Cable Analysis
Cable Analysis
ISBN 978-0-7277-4146-2
Chapter 4
Cable analysis
Analysis of the stress ribbon and cable-supported structure is The equilibrium of forces in the vertical direction can be
based on the understanding of the static and dynamic behaviour defined
of the single cable.
VðxÞ qðxÞ dx ðVðxÞ þ dVðxÞÞ ¼ 0
4.1. Single cable
We assume that a cable of area A and modulus of elasticity E acts VðxÞ qðxÞ dx VðxÞ dVðxÞ ¼ 0 ð4:4Þ
as a perfectly flexible member that is able to resist the normal
force only. Under this assumption, the cable curve will coincide qðxÞ dx ¼ dVðxÞ ¼ Hy00 ðxÞ dx
with the funicular curve of the load applied to the cable and to
the chosen value of the horizontal force H (Figure 4.1). where
For the given load q(x) and chosen horizontal force H the cable and
curve is determined by coordinate y(x), sag f(x), the slope of the
tangent y0 (x) ¼ tan ’(x) and radius of the curvature R(x). These qðxÞ ¼ Hy00 ðxÞ
values are derived from the general equilibrium conditions on
QðxÞ
the element ds. See Figure 4.1 for definitions of notation. y0 ðxÞ ¼ þ C1 ð4:6Þ
H
The cable is stressed by a normal force N(x) that has vertical MðxÞ
and horizontal components V(x) and H(x), defined: yðxÞ ¼ þ C 1 x þ C2
H
NðxÞ2 ¼ HðxÞ2 þ VðxÞ2 where Q(x) and M(x) are shear force and bending moment on a
HðxÞ ¼ NðxÞ cos ðxÞ ð4:2Þ simple beam of span l. The constants C1 and C2 are determined
from the boundary conditions:
VðxÞ ¼ NðxÞ sin ðxÞ:
x ¼ 0; y ¼ yðaÞ; yðaÞ ¼ 0 þ C1 0 þ C2 ; C2 ¼ yðaÞ
For a vertical load H ¼ const, we have
41
X QðxÞ
q(x) p0 ðxÞ ¼
H
h
pðxÞ ¼ y0 ðxÞ ¼ p0 ðxÞ þ ¼ p0 ðxÞ þ tan
l
H a x
ð4:7Þ
MðxÞ
Y b f ðxÞ ¼
H
q(x) A
N(x) V(x) h MðxÞ h
yðxÞ ¼ þ x ¼ f ðxÞ þ x tan
f(x) H l
f(x) y y(x) b H
H
x) for q(x) constant (Figure 4.2). From Figure 4.2, we have
dy ds R(
H B
dx
f(x) 1 1 q
p0 ðxÞ ¼ ql qx ¼ ðl 2xÞ
H 2 2H
V(x) + dV(x) N(x) + dN(x)
s h
I pðxÞ ¼ p0 ðxÞ þ ¼ p0 ðxÞ þ tan
l
ð4:8Þ
MðxÞ 1 1 1 2 q
f ðxÞ ¼ ¼ qlx qx ¼ xðl xÞ
N H H 2 2 2H
h
yðxÞ ¼ f ðxÞ þ x ¼ f ðxÞ þ x tan
l
V x¼0
ql ð4:9Þ
q(x) max p0 ¼
2H
l
A0 B0
x¼
2
ð4:10Þ
Q ql 2
max f ¼
8H
(a) (b)
q q
H x H x H
I /2 I /2
I
42
Figure 4.3 Non-tension length of the cable: (a) initial stage and (b) final stage
(a) (b)
q(x)0 q(x)i
H0 a Hi a
b b
A0 Ai
b H0 b Hi
Ln
0 B0 Bi
Ln
Ds
i
Ds
s
I I
since then
dy ð l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð l sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2
tan ðxÞ ¼ y0 ðxÞ ¼ and dy ¼ y0 ðxÞ dx: 02 QðxÞ h
dx s¼ 1 þ y ðxÞ dx ¼ 1þ þ dx
0 0 H l
We then have ð l sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Q2 ðxÞ cos2 2QðxÞh cos2
¼ 2
1þ 2
þ
ds2 ¼ dx2 þ dy2 ¼ dx2 1 þ y02 ðxÞ 0 cos H Hl
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl
and 1 Q2 ðxÞ cos2 2QðxÞh cos2
¼ 1þ þ dx: ð4:13Þ
0 cos H2 Hl
ðs ð l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s¼ ds ¼ dx2 þ ð1 þ y02 ðxÞÞ
0 0 We can express s as
ð l qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð4:12Þ
ðl
¼ 1 þ y02 ðxÞ dx: 1
0 s¼ ð1 þ BÞ1=2 dx ð4:14Þ
cos 0
Since
where
QðxÞ h QðxÞ
y0 ðxÞ ¼ þ ¼ þ tan Q2 ðxÞ cos2 2QðxÞh cos2
H l H B¼ þ : ð4:15Þ
H2 hl
and
Since
2 1
cos ¼ jBj < 1;
1 þ tan2
h it is possible to use the binomial formula:
tan ¼
l
1 h 2 B B B
¼1þ ; ð1 þ BÞp ¼ 1 þ xþ x2 þ x3 þ . . . ð4:16Þ
cos2 l 1 2 3
43
Figure 4.4 Initial and final stage of the cable: (a) fixed supports and (b) flexible supports
q(x)i
x
q(x)0
q(x)i
H0, Hi y
a
q(x)0
x Da v0 a
b
A0, Ai Da vi H0 b0 x0
h Hi xi
A0 bi
h0
Ai
hi
b H0, Hi Db v 0 b
y y0
Db vi yi H0
0 0 Hi
B0, Bi
B0
i
i Bi
DaH0 I0 Db H0
I Da Hi Ii DbHi
(a) (b)
ðl ðl
1 1 l 2 1 q2 l 3
QðxÞ dx ¼ 0 D¼ QðxÞ dx ¼ 2 ql ql ¼ :
0 0 2 2 2 3 2 12
i.e. there is an equilibrium of forces in the vertical direction, For the cable of length l (Figure 4.2(b)), sag f, horizontal force
then H and uniform load q, the length of the cable is defined:
ðl
2QðxÞh cos2 l 1 q2 l 3 q2 l 3
dx ¼ 0 s¼ þ 2
¼lþ
0 Hl 1 2H 12 24H 2
44
Figure 4.5 Determination of D for: (a) a uniform load and (b) an arbitrary load
(a) (b)
q q(x )
Qi – 1
1/2ql Qi
Q
Q
i–1 i
2/3(1/2ql ) Qi,t
Q
Q
I /2 I /2 hi
I I
ql 2 8f 2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2
ðs ð 1 þ y02 ðxÞ dx
H¼ and s¼lþ : H ds2 H l
8f 3l s¼ ¼
EA 0 dx EA 0 dx
For a general load (Figure 4.5(b)) it is possible to divide the ðl " #
H QðxÞ h 2
length of the girder into the elements of the length h and substi- ¼ 1þ þ dx
EA 0 H l
tute the course of Q(x) by a polygon. Then: ð4:22Þ
ðl !
ðl X
n n ðh
X H cos2
¼ l þ QðxÞ dx
D¼ Q2 ðxÞ dx ¼ Di ¼ Q2 dx EA cos2 H2 0
0 i¼1 i¼1 0
ð
H l 1 l
¼ þ QðxÞ dx :
It is possible to calculate the values of Di for each element: EA cos2 H2 0
Qi 1þ Qi Since
Di ¼ h Qi;t
2
ðl
l cos
where Qi,t is the value of Q(x) at the centre of gravity of the s¼ þ Q2 ðxÞ dx
element. cos 2H 2 0
we have
4.1.1 Elastic elongation of the cable
Since ðl !
H cos2 2
s¼ lþ Q ðxÞ dx ð4:23Þ
NðsÞ ds ds EA cos2 H2 0
¼ ; i:e: NðsÞ ¼ H
H dx dx
and hence
we have
ðl !
ðs ðs 2H l cos2 2
NðsÞ H ds2 s¼ þ Q ðxÞ dx
s¼ ds ¼ ð4:20Þ EA cos cos 2H 2 cos 0
0 EA 0 EA dx !
2H l cos2 ð4:24Þ
and ¼ þ D
EA cos cos 2H 2 cos
ðl
2H l
ds ¼ 1 þ y02 ðxÞ dx: ð4:21Þ ¼ s :
0 EA cos 2 cos
45
Ln ¼ s0 s0 d c
bþ þ aHi þ ¼0
l cos H0 l 1 Hi2 Hi ð4:28Þ
¼ þ D0 D
cos 2H02 EA cos2 H0 EA 0 ð4:25Þ aHi3 þ bHi2 þ cHi þ d ¼ 0:
ðl
D0 ¼ Q2x;0 dx: from which the unknown horizontal force Hi can be easily
0
determined.
For the load q(x)i, unknown horizontal force Hi and tempera-
ture ti, the length of the non-tension cable (Figure 4.4(b)) is 4.1.3 Influence of deformation of supports and
defined: elongation of the cable at the anchor blocks
In actual structures it is necessary to include possible deforma-
Lni ¼ si si tions of supports and elongations of the cable at the anchor
blocks.
Lni ¼ Lnð1 þ t ti Þ
ð4:26Þ
ðl Deformations of supports for load 0 and i are defined:
Di ¼ Q2x;i dx
0 V V V V
ai ¼ Ai a a0 ¼ A0 a
V V
h0 ¼ Yb Ya a0 bi0 ð4:30Þ
we have
h
tan 0 ¼ 0:
Lni ¼ si si l0
46
Figure 4.6 Elastic deformations of the cable at the anchor blocks where
li cos i Hi li Di
H=1 Lni Di þ þ kHi þ ¼0
cos i 2Hi2 EA cos2 i EAHi
ð4:36Þ
If we set
li li Di
a¼ þ k; b ¼ Lni ; c¼
S EA cos2 i cos i EA
and
1
cos i
d¼ Di ;
2
we obtain a cubic equation to determine Hi:
aHi3 þ bHi2 þ cHi þ d ¼ 0: ð4:37Þ
Ik Since the parameters a, b, c and d depend on the span li and
vertical difference hi (which depends on horizontal force Hi),
it is not possible to determine the unknown Hi directly by
solving Equation (4.37); it is therefore necessary to determine
and load i:
Hi by iteration. First, the unknown Hi is determined for zero
deformation of supports and zero elongation of the cable at
an;i ¼ kHi ð4:33Þ
the anchor blocks. For this force, the vertical reactions Ai and
Bi, span length li, vertical difference hi, parameters a, b, c and
where k ¼ ka þ kb (Figure 4.6) expresses the elongation of the
d and new horizontal force Hi are utilised. The computation is
cable at the anchor blocks a and b due to unit horizontal
repeated until the difference between the subsequent solutions
force H ¼ 1. ka and kb are defined:
is smaller than the required accuracy.
ð lka ð lkb
Ska Skb
ka ¼ ds kb ¼ ds ð4:34Þ 4.2. Bending of the cable
0 EA 0 EA
The bending of the cable is derived from the analysis of the
For the load q(x)0, horizontal force H0 and temperature t0, the single cable which is stressed by a known horizontal force H
length of the non-tension cable (Figure 4.4(a)) is defined: (Eibel et al., 1973).
1 ð4:35Þ
D kH0 N(x) M(x)
H0 EA 0
ð l0 Q(x)
q(x)
D0 ¼ Q2x;0 dx
0 g
Hg , H x
For the load q(x)i, unknown horizontal force Hi and tempera- a b
q(x)
ture ti, the length of the non-tension cable (Figure 4.4(b)) is A h(x)
V(x) h
defined: N(x)
M(x) y(x)
H y, h Hg , H
Lni ¼ Lnð1 þ t ti Þ j(x)
dh b
ds w(x)
Lni ¼ si si an;i M(x) + dM(x) B
dx H
l cos i Hi li 1 j(x)
¼ i þ Di D kHi N(x) + dN(x)
cos i 2Hi2 EA cos2 i Hi EA i V(x) + dV(x)
ð li
Di ¼ Q2x;i dx I
0
47
b. The cable is loaded by load g(x) and q(x). Corresponding Since dx2 dx, dx2 can be neglected. We then have
horizontal forces are Hg and H.
VðxÞ dx H d ðxÞ dMðxÞ ¼ 0
It is assumed that erection of the cable is done is such a way that d ðxÞ dMðxÞ
the load g does not cause any bending of the cable. For constant VðxÞ H ¼0
dx dx
g, the shape of the cable given by y(x) is the second-degree
parabola: dVðxÞ d2 ðxÞ d2 MðxÞ
H ¼0
dx dx2 dx2
h g h dVðxÞ
yðxÞ ¼ f ðxÞ þ x ¼ xðl xÞ þ x qðxÞ ¼
l 2Hg l dx ð4:43Þ
g g 2 h d2 wðxÞ
¼ xl x þ x MðxÞ ¼ EI
2Hg 2Hg l dx2
ð4:38Þ !
g g h g l h d2 ðxÞ d d2 w
y0 ðxÞ ¼ l 2 xþ ¼ x þ qðxÞ H EI 2 ¼0
2Hg 2Hg l Hg 2 l dx2 dx2 dx
g 1 d4 wðxÞ d2 ðxÞ
y00 ðxÞ ¼ ¼ : EI H ¼ qðxÞ:
Hg R g dx4 dx2
We then have
The shape of the cable for load q(x) is given by the coordinate
ðxÞ ¼ yðxÞ þ wðxÞ
ðxÞ ¼ yðxÞ þ wðxÞ
ð4:39Þ d4 wðxÞ d2 ðxÞ
d ðxÞ ¼ dyðxÞ þ dwðxÞ EI H ¼ qðxÞ
dx4 dx2
where w(x) is the deformation of the cable due to load d4 wðxÞ d2 yðxÞ d2 wðxÞ
EI H H ¼ qðxÞ
q(x) g(x). dx4 dx2 dx2
d4 wðxÞ d2 wðxÞ d2 y ð4:44Þ
The cable is stressed by normal force N(x), shear force Q(x) and EI H ¼ qðxÞ þ H
dx4 dx2 dx2
by bending moment M(x):
g 1
¼ qðxÞ þ H ¼ qðxÞ þ H
NðxÞ ¼ H cos ðxÞ þ V sin ðxÞ Hg Rg
ð4:40Þ H H
QðxÞ ¼ H sin ðxÞ þ V cos ðxÞ: ¼ qðxÞ þ ¼ qðxÞ g
Rg Hg
These values are derived from the equilibrium conditions on the
element ds. Equation (4.44) can be easily extended to express the elastic
support of the portion of the cable by Winkler’s springs
For vertical load with constant H, (Figure 4.8):
V¼0 V¼0
VðxÞ qðxÞ dx þ kwðxÞ dx ðV þ dVÞ ¼ 0
VðxÞ qðxÞ dx ðV þ dVÞ ¼ 0
qðxÞ dx þ kwðxÞ ¼ dV ð4:45Þ
ð4:41Þ
qðxÞ dx ¼ dV
dV
dV qðxÞ þ kwðxÞ ¼ :
qðxÞ ¼ dx
dx
The characteristic of the spring k(x) is a ‘stress’ that corresponds
and to its unit deformation.
M¼0 M¼0
1 2 1 2
VðxÞ dx H d ðxÞ þ MðxÞ 2 qðxÞ dx
ð4:42Þ VðxÞ dx H d ðxÞ þ MðxÞ 2 qðxÞ dx ð4:46Þ
2
ðMðxÞ þ dMðxÞÞ ¼ 0: þ kwðxÞ 12 dx ðMðxÞ þ dMðxÞÞ ¼ 0
48
Figure 4.8 Geometry and internal forces at flexibly supported cable Figure 4.9 Bending moments: (a) at support and (b) under point
load
M(x)
N(x)
(a) q
Q(x) q(x)
g
g
Hg , H x Hg , H x Hg , H
a b g
q(x) A h(x)
V(x) h Df(x) q
N(x)
M(x) y(x)
H y, h Hg , H
f(x)
dh b M
ds w(x)
M(x) + dM(x) B
k(x) H f(x)
N(x) + dN(x) k(x)
V(x) + dV(x)
dx F
I
q
g
(b)
Since dx2 dx, dx2 can be neglected and we then have: –x x g
? ?
4 2
d wðxÞ d wðxÞ H g, F
EI H þ kwðxÞ ¼ qðxÞ þ
dx4 dx 2 R g
ð4:47Þ
H
¼ qðxÞ g
Hg M
q g
wp ðxÞ ¼ ðxÞ yðxÞ ¼ ðl xÞx ðl xÞx w00h ðxÞ ¼ 2
Be x
2H 2Hg
w0 ðxÞ ¼ w0h ðxÞ þ w0p ðxÞ
qlx qx2 glx gx2
¼ þ
2H 2H 2Hg 2Hg For x ¼ 0
ql qx gl gx
w0p ðxÞ ¼ þ
2H H 2Hg Hg w0 ðxÞ ¼ 0 ¼ B e0 þ
q g ð4:51Þ
w00p ðxÞ ¼ þ ¼ q B¼
H Hg
49
h h h h
Wi – 2 Wi – 1 Wi Wi + 1 Wi + 2
50
Figure 4.12 Deformation and bending moments of the tested In actual cables loaded by a uniform load, the bending moment
cable is nearly zero along the length of the cable. Significant values of
bending moments originate only close to the supports and
P = 31.5 kN
1 1 under the point load (Figure 4.9); their course is exponential,
2 3 2 which must be taken into consideration when we analyse the
H 0.500 H = 1730 kN structures by modern non-linear programs by finite element
methods. To cover the concentration of stresses, a very fine
0.300 1.050 16.640 1.050 0.300
mesh of elements has to be used close to supports and point
19.340
loads.
part 1 part 2 part 3
Figure 4.13 Deformation and bending moments at beam and stress ribbon: (a) uniform load and (b) vertical deflection of support
(a) (b)
q=g+p
p
g g
y
1.00 m
Hg
Hg , HD Hg , Hq Hg , HD 1.00 m
HD
L L
M
stress ribbon
beam
stress ribbon
beam
51
Table 4.1 Comparison of the static effects Figure 4.14 Natural modes
L: m
f(1)
33.00 66.00 99.00
Figure 4.13(b) and Table 4.2 show the deflection and bending
moment in the beam and stress ribbon stressed by a vertical
deflection of support ¼ 1 m. With the increasing span
length, the bending moments in the beams are reduced propor- f(4)
tionally to the square of their length.
On the contrary, the bending moments in the stress ribbon have sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
significant values that in the longer spans are even higher that in 1 1 Hn2 EI 2 n2
the beam. It is therefore necessary to carefully analyse the fðnÞ ¼ þ ð4:57Þ
2 l2 l4
bending of cables (or prestressed bands) in structures where
significant vertical deformations can occur (e.g. in the cables
where H is horizontal force, is mass of the cable per unit
of a cable-supported structure).
length, f is sag of the cable, E is the modulus of elasticity, A is
area and I is moment of inertia.
Note: the above-described analysis is hypothetical since a beam
of the above dimensions would fail.
The term
4.3. Natural modes and frequencies
EAf 2 2
The natural modes and frequencies of a single cable (Figure
2l 4
4.14) can be determined according the following formules
(Strasky and Pirner, 1986): in Equation (4.56) describes the normal stiffness of the cable
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi that has to elongate when vibrating in the first mode. This is
1 1 H EAf 2 2 EI 2 the reason why, in some cases, the first mode is higher than
fð1Þ ¼ þ þ 4 ð4:56Þ
2 l2 2l 4 l the second mode.
The term
Table 4.2 EI 2 2
n
l4
L: m
in Equation (4.57) describes the bending stiffness of the cable
33.00 66.00 99.00 which, in engineering calculations, is insignificant.
Mp,a Beam (MNm) 1.291 0.323 0.143 Natural modes of vibrations are defined as:
Mp,b Beam (MNm) 1.291 0.323 0.143
Hq Stress ribbon (MN) 8.266 13.542 19.730 l
Mp,a Stress ribbon (MNm) 1.429 0.787 0.637 X
n i x
2
Mp,b Stress ribbon (MNm) 2.485 1.166 0.839 wðx; tÞ ¼ Ai cosð2 fi Þt þ Bi sinð2 fi Þt sin
i¼1
l
52
where Ai, Bi are determined by the progression of the right-hand Strasky J and Pirner M (1986) DS-L Stress ribbon footbridges.
side of equations: Dopravni stavby, Olomouc, Czechoslovakia.
Timoshenko SP and Goodier JN (1970) Theory of Elasticity.
wðx; 0Þ ¼ gðxÞ McGraw-Hill, New York.
w0 ðx; 0Þ ¼ hðxÞ:
REFERENCES
Eibel J, Pelle K and Nehse H (1973) Zur Berechnung von
Spannbandbrücken – Flache Hängebänder. Verner, Verlang,
Düsseldorf.
53