Lab-MIMO
KAPIL JOSHI
802361003
                         EXPERIMENT – 4
    CODE -
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % All rights reserved by Krishna Pillai, http://www.dsplog.com
    % The file may not be re-distributed without explicit authorization
    % from Krishna Pillai.
    % Checked for proper operation with Octave Version 3.0.0
    % Author        : Krishna Pillai
    % Email         : krishna@dsplog.com
    % Version       : 1.0
    % Date          : 02nd Novemeber 2008
    % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Script for computing the BER for BPSK modulation in a
    % Rayleigh fading channel with 2 Tx, 2Rx MIMO channel
    % Minimum Mean Square Error equalization
    clear
    N = 10^6; % number of bits or symbols
    Eb_N0_dB = [0:25]; % multiple Eb/N0 values
    nTx = 2;
    nRx = 2;
    for ii = 1:length(Eb_N0_dB)
        % Transmitter
        ip = rand(1,N)>0.5; % generating 0,1 with equal probability
        s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0
        sMod = kron(s,ones(nRx,1)); %
        sMod = reshape(sMod,[nRx,nTx,N/nTx]); % grouping in
    [nRx,nTx,N/NTx ] matrix
        h = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; %
    Rayleigh channel
        n = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; % white
    gaussian noise, 0dB variance
        % Channel and noise Noise addition
        y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n;
        % Receiver
        % Forming the MMSE equalization matrix W =
    inv(H^H*H+sigma^2*I)*H^H
        % H^H*H is of dimension [nTx x nTx]. In this case [2 x 2]
        % Inverse of a [2x2] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]
        hCof = zeros(2,2,N/nTx) ;
                                                              10 | P a g e
    hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1) + 10^(-
Eb_N0_dB(ii)/10); % d term
    hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1) + 10^(-
Eb_N0_dB(ii)/10); % a term
    hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term
    hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term
    hDen = ((hCof(1,1,:).*hCof(2,2,:)) -
(hCof(1,2,:).*hCof(2,1,:))); % ad-bc term
    hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);
% formatting for division
    hInv = hCof./hDen; % inv(H^H*H)
      hMod =   reshape(conj(h),nRx,N); % H^H operation
    yMod = kron(y,ones(1,2)); % formatting the received symbol for
equalization
    yMod = sum(hMod.*yMod,1); % H^H * y
    yMod = kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting
    yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y
      % receiver - hard decision decoding
      ipHat = real(yHat)>0;
      % counting the errors
      nErr(ii) = size(find([ip- ipHat]),2);
end
simBer = nErr/N; % simulated ber
EbN0Lin = 10.^(Eb_N0_dB/10);
theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5));
p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);
theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p));
close all
figure
semilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);
hold on
semilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);
semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);
axis([0 25 10^-5 0.5])
grid on
legend('theory (nTx=2,nRx=2, ZF)', 'theory (nTx=1,nRx=2, MRC)', 'sim
(nTx=2, nRx=2, MMSE)');
xlabel('Average Eb/No,dB');
ylabel('Bit Error Rate');
title('BER for BPSK modulation with 2x2 MIMO and MMSE equalizer
(Rayleigh channel)');
PLOT -
                                                          11 | P a g e
12 | P a g e