتكز على العمود فأن حمل العمود عند ظهر االساسات  = Puردود أفعال
                                                                                         الكمرات.
                 Pu = 1.10 ∗ n ∗ ∑ R , where n is the number of stories
       • في حالة البالطات الالكمرية فأن حمل العمود عند ظهر االساسات  = Puيحسب بقانون المساحات.
                                     Pu = 1.10 ∗ n ∗ A ∗ Wsu
Dimensions:
      • b ≮ 200 mm
      • t ≯ 5b
      • t > 5b → Shear Walls
                           -تستخدم في المباني العالية لمقاومة االحمال الجانبية (أحمال الزالزل والرياح).
      ❖ Classifications of Columns:
         1 . Stirrups
         2 . Slenderness Ratio
         )3 . Lateral Load (Braced or Unbraced
         )4 . Loads (Stresses
  2                                                                        Dr.-Ing. Mahmoud Elshahawi
1. Stirrups
    A. Tied columns                               B. Spiral columns
                             عمود بكانات منفصلة
                                                            عمود بكانات حلزونية-
      الحديد+ • الذي ينقل الحمل هو (الخرسانة
                                                  + • الذي ينقل الحمل الرأسي (الخرسانة
                                 .)الرأسي
                                                          ) الكانات+ الحديد
                       .• الكانات للتربيط فقط
    ❖ For tied columns:
    Pu = 0.35 ∗ fcu ∗ (Ac − As ) + 0.67 ∗ fy ∗ As
    Pu = Ac [0.35 ∗ fcu ∗ (1 − μ) + 0.67 ∗ fy ∗ μ]
      Pu = حمل العمود
      Ac = مساحة الخرسانة
      As = مساحة الحديد
          As
      μ=      → As = μ ∗ Ac
          Ac
                                  0.008 Ac,required
      As,min = the largest from {
                                 0.006 Ac, chosen
                                         0.04 for interior columns
                               μmax   = { 0.05 for edge columns
                                         0.06 for corner columns
3                                                                Dr.-Ing. Mahmoud Elshahawi
     ❖ For spiral columns:
Required: As , D , øspiral , Pitch (P)
Pitch (P) = (30 – 80) mm
Dk = D − 50 mm
Ak = πD2k /4
Ac = πD2 /4
       Pu = the least from:
          ▪ Pu1 = 1.14(0.35 ∗ fcu ∗ (Ac − As ) + 0.67 ∗ fy ∗ As )
          ▪ Pu1 = 0.4 ∗ fcu ∗ (Ac − As ) + 0.76 ∗ fy ∗ As
          ▪ Pu2 = 0.35 ∗ fcu ∗ (Ak − As ) + 0.67 ∗ fy ∗ As + 1.38 ∗ Vsp ∗ fysp
                                                    0.01 Ac
                            As = the largest from {
                                                   0.012 Ak
                   Asp ∗ π ∗ Dk         Vsp                  fcu Ac
           Vsp =                , μsp =     ≥ μsp,min = 0.36    ∗ ( − 1)
                        P               Ak                   fys Ak
 4                                                            Dr.-Ing. Mahmoud Elshahawi
       2. Slenderness Raito “𝛌”                     نسبة النحافة
                Short column                                       Slender column
                 Madd = 0.0
                                                                   Madd = Pu ∗ δ
---------------------------------------------------------------------------
       3. Lateral Loads            األحمال الجانبية
---------------------------------------------------------------------------
       4. Loads (stresses)
  5                                                                      Dr.-Ing. Mahmoud Elshahawi
      ❖ Example:
        Pu = 3300 kN
        fcu = 25 N⁄mm2
        fy = 350 N⁄mm2
        fy,st = 240 N⁄mm2
    ➢ Using the ultimate limit state design method, design and draw cross section
        details for the following “Short Braced”.
            a. Square tied column.
            b. Rectangular tied column of width equal to 300 mm.
            c. Circular tied column.
            d. Circular spiral column.
------------------------------------------------------------------------------------------------------
    ➢ For Tied Columns
               Pu = 0.35 ∗ fcu ∗ (Ac − As ) + 0.67 ∗ fy ∗ As
               3300 ∗ 103 = 0.35 ∗ 25 ∗ (0.992Ac ) + 0.67 ∗ 350 ∗ 0.008Ac
               As = 0.008 ∗ Ac
               Acreq = 312618.42 mm2
-------------------------------------------------------------------------------------------------------
    a. For Square Tied Column
               A c = b2
               b = √Ac = 559 mm
               use b ∗ b = (600 ∗ 600)mm
               As = األكبر
                  o 0.008 ∗ Ac Req = 0.008 ∗ 312618.42 = 2500.95 mm2
                   o 0.006 ∗ Ac actual = 0.006 ∗ 6002 = 2160 mm2
               As = 2500.95 mm2
               Use 16D16
  6                                                                      Dr.-Ing. Mahmoud Elshahawi
                                                                              ❖ شروط رص األسياخ والكانات:
                                           . 1المسافة بين األسياخ الرأسية ال تزيد عن  250مم.
                            . 2المسافة بين األسياخ المربوطة والغير مربوطة ال تزيد عن  150مم.
                                                                       حجم الكانات       Vstip       0.25
                                                                                     =           ≮          . 3
                                                                      حجم الخرسانة       Vconc       100
        Vst       0.25
              =
       Vconc      100
       n∗Ast ∗∑ L     0.25
                  =
       b∗b∗1000          100
                               550
       ∗n∗50.3∗(4∗550+4            )√2       0.25
                                2
                                         =
              600∗600∗1000                   100
                                             ′
       n = 4.76 → Use 5∅8/m                         عدد األسياخ ال يقل عن  5في المتر
-------------------------------------------------------------------------------------------------------
    b. Rectangular column
               Ac = b ∗ t
               312618.42 = 300 ∗ t
               t = 1042.1 mm
               Use b ∗ t = (300 ∗ 1100)mm
               األكبر = As
                         o 0.008 ∗ Ac Req = 0.008 ∗ 312618.42 = 2500.95mm2
                               o 0.006 ∗ Ac actual = 0.006 ∗ 300 ∗ 1100 = 1980 mm2
               As = 2500.95 mm2 → Use 16D16
  7                                                                                  Dr.-Ing. Mahmoud Elshahawi
         Vst       0.25
               =
        Vconc    100
        n∗50.3∗∑ L   0.25
                    =
         b∗t∗1000         100
        ∑L = 6 ∗ 250 + 2 ∗ 1050 + 4 ∗ 150 = 4200 mm
          n∗50.3∗4200           0.25
                           =
        300∗1100∗1000           100
        n = 3.9 → Use 5∅8/m′
------------------------------------------------------------------------------------------------
      c. For Circular Tied Column
                                D2
               Ac = π ∗
                                4
                                                D2
               312618.42 = π ∗
                                                4
               D = 630 mm
               Use D = 650 mm
               As = األكبر
                        o 0.008 ∗ Ac Req = 0.008 ∗ 312618.42 = 2500.95 mm2
                                                                     6502
                                o 0.006 ∗ Ac actual = 0.006 ∗ π ∗           = 1990 mm2
                                                                      4
             As = 2500.95 mm2 → Use 16D16
      ▪ Check Volume of Stirrups:
               n∗50.3∗π∗600              0.25
                  6502
                                     =
                π∗     ∗1000             100
                    4
               n = 8.74 → Use 9∅8/m′
  8                                                                       Dr.-Ing. Mahmoud Elshahawi
      ❖ Spiral Columns
                       D2c⁄
               Ac = π ∗    4
                         2
                       D
               Ak = π ∗ k⁄4
                        π∗Asp ∗Dk
               Vsp =
                             P
               As = the largest from
                  ▪ 0.01 ∗ Ac
                  ▪ 0.012 ∗ Ak
      ❖ Solution:
        3300 ∗ 103 = 0.4 ∗ 25 ∗ (Ac ∗ 0.99) + 0.76 ∗ 350 ∗ 0.01Ac
                                          D2
          ▪ Ac = 262738.85 mm2 = π ∗ c⁄4
                   Dc = 578 mm
                   take Dc = 600 mm
                   Dk = Dc − 50 = 550 mm
          ▪ As = األكبر
                                 2
                o 0.01* π ∗ 600 ⁄4 = 2827 mm2
                                   2
                o 0.012* π ∗ 550 ⁄4 = 𝟐𝟖𝟓𝟏 𝐦𝐦𝟐
        Use 12D18 with Asact = 3048 mm2
--------------------------------------------------------------------------------------------
  9                                                                      Dr.-Ing. Mahmoud Elshahawi
     Pu = 0.35 ∗ fcu ∗ (Ak − As ) + 0.67 ∗ fy ∗ As + 1.38 ∗ Vsp ∗ fysp
                                               5502
     3300 ∗ 103 = 0.35 ∗ 25 ∗ (π ∗                    − 3048) + 0.67 ∗ 350 ∗ 3048 + 1.38 ∗
                                                 4
   Vsp ∗ 240
   Vsp = 1609.5 mm3
 ➢ Check μsp    :
                  min
                    Vsp          1609.5
           μsp =            =        2    =   6.77 ∗ 10−3
                       Ak       π∗550 ⁄4
                                      fcu        A
           μsp         = 0.36 ∗ (
                                     fysp
                                            ) ∗ (Ac − 1)
                 min                             k
                                                      2
                                      25         π∗600 ⁄4
           μsp         = 0.35 ∗ (          )∗(        2     − 1) = 7.128 ∗ 10−3
                 min                 240         π∗550 ⁄4
           Take μsp = 7.128 ∗ 10−3
                           Vsp
           7.128 ∗ 10−3 =
                           Ak
           Vsp = 1693.5 mm3
           Vsp = π ∗ Dk ∗ Asp ⁄P
           Asp → ∅8 → 50.3
           1693.5 = π ∗ 550 ∗ 50.3⁄P
           P = 51 mm → take P = 50 mm
10                                                                     Dr.-Ing. Mahmoud Elshahawi
                                             «Pu, Mu» “Uniaxial”
    ❖ Design
        • Given Mu, Pu, b, t
        • Required As
--------------------------------------------------------
                                                . ال بد من عمل فحص هل يمكن اهمال أي من العزم او القوة:أوال
          Pu
if                  < 0.04 → neglect Pu
     fcu ∗b∗t
               Mu                                    0.05 t
if e =              < emin = the largest from {             → neglect Mu
               Pu                                   20 mm
In case of both Pu and Mu are considered, there are two cases:
                     Mu       t
      a. e =              >       → big eccentricity → design using Mus approach
                     Pu       2
                     Mu       t
      b. e =              <       → small eccentricity → design using the interaction diagrams
                     Pu       2
     11                                                                      Dr.-Ing. Mahmoud Elshahawi
Interaction diagrams:
1- Symmetric Reinforcement
              A′s = α ∗ As
              α = 1.0
        eccentricity
                       M
                 ▪ e = u⁄P
                             u
                 ▪ e⁄t > 0.2
2- Un symmetric Reinforcement
              A′s = α ∗ As
              α = 0.8
3- Uniform Distribution حديد موزع بانتظام
                       M
                 ▪ e = u⁄P
                             u
                 ▪ e⁄t < 0.2
Note:
 القطاع المستطيل يتحمل عزم أكبر من القطاع-
   والقطاع المربع يتحمل عزم أكبر من،المربع
                           .ي
                            ّ القطاع الدائر
 12                                           Dr.-Ing. Mahmoud Elshahawi
                                                                      ❖ خطوات دخول الـ :I.D
                                                   )1يتم تحديد الصفحة عن طريق fy , α, ξ
                                    (d − d′ )⁄
                               =ξ             t  d = t − cover, d′ = 50 mm
                                              ξ = 0.8 or 0.9
                                          )2يتم حساب كل من دليل الدخول األفقي والرأسي
                              Pu                  Mu
                                & ⁄f ∗ b ∗ t           ⁄f ∗ b ∗ t 2
                                  cu                     cu
                                                     )3يتم دخول الـ  Curvesوحساب قيمة ρ
                              μ = ρ ∗ fcu ∗ 10−4
                              As = μ ∗ b ∗ t
--------------------------------------------------------
    ”➢ Point “1
        نزود األبعاد Unsafe
   ”➢ Point “2
     ⋯=ρ
     ⋯=μ
     ⋯ = As
    ”➢ Point “3
نأخذ قيمة  ρاألقل
 13                                                                   Dr.-Ing. Mahmoud Elshahawi
Example:
  •   Pu = 2700 kN
  •   Mux = 675 kN.m
  •   b = 300 mm, t = 600 mm
  •   fcu = 25 MPa, fy = 350 MPa
  •   ξ = 0.9
  ❖ Solution
Check:
                Pu
                        > 0.04 consider
            fcu ∗ b ∗ t
                 Mu       675
            e=        =         = 0.25 m → consider
                 Pu    2700
            e⁄ =  0.25
               t 0.6 = 0.42 > 0.2
            Symmetric
                 ✓ fy = 360 MPa
                 ✓ α=1
                 ✓ ξ = 0.9
            Pu                         3
              ⁄f ∗ b ∗ t = 2700 ∗ 10 ⁄25 ∗ 300 ∗ 600 = 0.6
                  cu
            Mu                          6
                 ⁄f ∗ b ∗ t 2 = 675 ∗ 10 ⁄25 ∗ 300 ∗ 6002 = 0.25
                   cu
            unsafe
            use b * t = 300 * 800
            e⁄ > 0.2 → Symmetric
               t
      Pu                      3
        ⁄f ∗ b ∗ t = 2700 ∗ 10 ⁄25 ∗ 300 ∗ 800 = 0.45
          cu
      Mu                       6
        ⁄f ∗ b ∗ t 2 = 675 ∗ 10 ⁄25 ∗ 300 ∗ 8002 = 0.14
          cu
      ρ = 6.4
      μ = ρ ∗ fcu ∗ 10−4 = 6.4 ∗ 25 ∗ 10−4 = 0.016
      As = μ ∗ b ∗ t = 0.016 ∗ 300 ∗ 800 = 3840 mm2
      Use 8D25
      A′s = α ∗ As = 3840 mm2
      Use 8D25
 14                                                       Dr.-Ing. Mahmoud Elshahawi
  ❖ Example:
For the shown-braced rectangular column section, it is required to determine the
required reinforcement if Pu = 2000kN and Muy = 200kN.m.
  •   Pu = 2000 kN
  •   Mu = 200 kN.m
  •   b = 600 mm , t = 300 mm
  •   fcu = 25 MPa , fy = 350 MPa
  •   ξ = 0.9
Solution
             Pu
check:               > 0.04 consider
         fcu ∗ b ∗ t
                   Mu       200
              e=        =         = 0.1 m
                   Pu   2000
              e⁄ =  0.1
                 t 0.3 = 0.33 > 0.2
              Pu                        3
                 ⁄f ∗ b ∗ t = 2200 ∗ 10 ⁄25 ∗ 600 ∗ 300 = 0.44
                   cu
              Mu                         6
                  ⁄f ∗ b ∗ t 2 = 200 ∗ 10 ⁄25 ∗ 600 ∗ 3002 = 0.148
                    cu
              Symmetric
              ρ = 6.4
              ρ = 6.4
              μ = ρ ∗ fcu ∗ 10−4 = 6.4 ∗ 25 ∗ 10−4 = 0.016
              As = μ ∗ b ∗ t = 0.016 ∗ 600 ∗ 300 = 2880 mm2
              Use 8D22
              A′s = α ∗ As = 2880 mm2
              Use 8D22
 15                                                        Dr.-Ing. Mahmoud Elshahawi
                              «Pu, Mux, Muy» “Biaxial”
Using interaction diagrams:
                                              (R b , fy )  يتم تحديد رقم الصفحة عن طريق-
                       Pu
                Rb =     ⁄f ∗ b ∗ t = 0.3, 𝑜𝑟 0.40, 𝑜𝑟 0.50, 𝑜𝑟 0.60
                           cu
                                      get ρ = ⋯
                                  μ = ρ ∗ fcu ∗ 10−4
                                  As,total = μ ∗ b ∗ t
 16                                                           Dr.-Ing. Mahmoud Elshahawi
     Interaction diagrams for uniaxially loaded columns
17                                       Dr.-Ing. Mahmoud Elshahawi
18   Dr.-Ing. Mahmoud Elshahawi
19   Dr.-Ing. Mahmoud Elshahawi
20   Dr.-Ing. Mahmoud Elshahawi
21   Dr.-Ing. Mahmoud Elshahawi
22   Dr.-Ing. Mahmoud Elshahawi
23   Dr.-Ing. Mahmoud Elshahawi
24   Dr.-Ing. Mahmoud Elshahawi
25   Dr.-Ing. Mahmoud Elshahawi
26   Dr.-Ing. Mahmoud Elshahawi
27   Dr.-Ing. Mahmoud Elshahawi
28   Dr.-Ing. Mahmoud Elshahawi
29   Dr.-Ing. Mahmoud Elshahawi
     Interaction diagrams for biaxially loaded columns
30                                       Dr.-Ing. Mahmoud Elshahawi
31   Dr.-Ing. Mahmoud Elshahawi
32   Dr.-Ing. Mahmoud Elshahawi
33   Dr.-Ing. Mahmoud Elshahawi
34   Dr.-Ing. Mahmoud Elshahawi
35   Dr.-Ing. Mahmoud Elshahawi
36   Dr.-Ing. Mahmoud Elshahawi
37   Dr.-Ing. Mahmoud Elshahawi
38   Dr.-Ing. Mahmoud Elshahawi